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Abstract—We present a global and convex formulation for the template-
less 3D reconstruction of a deforming object with the perspective cam-
era. We show for the first time how to construct a Second-Order Cone
Programming (SOCP) problem for Non-Rigid Structure-from-Motion
(NRSfM) using the Maximum-Depth Heuristic (MDH). In this regard,
we deviate strongly from the general trend of using affine cameras and
factorization-based methods to solve NRSfM, which do not perform well
with complex nonlinear deformations. In MDH, the points’ depths are
maximized so that the distance between neighbouring points in camera
space are upper bounded by the geodesic distance. In NRSfM both
geodesic and camera space distances are unknown. We show that,
nonetheless, given point correspondences and the camera’s intrinsics
the whole problem can be solved with SOCP. This is the first convex
formulation for NRSfM with physical constraints. We further present how
robustness and temporal continuity can be included in the formulation to
handle outliers and decrease the problem size, respectively. We show
with extensive experiments that our methods accurately reconstruct
quasi-isometric objects from partial views under articulated and strong
deformations. Compared to the previous methods, our approach gives
better or similar accuracy. It naturally handles missing correspondences,
non-smooth objects and is very simple to implement compared to pre-
vious methods, with only one free parameter (the neighbourhood size).

Code release. We have made our MATLAB implementation
available at http://igt.ip.uca.fr/∼ab/.

1 INTRODUCTION

Non-Rigid Structure-from-Motion (NRSfM) is the problem
of finding the 3D shape of a deforming object given a
set of monocular images. This problem is naturally under-
constrained because there can be many different deforma-
tions that produce the same images. By including deforma-
tion constraints one limits the set of solutions. Several meth-
ods have been proposed to tackle NRSfM with a variety of
deformation constraints. There are two main categories of
methods based on the deformation constraints: statistics-
based [Bregler et al., 2000; Dai et al., 2012; Garg et al.,
2013; Gotardo and Martı́nez, 2011; Torresani et al., 2008] and
physical model-based [Agudo and Moreno-Noguer, 2015;
Chhatkuli et al., 2014b; Taylor et al., 2010; Varol et al.,
2009; Vicente and Agapito, 2012] methods. In the former
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group one assumes that the space of deformations is low-
dimensional. These methods are accurate for deformations
such as body gestures, facial expressions and simple smooth
deformations. However they tend to perform poorly for ob-
jects with high-dimensional deformation spaces or atypical
deformations. They can also be difficult to use when there
is missing data e.g., due to occlusions. In the latter group
one finds deformation models based on isometry [Chhatkuli
et al., 2014b; Taylor et al., 2010; Varol et al., 2009; Vicente and
Agapito, 2012], elasticity [Agudo et al., 2014] or particle-
interaction models [Agudo and Moreno-Noguer, 2015]. The
isometric model is especially interesting and is an accurate
model for a great variety of real object deformations. In
the related problem of template-based reconstruction (also
referred to as Shape-from-Template [Bartoli et al., 2015])
it has been proven to make the problem well-posed [Bar-
toli et al., 2015; Chhatkuli et al., 2014a; Ngo et al., 2016;
Salzmann and Fua, 2011]. However in NRSfM, approaches
based on isometry still lack in several aspects. In particular,
the existing solution methods tend to be complex in their
design and often require very good initialization.

To address the shortcomings of state-of-the-art ap-
proaches, we propose a method with the following proper-
ties: 1) the perspective camera model is used (unlike in most
low-rank model methods and few others), 2) the isometry
constraint is used, 3) a global solution is guaranteed with a
convex problem and no initialization (unlike in the recent
methods which use energy minimization) 4) it handles non-
smooth objects and does not require temporal continuity 5)
it handles missing correspondences and 6) the complete set
of constraints are tied together in a single problem.

We use the inextensibility constraint for approximating
isometry. Inextensibility is a relaxation of isometry where
one assumes that the Euclidean distances between points
on the surface do not exceed their geodesic distances. In-
extensibility alone is insufficient because the reconstruction
can arbitrarily shrink to the camera’s center. In template-
based reconstruction inextensibility has been combined with
the so-called Maximum-Depth Heuristic (MDH) [Perriollat
et al., 2011; Salzmann and Fua, 2011], where one maximizes
the average depth of the surface subject to inextensibility
constraints. This approach has been successfully applied
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in [Salzmann and Fua, 2011], providing very accurate results
for isometrically deforming objects. The main feature of
MDH in template-based scenarios is that it can be efficiently
solved with convex optimization. However, in NRSfM, the
template is unknown and thus MDH cannot be used out-
of-the-box. Our main contribution is that we show how
to solve NRSfM using MDH for isometric deformations.
The problem is solved globally with convex optimization
(SOCP), and handles perspective projection and difficult
cases such as non-smooth objects and/or deformations,
difficult surface topology and large amounts of missing
data (e.g. 50% or more due to self-occlusions). Figure 1
shows the reconstructions obtained from our method for
a deforming piece of paper. Our solution is far easier to
implement than all state-of-the-art methods and has only
one free parameter. The parameter value is not critical and a
higher value only translates to a larger problem size but no
reduction in solution accuracy. The proposed method can
be implemented in MATLAB using only 25 lines of code.
We also provide a robust formulation of our method that
can handle noisy and erroneous image correspondences. To
encode temporal smoothness we represent the depth func-
tion as a one-dimensional spline. We design all proposed
methods to be SOCP problems so that they can be solved
very efficiently and optimally by off-the-shelf solvers. We
provide extensive experiments where we show that we
outperform existing work by a large margin in most cases.
Additionally, inextensibility is also a convex relaxation of
rigidity. With this, we can express a rigid SfM problem
as a single SOCP. Although for obvious reasons, it cannot
solve rigid SfM with the same accuracy as conventional
approaches, we show an experiment which proves that our
method also generalizes to rigid scenes. A related approach
[Li, 2010] uses preservation of Euclidean distance in rigid
objects to formulate a Semi-Definite Program (SDP) and
solves for a single rigid object without explicitly modeling
motion. We differ from this approach by considering the
fact that Euclidean distances between 3D points in non-rigid
objects are not preserved with deformations but are upper-
bounded by the geodesic distances.

This paper represents an extension of our previous work
[Chhatkuli et al., 2016] where we presented the global
convex formulation using MDH. We here extend the for-
mulation in two ways: one having robustness embedded
into the formulation and the other by adding the temporal
smoothness prior based on splines. We also present new
experiments on additional objects. We organize the paper
as follows. We discuss the state-of-the-art in section 2, and
present our problem modeling in section 3, our MDH-based
inextensible NRSfM method in section 4 and experimental
results in section 6. We discuss on the practical aspects of
the proposed methods in section 7 and finally conclude in
section 8.

2 PREVIOUS WORK

Among the two broad classes of existing methods,
factorization-based approaches using the low-rank defor-
mation model have been the focus of research in NRSfM
for a long time. Starting from the work of [Bregler et al.,
2000], many works have been proposed to include priors

in resolving the ambiguities of factorization-based NRSfM.
Priors are important even after applying the low-rank con-
straint because some shape ambiguities remain in affine
projections [Collins and Bartoli, 2010; Pizarro et al., 2013].
These include the shape basis priors [Del Bue, 2008], spatial
smoothness prior [Torresani et al., 2008] or spatio-temporal
smoothness prior and non-linear modeling [Gotardo and
Martı́nez, 2011] to name a few. [Dai et al., 2012] proposed
a method to complete NRSfM factorization with only the
low-rank prior by improving on the way low rank is im-
posed in affine projections. Some works have also been
done on shape recovery with factorization and the per-
spective camera [Hartley and Vidal, 2008]. Low-rank based
factorization methods are global methods that use all the
available constraints, i.e. the image points are concatenated
in a matrix which is decomposed to recover all shapes at
once. These methods work well with small linear deforma-
tions but require learning [Tao and Matuszewski, 2013] or
prior knowledge to set the number of shape bases, kernel
and its parameters [Gotardo and Martı́nez, 2011]. Some
improvements have been made for obtaining the basis size
automatically [Garg et al., 2013] but there is no guarantee
that a given collection of shapes can be represented by a low
number of shape bases accurately. Additionally, in many
cases the affine camera has the problem of local two-fold
ambiguity [Collins and Bartoli, 2010].

Figure 1: Example reconstructions with our method on the KINECT
Paper [Varol et al., 2012a] images. The top row shows the input images
and the bottom row shows the groundtruth in green overlaid on top of
the reconstruction in white. Our best method gives a 3D error of 4.62
mm while the best compared method [Parashar et al., 2016] has an error
of 7.63 mm. This is remarkable if we note that even the best performing
SfT method in [Chhatkuli et al., 2017] produces an error of 3.82 mm on
the dataset.

Physical model-based approaches have been explored in
the literature to avoid the difficulties and problems with
statistical priors. Primarily, efforts have been made on using
isometry or its relaxation to inextensibility to constrain the
problem in NRSfM [Chhatkuli et al., 2014b; Taylor et al.,
2010; Varol et al., 2009; Vicente and Agapito, 2012], which
should allow one to handle larger or more complex de-
formations. Unlike statistical priors, the isometric prior can
be fairly accurate for a large variety of deformations. The
isometric prior can be used in NRSfM locally (point-wise)
or semi-locally (patch-wise) or even globally by considering
the whole set of surfaces and image points together. A semi-
local method using a perspective camera and homographies
is proposed in [Varol et al., 2009]. It can reconstruct sur-
faces that are composed of large planar patches where it
disambiguates surface normals obtained from homography
decomposition using smoothness. [Chhatkuli et al., 2014b]
is a local method that assumes surfaces to be only locally
planar at each point. It gives point-wise ambiguous so-
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TABLE 1: NRSfM methods and their characteristics.

Methods Surface Representation Surface Prior Camera Model Constraint
type

Primary
computation

[Gotardo and Martı́nez,
2011] Point sets Low-rank and

temporal smoothness Orthographic Global Non convex

[Dai et al., 2012] Point sets Low-rank Orthographic Global
Convex with
non-convex
refinement

[Taylor et al., 2010] Mesh Isometry Orthographic Local Small systems
[Vicente and Agapito,
2012]

Point sets with
neighborhood Isometry Orthographic and

perspective Global Non-convex

[Parashar et al., 2016] 2D Riemannian Manifold Isometry Perspective Local Small quartic
systems

[Chhatkuli et al., 2014b] 2D Riemannian Manifold
(implicit) Isometry Perspective Local Small systems

Proposed method Point sets with
neighborhood Inextensibility Perspective Global Convex

lutions for normals which are disambiguated using other
views rather than smoothness. The 3D shape is then ob-
tained by surface integration of the normals. However, it
only works for smooth surfaces and requires very accurate
registration represented by splines for computing second-
order derivatives of the registration. A recent local solution
for NRSfM [Parashar et al., 2016] gives a much better way to
obtain surface normals using local planarity at each point.
One remarkable feature of the method is the fact that the
computational complexity, which comes from solving a local
quartic system, is largely independent of the number of
images. [Collins and Bartoli, 2010; Taylor et al., 2010] solved
NRSfM locally using the orthographic camera. [Taylor et al.,
2010] did this using sets of three points and four or more
images with a convex relaxation. [Collins and Bartoli, 2010]
did this without a convex relaxation. It used automatically
clustered point sets and solved the general case of three or
more images. These methods assume a local rigidity prior,
which is similar to an isometric prior. [Vicente and Agapito,
2012] uses the isometric constraints under the assumption of
an orthographic camera. The method also provides a way to
include the perspective camera. However, the solutions are
obtained with discrete non-convex optimization on an initial
solution and are not globally optimal. Furthermore, it is a
complex method to implement and test. Table 1 lists some
important methods and their characteristics in comparison
to the proposed methods.

Apart from the low rank statistical prior based methods
and the isometric prior based methods, some other methods
exist. For example, [Agudo and Moreno-Noguer, 2015] uses
a shape basis as well as an isometry-like prior but the
method requires an initial 3D shape, obtained from rigid
factorization on the first set of frames. In that regard, it
could be argued that the core of the method is rather like
a template-based approach. [Russell et al., 2014] proposes
an interesting local solution based on local fundamental
matrices computed from local point sets. However this is
a local method that does not use all available constraints
and is very complicated to implement. Compared to existing
work, our method is the first to formulate a convex problem
by relaxing isometry to inextensibility in NRSfM, from
which we obtain a globally optimal solution using SOCP.
Our method is fast, accurate, simple to understand and uses

the perspective camera model.

3 MODELING

In figure 2, we illustrate the problem and the associated
geometric terms described in this section. We use Latin and
Greek letters in italics to denote scalars. Bold and lower
case Latin and Greek letters denote vectors. Matrices are
denoted by bold upper case Latin letters. We use a Greek
letter to emphasize that a given quantity is a function. We
use ‖.‖2 to denote the L2 norm of a vector and ‖.‖fro to
denote the Frobenius norm of a matrix. We index points
with i ∈ {1 . . . n} where n is the number of scene points,
and we index images with k ∈ {1 . . .m} where m is the
number of images. We use a subscript to index the points
and a superscript to index the images.

Figure 2: The NRSfM problem and its associated geometric terms.
We use O to represent the camera center from which we draw the
sight lines. We show only three points for clarity. In practice there
can be virtually any number of points and each point can have many
neighbours.

3.1 Point-based reconstruction

We define image measurements as a set of n point corre-
spondences expressed in the camera frame in m images
denoted by C , {qk

i }. The 2D vector qk
i ,

(
uki vki

)>
denotes the ith point seen in the kth image. We define
the unknown set of 3D points by R , {pk

i }, where
pk
i ,

(
xki yki zki

)>
denotes the unknown 3D position of
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qk
i in camera coordinates. Because we use the perspective

camera, pk
i and qk

i are related by

pk
i = zki

(
qk>

i 1
)>

+ eki (1)

where eki is measurement noise. We do not explicitly
parametrize the camera motion in our model. This frees the
method from dealing with the ambiguities between the cam-
era motion and the object deformation. The NRSfM problem
is solved by determining the unknown set Z , {zki }.

3.2 The intrinsic template
We start with the MDH-based SfT problem and then migrate
to NRSfM. We formalize the 3D template with what we
call the intrinsic template. This is used to solve the set of
point depths Z . We use the term intrinsic because it models
properties of the object that are invariant to isometric defor-
mations. The intrinsic template is an undirected graph that
links the n scene points through its edges. This is defined by
a nearest-neighbourhood graph (NNG) whose edges store
the geodesic distances between pairs of points. The NNG
is denoted as N with n points (or nodes) and K edges per
node. We denote N (i) as the set of K-neighbours of the
ith point. Each edge eij , (i, [N (i)]j) of the graph has
an associated geodesic distance dij . Because we assume the
object deforms isometrically, we can assume dij is constant
for any deformation. We denote the intrinsic template as the
pair T , {N ,D}, with D , {dij}.

3.3 Template-based reconstruction
MDH for reconstructing a deformable surface was first
proposed in the template-based scenario. We therefore first
describe template-based reconstruction with MDH and then
move to the generic NRSfM problem. In template-based
reconstruction (i.e. Shape-from-Template), T is known from
the object’s reference shape, which is usually built from
a geometric mesh. We now describe the MDH for recon-
structing an object from a single image. Without loss of
generality we assume this is image 1, so the goal is to solve
for {z1i }. A solution was first proposed in [Perriollat et al.,
2008], then solved with convex optimization in [Salzmann
and Fua, 2009]. In MDH the deformation model is based
on surface inextensibility, which says that the Euclidean
distance between any two points pk

i and pk
j is upper

bounded by the geodesic distance dij . The geodesic distance
dij and the NNG N can be computed easily as the template
shape is given. For simplicity we neglect the effect of the
measurement noise eki as in [Salzmann and Fua, 2011]. The
problem formulation is as follows:

maximize
{z1

i }

n∑
i=1

z1i

subject to,

z1i ≥ 0∥∥∥∥z1i [q1
i

1

]
− z1j

[
q1
j

1

]∥∥∥∥
2

≤ dij

∀i ∈ {1 . . . n}, j ∈ N (i).

(2)

The main properties of problem (2) are the following. 1) It
is a Second Order Cone Program (SOCP) that can be solved

efficiently and globally with modern optimization tools such
as MOSEK and SeDuMi. 2) The neighbour order K in
the intrinsic template is non-critical and can be a number
greater than or equal to 2, K ≥ 2, since each edge provides
one inequality. Having K = 2 translates to slightly more
constraints than variables. In practice, it is better to keep
K > 2 for each point because we have inequalities rather
than equalities. A very large value of K , however implies
that inextensibility constraints between distant points will
be included in problem (2). Such constraints between distant
points do not strongly constrain the problem and including
them only amounts to an increase in the computation time.
Keeping a lowerK is thus important for efficiency purposes.

4 MDH-BASED NRSFM

4.1 Initial formulation

The MDH for NRSfM can be expressed as the maximization
of the sum of all depths {zki } under the inextensibility con-
straint and the condition that each depth and each distance
are positive. Unlike in template-based reconstruction, it uses
multiple images and in general point correspondences will
not be found in all images due to occlusions, missed tracks
in optical flow, etc. We therefore introduce the visibility set
V , {vki }, where vki = 1 if the ith point is visible in the kth
image and vki = 0 otherwise. We assume the visibility set to
be known, meaning that we know which points are missing
in each image. We formulate the problem as follows:

maximize
{zk

i },{dij}

m∑
k=1

n∑
i=1

vki z
k
i

subject to,

zki ≥ 0, dij ≥ 0

vki v
k
j

∥∥∥∥zki [qk
i

1

]
− zkj

[
qk
j

1

]∥∥∥∥
2

≤ vki vkj dij

∀k ∈ {1 . . .m}, i ∈ {1 . . . n}, j ∈ N (i).

(3)

To handle missing correspondences, we fix zki = 0 if vki = 0
and therefore we do not reconstruct the points that are not
visible. The known visibility set is used in problem (2) to
disconnect the inextensibility conditions when any of the
points involved is not visible. In contrast to the template-
based problem (2), in the template-less problem (3) we do
not know the intrinsic template T . It is clear that solving
problem (3) directly is not possible for two reasons: 1) the
optimization is not well posed because dij is unbounded
(one can keep increasing dij and the constraints will still
be satisfied), 2) the NNG is an unknown. We now give a
solution to both issues.

4.2 Bounding the distances

In order to bound the problem, our idea is to fix the scale
of the intrinsic template, by fixing the sum of the geodesic
distances to an arbitrary positive scalar (1 in our case).
Formally, we include in problem (3) the following linear
constraint:

n∑
i=1

∑
j∈N (i)

dij = 1. (4)
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By including equation (4), {zki } cannot increase indefinitely
without violating equation (4), yet the problem is still an
SOCP. We illustrate this in figure 3. The effect of equation (4)
is to fix the scale of the reconstruction. In NRSfM we are free
to fix the scale of the reconstruction arbitrarily, because just
like in rigid SfM, it is never recoverable. Having fixed the
scale, the reconstructed depths cannot increase arbitrarily,
because with a perspective camera, as the depths increase
so do Euclidean distances between pairs of points. At some
point, the Euclidean distances will exceed the geodesic
distances and the inextensibility constraints (final constraint
of problem (3)) will be violated.

Figure 3: Illustration of the bounds set by equation (4) for NRSfM using
three points and one image. The depth values cannot increase to the
shaded region on the right because this would violate equation (4).

4.3 The nearest-neighbour graph
The function of the NNG is to select pairs of points on
the object’s surface which give strong inextensibility con-
straints. These pairs can be any pairs of points, however
they give the strongest constraints when the points are close
together on the surface. This is because for closer points
the inextensibility inequalities become tighter. Of course,
we do not know exactly which points are close together a
priori. A good estimate can be made from the distance of
the correspondences in the images, because nearby points
on the object’s surface tend to be close in the images. We
denote the Euclidean distance between two points qk

i and
qk
j in image k by δkij , and we use these to build the NNG.

The specific algorithm we propose is as follows:

1) Compute distances {δkij} ∀i ∈ {1 . . . n}, j ∈
{1 . . . n}, k ∈ {1 . . .m}, and i 6= j.

2) If the ith or jth point is not visible in image k, set
δkij = −∞.

3) Take the maximum distance over the images: δ̂ij =
maxk{δkij} ∀i ∈ {1 . . . n}, j ∈ {1 . . . n}.

4) For each point i augment N (i) with the points j
with the K smallest values of δ̂ij (j 6= i).

5) Find the connected components using each point
index i and its neighborhood N (i) and reconstruct
each component separately.

The above algorithm keeps only those points in a neigh-
borhood that are close to each other in all the images. This
implies that if a material is torn apart or an object splits, we
treat the parts as separate objects. In that case, they could
be reconstructed separately and the scale could be fixed
after the reconstruction to merge them in images where they
form a single object. The only parameter that needs to be

selected here is the neighbourhood size K . As explained in
the end of section 3.3, our method is not very sensitive to
this parameter but a reasonable value (e.g., 20) should be
chosen depending on the density of the correspondences
and required speed of optimization.

4.4 NRSfM with temporal smoothness

One potential application of NRSfM is to reconstruct a
deforming object from its video. In such a setup, the object
points can be assumed to move smoothly over time. This can
be expressed by replacing the maximization term in problem
(3) with the following:

maximize
{zk

i },{dij}

m∑
k=1

n∑
i=1

vki z
k
i − λt

m−1∑
k=1

n∑
i=1

‖vk+1
i vki (z

k+1
i − zki )‖1

(5)

subject to the same constraints as in problem (3). We use
the hyperparameter λt ∈ R to balance the two costs of
problem (5). The added term in problem (5) causes the
depth values to change slowly between consecutive views,
albeit with an added computational complexity. The added
complexity comes from the use of slack variables required
for implementing the L1 cost. Many methods including
[Vicente and Agapito, 2012] use such first-order approach
to impose temporal smoothness. However, using a large
number of images (say, greater than 100) can increase the
size of problem (3) making it very time consuming to solve.
Using the formulation of problem (5) can make it possibly
intractable in such situation. We introduce a different ap-
proach to impose temporal smoothness that attempts on
reduction of the size of problem (3). We define temporal
smoothness as the smooth evolution of depth over time and
use uniform cubic B-splines to represent depth as a function
of time. Thus for each 3D point over the time sequence, the
unknown variables are the set of control points representing
the evolution of depth in the sequence.

B-splines can be used to parametrize an N -D function
using weighting parameters known as the control points.
We use a 1-D spline to parametrize the depth function
zi(k) ∈ R+. Note that it is a function of a single variable,
i.e., the image index k. The spline is evaluated as a linear
function of its control points at each image, given by:

zki = zi(k) = η>k wi, i = 1 . . . n, k = 1 . . .m (6)

where ηk : k → Rmc is a function of time (image index) k
and wi is the vector of control points for the point i. Given
that we use mc < m control points to represent each point
depth on the object’s surface, the set of control points is
wi = [w1 w2 . . . wmc

]> ∈ Rmc . The lifting function ηk can
be precomputed. A good description of the lifting function
and its computation can be found in [Brunet, 2010]. For our
purpose, it produces a sparse vector with at most 4 non-zero
values and of the same size as the vector of control points.
Using equation (6), we can rewrite the NRSfM problem in
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terms of the new unknowns as below:

maximize
{wi},{dij}

m∑
k=1

n∑
i=1

vki η
>
k wi

subject to,

η>k wi ≥ 0

dij ≥ 0
n∑

i=1

∑
j∈N (i)

dij = 1

vki v
k
j

∥∥∥∥η>k wi

[
qk
i

1

]
− η>k wj

[
qk
j

1

]∥∥∥∥
2

≤ vki vkj dij

∀k ∈ {1 . . .m}, i ∈ {1 . . . n}, j ∈ N (i).

(7)

We solve for the set of unknown control points {wi}
and the set of geodesic distances {dij}. The final depth
values are obtained from equation (6) after the control points
are obtained by solving problem (7). The total number of
unknowns in problem (7) is thus Kn + nmc instead of
Kn + nm. Usually we set mc < 0.3m and thus for a
large problem this can result in a significant reduction of
computation time as well as memory usage with a negligible
drop in accuracy.

5 MDH-BASED ROBUST NRSFM

The basic problem formulation presented in section 4 gives
very good reconstructions when the input correspondences
have no outliers. However in the presence of a few outlier
correspondences, they break down easily. This is because
the method does not model noise or errors in the point
correspondences. Thus the constraints at an outlier point
can affect the solution of all other points. This is in contrast
to local methods [Chhatkuli et al., 2014b] that solve the
NRSfM problem one point at a time independently. Several
strategies exist on dealing with outlier correspondences.
Recovering inlier correspondences is most efficient with a
dedicated outlier removal method such as [Pilet et al., 2008;
Pizarro and Bartoli, 2012]. However these methods often
miss a few outlier points. Consequently, an outlier rejection
strategy is necessary but not sufficient for the MDH-based
NRSfM, as even very few missed outliers can result in an
incorrect solution. We thus require a method that gives good
reconstructions even in the presence of a small percentage
of outlier image correspondences or small amount of noise
in the correspondences. In the SfT method [Ngo et al., 2016],
the authors use an outlier removal strategy based on the
mesh Laplacian; they then solve the final step of recon-
struction using an iterative non linear refinement with slack
variables to handle outliers. We here show that robustness
with slack variables can be added into problem (3) without
losing its convexity so that a global solution is still obtained.
We achieve robustness by introducing slack variables in the
inextensibility constraint that can ‘capture’ outliers.

We introduce sets of scalar variables {aki } and {bki } for
each point in each view so that the back projection is:

pk
i =

akibki
0

+ zki

[
qk
i

1

]
. (8)

Equation (8) allows the sighlines from the corresponding
point on image qk

i to move in order to ‘correct’ for the outlier
correspondences. The angle a given sightline moves with
the above correction can be measured using the following
cross-product vector:

cki =

akibki
0

×
xkiyki
1

 =

 bki
aki

xki b
k
i − yki aki

 . (9)

Given that only few of the points are actually outliers re-
quiring small corrections, a correct NRSfM solution should
result in sparse sets of cki and therefore we require minimiz-
ing the L1-norm of cki :

∣∣aki ∣∣+∣∣bki ∣∣+∣∣xki bki − yki aki ∣∣. We modify
problem (3) to include equation (8) and add the above L1-
cost as:

maximize
{zk

i },{dij},{ak
i },{bki }

m∑
k=1

n∑
i=1

vki z
k
i

− λr
m∑

k=1

n∑
i=1

vki

(∣∣∣aki ∣∣∣+ ∣∣∣bki ∣∣∣+ ∣∣∣xki bki − yki aki ∣∣∣)
subject to,

zki ≥ 0, dij ≥ 0

a1i = 0, b1i = 0
N∑
i=1

∑
j∈N (i)

dij = 1

vki v
k
j

∥∥∥∥∥∥zki
[
qk
i

1

]
+

akibki
0

− zkj [qk
j

1

]
−

akjbkj
0

∥∥∥∥∥∥
2

≤ dij

∀k ∈ {1 . . .m}, i ∈ {1 . . . n}, j ∈ N (i).

(10)

When point correspondences are obtained by tracking
or wide-baseline matching with a single image (say, the first
image), a further constraint can be added that no outliers
exist in the first image. Thus, we additionally set a1i = 0
and b1i = 0. The first image point correspondences act as
the reference on the basis of which the reconstructed points
as well as the correspondences in other images can move
to correct for outlier mismatches. We additionally require a
single hyperparameter λr to balance the depth maximiza-
tion with respect to the correction for outliers. Problem (10)
is much better constrained than problem (3) when the image
point correspondences have noise or outliers.

6 EXPERIMENTAL RESULTS

6.1 Implementation details

We have implemented all of our methods in MATLAB using
the MOSEK SOCP solver [ApS, 2015]. MOSEK is faster
than many other SOCP solvers, especially for large scale
problems. All of the methods can be implemented in very
few lines of code (25 to 35) with the YALMIP interface
[Löfberg, 2004] for MATLAB. However we use our opti-
mized interface to call the MOSEK solver for the proposed
methods in favor of speed. We can solve an NRSfM problem
with 60 images, 300 points and K = 20 in about 4 minutes
in a 2012 desktop PC. This computation time is among the
fastest of the NRSfM methods for the number of images and
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points considered. The robust version of the method takes
about 13 minutes for the same problem. On the other hand,
the method imposing temporal smoothness based on splines
as in problem (7) takes only 130 seconds for the same task.

6.2 Method comparison and error metrics
We compare our results against five other methods whose
source code is provided by the authors. We name our
first NRSfM formulation that implements problem (3) and
equation (4) as tlmdh and its robust version of problem (10)
as r-tlmdh. We name the implementation of our NRSfM
with temporal smoothness described by equation (5) as t-
tlmdh and our NRSfM with temporal smoothness based on
1D splines as s-tlmdh. We name the non-convex soft inex-
tensibility based method for orthographic camera [Vicente
and Agapito, 2012] as o-sinext and the local homography
method for perspective camera [Chhatkuli et al., 2014b] as
p-isolh. We write the local method of [Parashar et al., 2016]
based on the metric tensor as p-isomet. We name the prior
free factorization method of [Dai et al., 2012] as o-spfac
and the kernel based factorization method [Gotardo and
Martinez, 2011] as o-kfac. We name the locally rigid method
based on 3-point SfM [Taylor et al., 2010] as o-lrigid. Each
method requires one or more parameters to be tuned. We
fix these parameters to optimal values for each dataset and
keep them constant for all experiments. For our methods we
fix a single hyperparameter for all datasets. We set λt = 0.2
for t-tlmdh and λr = 25 for r-tlmdh. Similarly, we set the
number of control points for depth in s-tlmdh to 20% of the
number of images.

We measure a method’s accuracy with two metrics: 3D
Root Mean Square Error (RMSE), which call the 3D error
and the % 3D error often used in the NRSfM literature
[Agudo and Moreno-Noguer, 2015]. Both measures are al-
most identical and we show the 3D error in the plots. We use
% 3D error when results in different sequences need to be
compared in the same plot. The 3D error is computed from
the ground truth 3D point positions. Because NRSfM has
a scale ambiguity no method can reconstruct the absolute
scale of the object. For methods which use the perspective
camera (tlmdh and p-isolh) we scale their reconstructions
to best align them with the ground truth. For the methods
which use the affine camera (o-sinext, o-lrigid and o-spfac),
we transform their reconstructions with a similarity trans-
form to best align them with the ground truth. The % 3D
error is defined as follows:

% 3D error =
‖PGT −PREC‖fro

‖PGT ‖fro
(11)

where PGT represents the ground truth 3D shape (3 × n
matrix) and PREC represents the reconstructed 3D shape.

6.3 Developable Surfaces
Most non-rigid reconstruction methods focus on devel-
opable surfaces for experiments. A developable surface,
such as a piece of paper or cloth, can be flattened into a
planar surface without tearing or stretching. Obtaining con-
tinuous tracks of correspondences without partial images is
relatively easy for such surfaces. While the surfaces often
appear simple, they sometimes have high frequency and
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Figure 4: 3D error for the synthetic Flag dataset against the number of
images and points (first row) and against the % of missing data and the
amount of noise (second row). The legend is shown on the top.

non-linear deformations. We experiment with 7 different
datasets representing such surfaces.

The Flag dataset: We use the cloth capture data
(mocap) [White et al., 2007] to generate semi-synthetic data.
Even though the object is real, the input data for all the
methods are generated from a virtual camera with perspec-
tive projection. The data shows a flag waving with wind
with some changes in the camera viewpoint, making it per-
haps the simplest of all datasets. The images are generated
with dimensions 640×480 px using a camera focal length of
640 px. The data has altogether 450 frames. We use this data
to test the performance of our methods and the compared
methods in several practical scenarios: with changing num-
ber of images, changing number of corresponding points
and missing correspondences. For changing the number of
images, we randomly draw a subset of m images from the
450 images with m varying from 5 to 60. For varying the
number of points, we randomly select a subset of n points
varying from 50 to 300. Finally, for varying the amount
of missing correspondences for each image we randomly
remove a percentage of correspondences ranging from 5
to 60. For the default conditions, we use 40 images, 300
points and no missing data. In order to fill the missing
correspondences required by some methods we follow [Hu
et al., 2013] for matrix completion. Note that our method
tlmdh works with incomplete data and therefore we do not
complete missing correspondences for our method. p-isolh
and p-isomet compute registration functions with B-splines
and so we use them to fill in the missing correspondences
for those methods. Figures 4 shows the plots for the dataset.

The results show that our method tlmdh performs very
well with just 5 images and considerably better than all
other methods. However, in high noise, p-isomet shows the
best performance. Its use of the registration warps makes it
robust to Gaussian noise to some extent. The same is true
for a high percentage of missing data. The factorization-
based method o-spfac and the local homography based
method p-isolh also does better compared to the remaining
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methods in different conditions. We obtain a 3D error of
6.3 mm using 40 images. Similarly, it can be seen that our
method is able to reconstruct the surface with as many as
60% random missing data. We also consider the effect of
noise in correspondences and use our r-tlmdh method to
show how it performs under correspondence noise.

The KINECT Paper dataset: We use the KINECT
Paper dataset [Varol et al., 2012b] as one of our real datasets
for evaluation, originally used for template-based recon-
struction [Ngo et al., 2016]. The dataset shows a VGA
resolution sequence of a large piece of textured paper un-
dergoing smooth deformations. Some example images were
shown in figures 2 and 3. We generate correspondences by
tracking points in the sequence using an optical flow-based
method [Garg et al., 2013] designed for non-rigid surfaces.
The tracks are outlier free and semi-dense. Due to the large
number of frames we again subsample them for all methods
except o-kfac, which requires temporal continuity. Figure 5
shows the plots of 3D error for all the images in the dataset.
We obtain very accurate reconstructions that in fact com-
pares with template-based reconstructions [Chhatkuli et al.,
2014a; Ngo et al., 2016]. The best performing methods are
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Figure 5: 3D errors for all images in the KINECT Paper dataset. The left
plot shows 3D error for tlmdh against the compared methods and the
right plot shows tlmdh against all other proposed methods.

r-tlmdh, t-tlmdh, tlmdh and s-tlmdh with mean 3D errors
of 4.62 mm, 5.32 mm, 5.41 mm and 7.15 mm respectively.
The local isometric method based on the metric tensor p-
isomet is the best performing state-of-the-art method with
7.63 mm 3D error. The factorization-based methods: o-kfac
and o-spfac have 3D errors of 13.93 mm and 14.66 mm
respectively while p-isolh shows an error of 13.64 mm. The
mean 3D and % 3D errors for all methods in the dataset are
given in tables 2 and 3 respectively.

The Hulk and the T-Shirt datasets: The Hulk
dataset [Chhatkuli et al., 2014b] consists of a comics cover
printed on a piece of paper in 21 different deformations.
Similarly, the t-shirt dataset [Chhatkuli et al., 2014b] consists
of a textured t-shirt with 10 different deformations. We show
a few example images of the dataset in figure 6. These
datasets provide images with wide-baseline matches. We do
not test the factorization-based methods on these datasets as
they have very few images and also do not form a temporal
sequence. A large number of images (m > 3/2L), where
L is the number of shape basis, is required by o-spfac and
a continuous video sequence is required by o-kfac. We give
the mean error results in tables 2 and 3. The best performing
methods are tlmdh and r-tlmdh with mean 3D errors of 3.51

mm and 3.45 mm for the hulk dataset; 5.41 mm and 5.39
mm for the t-shirt dataset respectively. Among the state-
of-the-art methods, p-isomet shows the best performance
with 10.76 mm and 10.60 mm error for the hulk and t-shirt
datasets respectively. The next best performing method is
p-isolh that gives a mean depth error of 14.53 mm and 8.94
mm for the Hulk and t-shirt datasets respectively.

Figure 6: Example of images present in the Hulk dataset (top row) and
the T-Shirt dataset (bottom row).

The Cardboard dataset: We construct a dataset using
non-smooth deformations of a cardboard object. The dataset
consists of 8 different deformations and images where the
groundtruth 3D for each was obtained with stereo. The
object used consists of repeating texture and large amount of
texture-less regions. The images are taken with a focal length
of about 3800 px and have a resolution of 4800 × 3200 px.
We give some example images from the dataset in figure
7 below. We use a dense wide-baseline matching [Wein-

Figure 7: Example images from the Cardboard dataset.

zaepfel et al., 2013] to compute correspondences between
the images. The resulting correspondences are noisy and
contains several outliers, more specifically in the texture-
less regions. Among our methods we test only tlmdh and
r-tlmdh as we do not have a temporal continuity in the
dataset images. The performance of r-tlmdh is particularly
noteworthy with 8.35 mm 3D error in contrast to 14.86 mm
for tlmdh. The next best performing method is p-isolh with
3D error of 10.02 mm. It handles the effect of outliers to
some extent by the use of BBS spline-based registration. The
local isometric method based on the metric tensor p-isomet
failed to give any results for the dataset, possibly due to non-
smooth surfaces and registration warps. Detailed results are
provided in tables 2 and 3. We also show a comparison plot
using different numbers of images in figure 8.

The Rug and the Table mat datasets: We make use of
existing datasets used in [Parashar et al., 2016]. The datasets
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Figure 8: Mean 3D errors for different number of images in the
Cardboard dataset.

are recorded with Kinect for X-box One and its images have
a resolution of 1920 × 1080 px. They are taken with a focal
length of 1054 px. Some example images for both datasets
are shown in figure 9. The Rug dataset shows a rug being

Figure 9: Example images for the Table mat (top, cropped to the size of
592× 349 px) and the Rug (bottom, original images) datasets.

deformed smoothly in 159 images, while the Table mat
dataset shows a table mat being deformed smoothly in 60
images. The correspondences are provided with the ground
truth and there are no missing correspondences. However,
due to the low frame-rate of the recorded sequences, the
correspondences provided are not very accurate and contain
outliers. We show the comparison of the proposed methods
with the state-of-the-art methods for all the frames in figure
11 for the rug dataset and figure 10 for the Table mat dataset.
We show the mean accuracy measures in tables 2 and 3.
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Figure 10: Mean 3D errors for all the images in the Table mat dataset.
The left plot shows errors for tlmdh against the compared methods and
the right plot shows tlmdh against all proposed methods.

We obtain the best results from r-tlmdh and tlmdh with 3D
errors of 25.72 mm and 26.60 mm for the rug dataset; while
for the Table mat dataset the compared method p-isomet
shows the best performance with 9.6 mm compared to 14.80
mm and 16.91 mm for r-tlmdh and tlmdh respectively. We
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Figure 11: Mean 3D errors for all the images in the Rug dataset. The
left plot shows errors for tlmdh against the compared methods and the
right plot shows tlmdh against all proposed methods.

also obtain good results from s-tlmdh with a mean 3D error
of 27.54 mm for the Rug dataset and 16.74 mm for the
Table mat dataset. The compared methods o-spfac and o-
kfac have a mean 3D error of 31.01 mm and 34.62 mm for
the Rug dataset; 17.51 mm and 16.25 mm for the Table mat
dataset. Note that the datasets are constructed with optical
flow tracking on a very low frame rate sequence and thus all
methods have a relatively high absolute mean error. Perhaps
for the same reason, we failed to reconstruct the surfaces
with o-lrigid using all the views. The proposed methods do
not show the same level of accuracy as in the other datasets.
This is also due to the relatively smaller viewpoint change
and deformations present in these datasets.

Newspaper sequence: We construct a video se-
quence of a tearing piece of newspaper that consists of
deformation as well as articulated movement. We record
the sequence using KINECT for Xbox One at full frame
rate using the libfreenect2 library [Xiang et al., 2016]. The
sequence has 460 images of resolution 1920×1080 px, taken
at a focal length of about 1054 px. Some example images
are shown in figure 12. We track points on the sequence

Figure 12: Example images from the Newspaper sequence.

again using dense point tracking [Sundaram et al., 2010]. We
randomly select 900 points that are tracked in all frames.
Figure 13 shows the error plots of different methods for
each image in the sequence. Table 2 gives the mean accuracy
measure for different methods in the sequence. The results
clearly show high accuracy of the proposed methods. The
mean 3D errors for tlmdh, r-tlmdh and s-tlmdh are 11.63
mm, 11.62 mm and 13.35 mm respectively. The closest
compared method p-isomet has a mean 3D error of 18.40
mm. o-spfac shows a 3D error of 24.94 mm. There are two
important reasons the proposed methods work well in this
dataset: first is that the point tracking gives very good set
of correspondences here due to the higher frame rate of
the dataset. More importantly, the tearing of the piece of
newspaper and the articulated movement tend to produce a
good amount of viewpoint change. These conditions, at the
same time are difficult for the compared methods to handle.
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TABLE 2: Mean 3D errors in real datasets.

3D error measurements for different methods in mm
Datasets tlmdh r-tlmdh p-isomet p-isolh o-spfac o-kfac o-sinext o-lrigid

KINECT Paper 5.41 4.62 7.63 13.64 14.66 13.93 21.45 18.65
Hulk 3.51 3.45 10.76 14.54 22.98 - 26.37 24.20
T-Shirt 5.41 5.39 10.60 8.94 - - 18.23 -
Cardboard 14.56 8.43 - 12.95 - - 35.34 20.54
Rug 26.60 25.72 26.15 38.26 31.01 34.62 49.14 -
Table mat 16.91 14.80 14.21 20.71 17.51 16.24 19.15 -
Newspaper 11.63 11.62 18.40 37.21 24.94 30.74 31.01 30.74

TABLE 3: Mean % 3D errors in real datasets.

% 3D error measurements for different methods
Datasets tlmdh r-tlmdh p-isomet p-isolh o-spfac o-kfac o-sinext o-lrigid

KINECT Paper 0.97 0.83 1.38 2.37 2.64 2.49 3.82 3.30
Hulk 0.62 0.62 2.81 4.17 5.10 - 5.82 5.31
T-Shirt 1.69 1.69 3.32 3.11 - - 5.45 -
Cardboard 3.49 2.06 - 3.22 - - 9.11 4.94
Rug 3.41 3.30 3.35 4.90 3.98 4.45 6.30 -
Table mat 1.40 1.22 1.17 1.71 1.45 1.34 1.58 -
Newspaper 1.63 1.63 2.63 5.20 3.50 4.24 4.34 4.31
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Figure 13: Mean 3D errors for all the images in the Newspaper
sequence. The left plot shows errors for tlmdh against the compared
methods and the right plot shows tlmdh against all proposed methods.

Figure 14: Failure cases: Images (top row) and their respective recon-
structions (bottom row). The first two shapes appear largely incorrect.

An apparent failure case: Failure cases occur in
NRSfM due to the problem being ill-posed due to lack of
motion and deformation. Naturally any method would fail
when the problem is ill-posed. However, a method can also
fail to give good results with a well-posed problem. We
found one such example for our method from [Salzmann

et al., 2007]. The dataset is a bending piece of paper imaged
from a fixed camera viewpoint with a relatively longer focal
length, and it contains no ground truth. We use optical
flow [Sundaram et al., 2010] to obtain correspondences. The
qualitative reconstructions for three frames are shown in
figure 14. The general shape of the paper looks reasonable
but in the first image it is bent when it should be flat and
the degree of bending is not properly captured in the second
image. We know that better reconstructions are possible on
this dataset [Vicente and Agapito, 2012], so the problem is
not itself ill-posed. The imperfect reconstruction from our
method is probably caused by the lack of change in camera
viewpoint.

6.4 Non-developable objects

We use two different datasets to perform NRSfM on non-
developable objects. They are complex objects where some
of the compared methods are not even applicable, for exam-
ple, both p-isolh and p-isomet requires registration warps,
which is non-trivial to implement in volumetric objects.
We perform experiments here to show what we can ob-
tain in highly difficult non-rigid reconstruction applications
with our proposed tlmdh method. Below we describe the
datasets and the experiments performed.

The Stepping Trousers dataset: The dataset [White
et al., 2007] is constructed from motion capture ground
truth data with perspective projection. The data shows a
pair of trousers stepping around with considerable rapid
deformations of the cloth. The images are obtained at a
resolution of 640 × 480 px with a perspective camera of
focal length 320 px. The dataset is semi-synthetic but due
to articulations, volume/partial views and rapid nonlin-
ear deformations, it is arguably the most complex data
used for NRSfM to date. Unlike the flag dataset, missing
correspondences are significant due to self-occlusions. The
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missing correspondences are handled by filling in the cor-
respondences using [Hu et al., 2013] for all methods except
ours. Figure 15 shows three reconstructed frames. From top
to bottom, it shows our best reconstruction, a reconstruc-
tion with medium accuracy and our worst reconstruction.
Alongside we show the reconstructions for the compared
method o-spfac. Note that it is non-trivial to implement
the compared methods in the missing data scenario without
using a low-rank prior. Thus we only test the best perform-
ing low-rank method o-spfac. The plots of 3D error for

tlmdh o-spfac

3D	error	=	10.87	mm 3D	error	=	56.30	mm

3D	error	=	24.59	mm 3D	error	=	80.50	mm

3D	error	=	44.21	mm 3D	error	=	63.50	mm

3D	error	in	mm

Figure 15: Reconstructions of the stepping trousers dataset for our
method and o-spfac. Top row shows the reconstructed meshes overlaid
on top of the ground truth. Bottom row shows the reconstructed mesh
texture mapped with 3D error for each face in the color code shown.
Note that we show our best result in the first column and the worst in
the last column with a medium accuracy result in the middle.

each image for these two methods are shown in figure 16.
Because this is a large object, the 3D error can be large, yet
the reconstructions can appear reasonable. We therefore also
measure accuracy with a % 3D error. We obtain a mean
3D error of 22.54 mm and % 3D error of 2.37% for our
method while for o-spfac those are 51.5 mm and 11.56 %
respectively. Our results indeed show that large objects with
complex deformations in small scale can be reconstructed
with our method, although some difficulties can be seen
primarily due to high surface curvature. The reconstructions
and the plot show that our method can capture a large
portion of the deformations correctly even though the parts
of the object undergoing deformation are very small in the
image, making the projections almost affine. In certain cases,
however, it estimates the shapes incorrectly on those parts

Figure 16: Plot of the depth error in trousers for uniformly sampled 50
images.

as shown in the third reconstruction of the sequence in
figure 15.
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Figure 17: Results on the hand dataset. We use the best performing
methods in other datasets for comparison: o-spfac, p-isolh and p-
isomet. Ground truth is shown for three images, overlaid on top of
the reconstructions. We texture map the meshes and show qualitative
results for the two other images where ground truth 3D is not available.

The hand dataset: In tasks such as gesture recogni-
tion, several applications require reconstructing a moving
hand. When such a task is done, usually a specialized
modelling of hand motion and its articulations is used. We
show that an accurate reconstruction of a deforming hand
can be done solely with the inextensibility prior using our
method. We test with two sequences of a deforming hand
recorded by an endoscopic camera. The camera images are
of dimensions 960×540 px, taken with a focal length of 462
px and capture detailed texture. We obtain ground truth
reconstructions of the first and last frame using stereo and
post processing. We compute correspondences by densely
tracking the hand’s texture using [Sundaram et al., 2010].
Note that the correspondences are not perfect due to image
noise and weak texture. Because most methods cannot han-
dle a huge number of points, we uniformly subsample to
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1000 points. Figure 17 shows reconstructions of the hand
compared to ground truth for our method, o-spfac, p-
isolh and p-isomet. The results show that our method can
handle complex deformations of a hand. All three compared
methods were unable to capture the second deformation
where they have a 3D error of over 30 mm. On the other
hand we obtain a slightly higher 3D error of 7.38 mm in the
third column.

6.5 NRSfM with rigid objects

All rigid objects are isometric, therefore our NRSfM method
can be used to reconstruct rigid scenes. However isometry
is weaker than rigidity, so it can be expected to perform
slightly worse. Nonetheless it is interesting to study such
cases for two reasons. First our method gives a convex
solution to the problem with a general number of images,
which has not been seen before in rigid SfM with perspec-
tive cameras. It may therefore find uses for initialising rigid
bundle adjustment. The second reason is for a theoretical
understanding of our method using rigid scenes, which
may be simpler to analyse than for deformable scenes. For
example, it may be interesting to study the critical motions
associated with the inextensibility relaxation. We show some
results from the public dataset [Jensen et al., 2014] on the
house sequence using SIFT correspondences. We plot the 3D
error for each of the 49 images for our method and compare
this to a state-of-the-art rigid SfM method (VisualSfM [Wu,
2013]). We see that a reasonable error is obtained for the
majority of the images.

3D
	e
rr
or

Example	image Image	index

Figure 18: Results on rigid scenes. VisualSfM results are shown in cyan
dots.

6.6 Sensitivity to hyperparameters

We give an analysis for the sensitivity to different hyper-
parameters for our methods. The common hyperparameter
to all our proposed methods is K , which is the number of
neighbors per point. Apart from that r-tlmdh and t-tlmdh
uses an extra hyperparameter to balance two different cost
terms. Finally s-tlmdh uses the number of control centers
as a hyperparameter. We use a subset of sequences to make
an analysis on these hyperparameters in figure 19 on the
% 3D error. The results show that the method is not very
sensitive to parameter K and λr as long as a high enough
value is used. A higher value of K is required for scenes
like Stepping Trousers due to a large number of missing
correspondences and difficulty of the scene. For the plot of
3D error against λr we use a Gaussian noise with standard
deviation of 4 pixels for the synthetic flag dataset to show
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Figure 19: Results on sensitivity analysis of hyperparameters for se-
lected sequences.

that there is an optimal parameter when the noise is high.
For the method with first-order smoothness t-tlmdh, it
becomes considerably worse when a high value of λt is
used. In s-tlmdh, we test the 3D percentage error against
the number of control centers expressed as the percentage
of the number of images m in the sequence. It is clear that
the right value depends on the kind of sequence. For the
flag and Kinect Paper sequence, a higher ’density’ control
centers are required as the frame rate is low. However, for
the higher frame rate sequence of Newspaper, a lower value
appears to be sufficient.
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Figure 20: Comparison of s-tlmdh with robustness combined for
KINECT Paper sequence (left) and Newspaper sequence (right) with
3D error.

7 DISCUSSIONS

We presented four different convex formulations for solving
NRSfM. The first formulation presented in problem (3),
named tlmdh should be the method of choice when the
point correspondences for different images have no outliers
and small noise. The robust formulation r-tlmdh, like tlmdh
works with wide baseline large deformations and as few
as four images, albeit with an added computational cost.
Both of these methods show very good performance in the
experiments. However, we found that the method t-tlmdh
of using first-order temporal smoothness as described in
problem (5) provides no real improvement over the original
problem. The 1D spline-based method s-tlmdh on the other
hand, gave significant reduction in the size of the problem.
It is interesting to note that enforcing temporal smoothness
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does not usually improve the resulting reconstruction be-
cause the original problem (3) is already well constrained.
The method s-tlmdh can also be formulated by combining
robustness as in r-tlmdh. Figure 20 compares the results
in two sequences between the temporal smoothness only
method s-tlmdh and the same method with robustness
introduced. Here, we see an improvement in accuracy for
the KINECT Paper from a 3D error of 7.15 mm to 6.96 mm
while in the Newspaper sequence the 3D error improves
from 13.35 mm to 12.42 mm.

Similarly, in case of no outliers, the solution of problem
(10) is similar to that of problem (3). In regard to the com-
putational complexity of solving these problems, the worst
case scenario is O(u3) per iteration where u is the number
of unknowns and we require about 20 to 30 iterations to
solve any problem. However, the sparsity of the problem
means the actual computational complexity is much lower
than O(u3) per iteration.

8 CONCLUSION

We have brought forward the MDH-based formulation,
which has enjoyed great success in inextensible template-
based reconstruction, to the more general problem of tem-
plateless non-rigid reconstruction known as NRSfM. We
have shown that this leads to a convex formulation, which
can be solved globally and optimally as an SOCP problem.
This forms the first convex, global and optimal NRSfM for-
mulation based on physical constraints. Results on synthetic
and real images have shown that the proposed methods
outperform existing ones by a large margin in many cases.
In future work, we plan to study alternative relaxations of
isometry apart from inextensibility. It may also be possible
to formulate our approach into a sequential or incremental
NRSfM so that real-time performance can be achieved.
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Daniel Pizarro Pérez received the PhD
degree in Electrical Engineering in 2008
from the University of Alcala. In 2005-
2012 he was an Assistant Professor
and member of the GEINTRA group
at the University of Alcala. Since 2013
he is an Associate Professor at Univer-
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