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Abstract

Reconstructing the 3D surface of an object using only a single image is a challenging task, which has recently attracted
attention. In this paper, a template-based approach is presented to reconstruct the surface of an isometric deformable
object. The proposed approach brings a solution for a class of computer vision problems named Shape-from-Template
(SfT). In SfT, the goal is to solve single-image reconstruction for an object given its 3D template model in some
rest shape. To this end, corresponding keypoints between the template and the so-called deformed image are first
established. Then, a very fast method is used to estimate the first-order differential flow around the extracted keypoint-
pairs as an affine transformation. This is done using the keypoint-pairs’ surrounding texture patch. In our method,
we estimate this affine transformation using the keypoint pairs’ closest neighbors. This is both faster and more stable.
Finally, the depth of each keypoint in the deformed image is estimated from its associated affine transformation. The
robustness of keypoint matching is essential to the process. Indeed, outliers defeat depth estimation dramatically.
We propose two new approaches to detect and remove the possible outliers based on geometrical properties of the
matched keypoints. These two geometrical outlier removal approaches are faster than existing ones and can be used
with almost any image descriptor. Experimental results show that the proposed approaches are very effective and
outperform existing ones.

Key words: Fast Shape-from-Template, Deformable Surface, Geometrical Outlier Removal, Affine Transformation
Estimation, Depth Estimation, Local Texture

1. Introduction

The 3D reconstruction of surfaces has an important
role in computer vision. A surface may be either rigid,
which means it does not deform over time, or non-rigid.
Stereo vision, multi-view geometry and Structure-from-
Motion deal only with rigid surfaces [9]. It has been
shown [1, 2] that the shape of rigid objects can be
uniquely recovered using camera motion. On the other
hand, many objects have flexible and non-rigid surfaces
which reshape in time. Recovering the shape of de-
formed surfaces is thus very important when dealing
with some applications in robotics [3, 4] and medical
imaging [5, 6, 7].

A large body of research has been devoted to sur-
face reconstruction. It was shown that in some config-
urations a solution can be found from a single image
only and a template, following a setup called Shape-
from-Template (SfT). In this regard, Moreno-Noguer
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et al. [10] proposed an approach to reconstruct elas-
tic surfaces using shading and Salzmann et al. [11] use
isometry and temporal smoothness. More recently, Bar-
toli et al. [12] showed that using the isometry condi-
tion one can solve for depth uniquely from point corre-
spondences augmented by the local image deformation
at first order. Amongst the many different approaches
for shape recovery, some assume that the deformation is
inextensible [14, 15, 16] and some do not [17, 18, 19].

In this paper, we propose a new approach to solve SfT
for isometric surfaces.Instead of using corresponding
keypoints to estimate the global warp function between
the template and the deformed image as in [12], we pro-
pose to directly use the corresponding keypoints to es-
timate depth locally. Being motivated by the derivation
given in [12], but to avoid solving a complex objective
function globally which is time-consuming, we propose
an algorithm to estimate the depth of each matched key-
point pair independently. Indeed, instead of estimat-
ing the warp globally, we estimate it locally for each
matched pair with respect to both the local texture and
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the neighboring matches. This warp is locally repre-
sented by an affine transformation that approximates
the warp to first order. It is not the first time that the
local warp is approximated as affine, see for instance
Bachelder et al. [20]. In SfT however, this local trans-
formation gives enough information to solve the prob-
lem exactly and very fast. The challenge is to thus to
estimate these affine transformations very fast and to fil-
ter out the outliers in the correspondences, which were
originally removed during global warp estimation. We
thus propose two new geometrical methods to elimi-
nate the outliers. These Geometrical Outlier approaches
(GOR) are not only fast but are also good at detecting
the outliers.

The remainder of this paper has the following sec-
tions. Existing approaches are first studied in Section 2.
Since the proposed algorithm makes use of our previ-
ous work, Section 3 reviews the derivation of the iso-
metric local SfT. Our main contribution for outlier re-
moval and depth estimation are presented in Section 4.
Experimental results of depth estimation and compari-
son with state-of-the-art are given in Section 5. Finally,
conclusions and future research remarks are provided in
Section 6.

2. Previous Work

Over the last decade, many different techniques
have been proposed to represent and reconstruct the
deformation of non-rigid surfaces. Salzmann and
Fua [8] classified these methods into three main classes,
namely physics-based, learning-based and regularize-
based. Bartoli et al. [12] proposed a specific type of
monocular surface reconstruction for deformable sur-
faces and named it SfT. It is noticed that reconstructing a
deformable surface is an ill-posed problem. Therefore,
some constraints should be considered to solve the prob-
lem uniquely. Isometry is a constraint that comes from
physics and it can be used to tackle the problem of am-
biguity associated with deformable surface reconstruc-
tion. Indeed, isometry means that deformation should
be consistent against extendibility and the geodesic dis-
tance should not be changed during the deformation.
Essentially, for a non-elastic surface like paper, we can
consider this constraint:∥∥∥Pt

i − Pt
j

∥∥∥
G

=
∥∥∥Pi − P j

∥∥∥
G ,∀i, j ∈ 1..N (1)

where, Pt
i and Pi are keypoints of ith matched pair be-

tween template and deformed image, respectively. Term
‖.‖G denotes the geodesic distance and N is the number
of corresponding pairs. Since computing the geodesic

distance is not easy, the isometry constraint can be re-
laxed and reduced to the following constraint:∥∥∥Pt

i − Pt
j

∥∥∥
G
≥

∥∥∥Pi − P j

∥∥∥
E ,∀i, j ∈ 1..N (2)

where ‖.‖E denotes the Euclidean distance. This con-
straint indicates that the Euclidean distance between
corresponding points should not be more than the
Geodesic one. Violation to this constraint means that the
surface is stretched. Most recent approaches use this re-
duced inequality constraint instead of original isometry
constraint [21, 22, 23, 25]. Since our proposed method
presents a solution for such a configuration, we briefly
review the state-of-the-arts in this field, next.

Salzmann and Fua [21] used linear local models for
well-textured surfaces. In their approach, first, they
divided the deformed image to several smaller image
patches and then for each patch, an objective function
was defined with some distance equality and inequality
constraints. After solving the objective functions and
estimating the shape of each patch, the authors merged
the calculated local surfaces of the patches using a linear
model. It is noticed that for better accuracy, some over-
laps are considered between the patches. Indeed, they
model the global surface with these overlapped local
patches. For low texture regions, another method [24]
was proposed. In this method, by addressing low texture
patches, the authors model intensities and describe an
intensity profile. Afterwards, the deformation model is
calculated from the intensity model. Finally, a Markov
Random Field (MRF) model is used to align the tex-
tureless regions to the textured regions. Recently, Ngo
et al. [23] presented a Laplacian formulation of [24].
They showed that this new representation leads to a
well-conditioned system meanwhile the problem’s size
is reduced.

Locher et al. [25] proposed a discrete objective func-
tion to recover the shape of deformed surfaces. In this
paper, the authors assumed that the position of the cam-
era with respect to the template does not change and
the deviations of keypoints from their original positions
in the template are less than two centimeters. Then,
the algorithm tries to minimize the sum of deviations
from the original positions for some randomly selected
matched pairs with respect to inextensibility inequal-
ity constraints. After solving the objective function,
the depth information of matched pairs is used to es-
timate the depth of the control points. This estimation
for control points is repeated several times with differ-
ent matched pairs and then the mean values are chosen
as the final depth values of control points. This method
has drawbacks which are due to the assumptions taken
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Figure 1: Geometrical modeling of SfT (courtesy of [12]).

by the algorithm. First, the depth values for the can-
didate pairs are discretized and the deviation from the
template position could not be more than a predefined
threshold (two centimeters) and the second, is that the
distance and orientation of surface and camera should
not be changed.

Another approach which uses a global objective func-
tion is proposed by Bartoli et al. [12, 13]. the authors
showed that the depth of each point can be uniquely es-
timated using the position of the point on the template
image and deformed image and the partial derivative be-
tween them. Since our proposed method is based on this
theorem, we prefer to review this work here. Details of
this method appear in Section 3. It is noticeable that all
the methods which have been proposed for SfT, define a
global objective function to estimate the warp function
between the template and deformed images, but, in this
study, we propose a local method which is faster than
the global ones.

3. Shape-from-Template

Figure 1 demonstrates a geometric modeling of the
SfT. In this configuration, it is supposed that the tem-
plate image P ⊂ R2 and its 3D surface T ⊂ R3 are
known. Also, I ⊂ R2 which is the image of deformed
surface S ⊂ R3 is known. The goal is to recover the sur-
face S which is an isometric deformation of surface T .
Recovering the surface S can be done by estimating one
of the unknown functions Ψ or ϕ. It is noticeable that
the warp function η, the invertible function ∆ and the
projection function Π are known. Indeed, ∆ maps every
3D template point P on the surface T to its correspond-
ing point p on the template image P, and η maps every
point p on template image P to its corresponding point
q on the deformed image I. Also, Π which is projection
function, maps every 3D point Q from deformed surface
S to its corresponding point q on the deformed image I.

There are two different types of constraints in this
model: reprojection constraint and deformation con-
straint. The reprojection constraint can be achieved by
Π ◦ ϕ = η and ϕ = Ψ ◦ ∆. The deformation constraint
comes from isometry. Since we know that for an isomet-
ric deformation, distances are preserved, then we can
model deformation constraints by J>

Ψ,T JΨ,T = I where
the notation JΨ,T refers to the first-order derivative op-
erator acting on the tangent space2 of T . Therefore, the
isometric SfT problem can be stated as:

Find ϕ : P → R3

s.t.
{

Π ◦ ϕ = η
J>

Ψ,T JΨ,T = I
(3)

The reprojection constraint Π ◦ ϕ = η can be simply
rewritten [12] as:

ϕ = γη̃ (4)

where γ is the unknown depth function and η̃ is the ho-
mogenous presentation of η and:

η̃ ∝

[
η
1

]
(5)

Bartoliet al. [12] showed that the deformed embed-
ding function ϕ for every point p of the deformed image
can be found using:

ϕ (p) = sqrt
((

J>∆ (p) J∆ (p)J>η (p) Jη (p) −
1

‖η̃ (p)‖22
J>η (p) η (p)> Jη (p)

−1 ))
η̃ (p)

(6)

The equation infers an image points depth given its
correspondence in the template and the local affine
transformation that holds between the template and the
image at this point. In this paper, we use this equation
to estimate the 3D position of each keypoint in the de-
formed image.

4. Proposed Approach

In this section, novel approaches for outlier removal
and depth estimation are presented. Figure 2 demon-
strates flow diagram of the proposed method. Since it
is assumed that the template image and its 3D surface
are known, the template image’s keypoints are extracted
prior to starting the main algorithm. This not only saves
the time but also, leads to select the keypoints which are
more repetitive and robust against noise and deforma-
tion. Then, corresponding points between the deformed
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Figure 2: Flowchart of the proposed pointwise SfT method.
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image and template image are extracted. Here, our new
outlier removal approach is applied to remove outliers
between the corresponding points.

Since, it is very time consuming to estimate the
depths of all individual points on deformed object, we
estimate the depth of just a few number of points called
mesh points. These mesh points should cover the en-
tire surface of template object since they are used for
interpolating the depth of other keypoints. Indeed, the
locations of mesh points are predefined and can be se-
lected with respect to the template object. In this paper,
the mesh points are selected uniformly like a grid from
the template image and, thus, we call them grid points.
To estimate the 3D surface of the deformed object, first
the depths of predefined grid points from the template
image are estimated. Since, it is not guaranteed to have
the position of corresponding points of the grid points
on deformed images, the 3D position of the nearest cor-
responding pairs to the grid points are estimated instead
of grid points.

Therefore, for each nearest corresponding pair c to
grid points, corresponding points N are extracted from
the local neighborhood of c on template image. Based
on the corresponding points N, the affine transformation
between the points of pair c is calculated. Then, the
estimated affine transformation is substituted in (5) to
estimate the depth of the point on the deformed surface.

An outlier removal approach discussed in [32] is also
applied here to remove the noisy 3D points. In this
method, the outliers are detected in the 3D space, with
respect to isometry constraints. Indeed, some pairwise
constraints are considered for every two extracted 3D
points in a small neighborhood. Next, the 3D points
which are not consistent with the others are labeled as
outliers. The consistency between two 3D points comes
from the fact that the Euclidean distance between two
points should not be larger than the geodesic one which
is calculated based on the template image. If the Eu-
clidean distance of two extracted 3D points becomes
greater than their geodesic distance in the template sur-
face, then these two points are not consistent.

Finally, the 3D positions of grid points are interpo-
lated using all the remaining extracted 3D points. A de-
tailed description of the above process is given next. All
the experiments in this section are conducted on Spider-
man dataset whose template and deformed images are
demonstrated in Figure 3.

4.1. Best Keypoint Selection
Finding corresponding points between two images

plays a fundamental role in image processing and com-
puter vision, especially in stereo vision. It is used in

(a)

(b)

Figure 3: Spiderman dataset. (a) Template Image. (b) Deformed Im-
age.

a wide variety of applications such as object detection,
depth estimation and image registration. Recently, dif-
ferent types of image descriptors are proposed to ad-
dress this problem [26, 27, 28, 29, 30]. In this paper,
since, the template image is available, a training algo-
rithm is used to select best keypoints from the template
image.

Selecting the best keypoints leads to more accurate
and faster results. To do so, first, we extract all the possi-
ble keypoints using SIFT descriptor (here the other im-
age descriptors like ORB can be used instead of SIFT).

Then, several affine deformations with various affine
parameters are applied on the template image. This
is followed by extracting keypoints from the new de-
formed images. The extracted keypoints from deformed
images are matched with the extracted keypoints from
the template image. For each template keypoint, the
number of correctly matched pairs from the deformed
images are calculated. Finally, the template keypoints
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which have the most number of true peers on deformed
images are selected based on a predefined threshold and
are named as the best template keypoints. The prede-
fined threshold can be selected by two different strate-
gies. In the first strategy, the threshold is chosen so that
a certain number of keypoints are extracted among all
the keypoints. The second strategy which is used in our
experiments, is to select the keypoints whos matching
score passes the threshold. Here, we keep those key-
points that are matched exactly at least one time and
remove the others. This means the threshold is set to
one.

In fact, such keypoints are more repetitive and are
more likely to be extracted and matched when the sur-
face is deformed. Only these best template keypoints
are kept in the memory for next steps. This part of pro-
posed algorithm is done offline to accelerate the method.

4.2. Geometrical Outlier Removal

Many image descriptors have been proposed recently.
Although, some of these methods are very effective,
some outliers always appear between their extracted
pairs. Here, a global method is presented to remove
the outliers of matched pairs with respect to geometrical
properties of the matched pairs. It is noticed that since
the proposed method just uses the geometrical proper-
ties of matched pairs, it can be used along the other out-
lier removal approaches. Indeed, to be invariant with
respect to rotation and scale, most of the image descrip-
tors assign an orientation and scale to each extracted
keypoint.

These geometrical properties of keypoints are ex-
tracted just to normalize the descriptors such that they
become invariant to orientation and scale changes.
When the keypoint matching process takes place, just
the descriptors are used. Of course, it is logical, be-
cause there is no relation between the size and orien-
tation of the keypoints in one image. But, when the
corresponding points between two images are extracted,
some meaningful relations between the values of orien-
tations and sizes of the truly matched pairs will happen.

For example, all the keypoints of the image are ro-
tated and scaled in the same way when the viewpoint
changes. With respect to these observations, we pro-
pose to use a Geometrical Outlier Removal approach
to detect and remove the outliers. Two GOR-based
algorithms are presented in this paper. Algorithm 1
and Algorithm 2 describe these methods step by step.
In these algorithms, first, the geometrical properties of
each matched pair are extracted, then the geometrical
features are modeled and following model fitting, the

outliers are removed. Further details about these meth-
ods are presented next.

4.2.1. Geometrical Feature Extraction
Each keypoint has some geometrical properties, in-

cluding the keypoint’s position, orientation and scale.
The scale and orientation of each keypoint are extracted
with respect to its local texture. Therefore, we do not ex-
pect any dependency between geometrical properties of
two keypoints within an image, even between two near
keypoints. But there is a direct dependency between the
geometrical properties of correctly matched pairs be-
tween two images. For example, regardless of the val-
ues of geometrical properties of keypoints, scale ratio
and the difference of orientation offset of matched pairs
are likely to be the same for all the correctly matched
pairs. This is because the geometrical properties of key-
points on an object or a surface change in the same way,
even when there is a deformation on the surface of the
object and these values obey the same distribution. The
geometrical properties of a corresponding pair can be
achieved using the geometrical properties of its key-
points as follows:

F =


f1 = x1 − x2
f2 = y1 − y2
f3 = s1/s2
f4 = sin(o1 − o2)
f5 = cos(o1 − o2)

(7)

here, x, y, s, o are respectively x coordinate, y coordi-
nate, scale and orientation of a keypoint from the first
image or the second one.

4.2.2. Modeling Outliers Using Robust Gaussian
We propose a Robust Gaussian Model for Geometri-

cal Outlier Removal (RGM GOR). In this method first,
we only model the inliers and based on this model an
outlier score is assigned to each matched pair. After-
ward, a Z-Score threshold is used to filter the outliers.
In this method, since an outlier score is assigned to each
matched pair, we can rank the pairs. The pairs with
smaller outlier scores are more likely to be inliers.

Of course, someone may claim that just a single Ro-
bust Gaussian model is not enough to model the inliers
and it is better to model inliers using a mixture of Gaus-
sians. In Sec. 4.2.3, we will show that there is not
any significant achievement by using mixture models,
however, our second outlier removal approach employs
a mixture of Gaussians to model inliers.

• Outlier Score Assignment:
6



After finding the geometrical properties of matched
pairs, a Gaussian model is considered to describe these
geometrical properties. A Gaussian model is deter-
mined by its mean and covariance. Of course, here, to
be robust against outliers, instead of calculating mean
and covariance matrix, median and robust covariance
are used. The robust covariance is calculated as:

µ = med (F)
Σ = med

((
F i − µ

)
∗
(
F j − µ

)) (8)

where, F is determined in (6).
Now, the Mahalanobis distance between each

matched pair and the center of the distribution is con-
sidered as the outlier score for the matched pair:

S core(F i) =
(
F i − µ

)>
Σ−1

(
F i − µ

)
(9)

• Filtering the Outliers:

The matched pairs are sorted with respect to their out-
lier scores. Our approach to remove the outliers is based
on the Z-Score filtering. Indeed, the Z-Score of each
pair is calculated with respect to all the outlier scores
and the pairs with the Z-Sores more than Z-Critical, are
marked as outliers. Of course, we can select as much as
inliers pairs we need from the first of the sorted list. In-
deed, the pairs with larger outlier scores are more likely
to be an outlier. Algorithm 1 describes the details of
RGM GOR.

4.2.3. Modeling Outliers Using Gaussian Mixture
Model

The second approach to filter outliers is to model the
inliers and outliers, simultaneously. Since the keypoints
are matched with respect to their descriptors, for the
outlier pairs, the keypoints may be matched anywhere
with random position, rotation and scale. Therefore, the
geometrical features of outlier pairs are random. It is
expected that their distribution obey a Gaussian model
with wide variance. Figure 4 verifies the wider variance
of outlier features than inlier ones. Hence, the problem
can be converted to a clustering problem to find the best
Gaussian mixture models that can be fitted on geomet-
rical features. Indeed, we tried to fit a Gaussian mixture
model on geometrical features and filter the models with
a large determinant of covariance matrix which are ex-
pected to be the outlier model. Here, Bayesian Robust
Mixture Model (BRMM) [38] is used to find the mod-
els and their parameters. BRMM is an adaptive method
which can find the true number of models. Moreover,
this method is robust against outliers, too.

Algorithm 1 Geometrical Outlier Removal
(RGM GOR)

Input:
It // Template Image
Ii // De f ormed Image
Descriptor // Image Descriptor Like S IFT or ORB
Output:
M // MatchedPairs
S // OutlierS cores

M = FindMatchedPairs(It , Ii,Descriptor)
for Mt in M do

Ft
1 ← Mt

X1
− Mt

X2
Ft

2 ← Mt
Y1
− Mt

Y2
Ft

3 ← Mt
S 1
− Mt

S 2
Ft

4 ← sin(Mt
O1
− Mt

O2
)

Ft
5 ← cos(Mt

O1
− Mt

O2
)

end for
µ← Median(F)
Σ← Median

((
Fi − µ

)
∗
(
F j − µ

))
for Ft in F do

S t =
(
Ft − µ

)
Σ−1 (

Ft − µ
)>

end for
while true do

Z = ZS core(S )
if Max(Z) > ZCritical(S ) then

Remove Max(S ) from M, S
else

Break
end if

end while
Sort M, S with respect to S

Return M, S

Most of the times, only two models are fitted on ge-
ometrical features, one describes inliers and the other
one describes outliers. This observation also validates
our previous RGM GOR approach which models the
inliers just by using one robust Gaussian model. Fig-
ure 4 shows the marginal distribution of estimated inlier
model for the dataset ‘paper14.jpg’ which has large de-
formation and located far from the camera. Here, some-
times more than one model are fitted on inliers (based on
initial condition), however, more often just one Gaus-
sian model is fitted using BRMM.

We call this approach Bayesian Robust Mix-
ture Model for Geometrical Outlier Removal
(BRMM GOR). BRMM GOR directly models both
outliers and inliers. The matched pairs which belong to
outlier model are removed and in this method no rank
list for the inlier pairs is assumed.

The results show that most of the time, there is just
one Gaussian model for inliers and one Gaussian model
for outliers. We classify each model as inlier or outlier
with respect to the determinant of its covariance matrix.
Indeed, the models with the determinant of covariance
bigger than 105 are classified as outlier models and oth-
erwise as inlier models. Algorithm 2 describes the pro-
posed BRMM GOR in details.
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(a) F1, displacement on X axis (b) F2, displacement on Y axis

(c) F3, scale ratio (d) F4, sine of orientation offset

(e) F5, cosine of orientation offset

Figure 4: Marginal distributions of fitted models using BRMM. The blue bars and lines show the distribution of inliers and the red ones show the
distribution of outliers. The green lines show the marginal distribution of each inlier model.
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(a) (b)

(c) (d)

(e)

Figure 5: Comparing our method with Tran et al. [36], Pizarro et al. [37] and Lowe [29] on artificially deformed Spiderman datasets.
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Algorithm 2 Geometrical Outlier Removal
(BRMM GOR)

Input:
It // Template Image
Ii // De f ormed Image
Descriptor // Image Descriptor Like S IFT or ORB
Output:
M // MatchedPairs

M = FindMatchedPairs(It , Ii,Descriptor)
for Mt in M do

Ft
1 ← Mt

X1
− Mt

X2
Ft

2 ← Mt
Y1
− Mt

Y2
Ft

3 ← Mt
S 1
− Mt

S 2
Ft

4 ← sin(Mt
O1
− Mt

O2
)

Ft
5 ← cos(Mt

O1
− Mt

O2
)

end for
Models = BRMM(F)
for Model in Models do

if Det(Model) < 1.0e5 then
Add Model to Inliers Models

end if
end for

Return M ∈ Inliers Models

Table 1: Comparing RGM GOR with SIFT on artificially deformed
Spiderman datasets (ratio test = 0.7).

Im
age

num
ber

#
SIFT

O
utliers

#
SIFT

Inliers

#
R

G
M

G
O

R
O

utliers

#
R

G
M

G
O

R
Inliers

R
ecall

Precision

F-M
easure

1 44 1065 18 1056 0.991 0.983 0.987
2 36 633 9 628 0.992 0.985 0.988
3 43 824 6 805 0.976 0.992 0.984
4 39 1063 12 1049 0.986 0.988 0.987
5 39 960 12 941 0.980 0.987 0.983
6 38 1088 6 1049 0.964 0.994 0.979
7 37 958 16 942 0.983 0.983 0.983
8 41 954 6 953 0.998 0.993 0.996
9 47 944 18 943 0.998 0.981 0.990
10 40 535 5 532 0.994 0.990 0.992
11 33 1176 6 1124 0.955 0.994 0.974
12 34 1273 11 1214 0.953 0.991 0.971
13 47 943 14 935 0.991 0.985 0.988
14 53 774 15 768 0.992 0.980 0.986
15 55 348 15 346 0.994 0.958 0.976
16 37 587 10 586 0.998 0.983 0.990
17 26 360 2 359 0.997 0.994 0.995
18 26 326 3 320 0.981 0.990 0.986
19 25 171 23 171 1 0.881 0.936
Average 39 788 10 774 0.985 0.981 0.983

Table 2: Comparing BRMM GOR with SIFT on artificially deformed
Spiderman datasets (ratio test = 0.7).

Im
age

num
ber

#
SIFT

O
utliers

#
SIFT

Inliers

#
B

R
M

M
G

O
R

O
utliers

#
B

R
M

M
G

O
R

Inliers

R
ecall

Precision

F-M
easure

1 44 1065 16 1065 1.000 0.985 0.993
2 36 633 10 633 1.000 0.984 0.992
3 43 824 12 824 1.000 0.986 0.993
4 39 1063 12 1063 1.000 0.989 0.994
5 39 960 12 960 1.000 0.988 0.994
6 38 1088 9 1086 0.998 0.992 0.995
7 37 958 19 957 0.999 0.981 0.990
8 41 954 4 953 0.999 0.996 0.997
9 47 944 12 942 0.998 0.987 0.993
10 40 535 8 535 1.000 0.985 0.993
11 33 1176 12 1173 0.997 0.990 0.994
12 34 1273 14 1273 1.000 0.989 0.995
13 47 943 13 942 0.999 0.986 0.993
14 53 774 13 773 0.999 0.983 0.991
15 55 348 25 348 1.000 0.933 0.965
16 37 587 13 587 1.000 0.978 0.989
17 26 360 4 360 1.000 0.989 0.994
18 26 326 4 326 1.000 0.988 0.994
19 25 171 5 171 1.000 0.972 0.986
Average 39 788 11 788 0.999 0.983 0.991

4.2.4. Outliers Removal Results
Here, SIFT is used for detection and description

of keypoints. Also, to match the descriptors, we
use ratio test which is originally proposed by David
Lowe [29]. To evaluate our methods, several isomet-
ric deformations are applied artificially to Spiderman
template image and 19 different deformed images are
provided. Here, we used deformation toolbar [35] to
apply isometric deformations. Since the warp function
is known for these deformed images, it is possible to
check if a matched pair is true positive or false posi-
tive. Tables 1 and 2 show the results of RGM GOR
and BRMM GOR on artificially deformed Spiderman
dataset, respectively. The values for recall and preci-
sion are calculated with respect to the extracted pairs by
the original SIFT algorithm.

Moreover, we compared the result of our proposed
algorithms with some of the state-of-the-art methods.
Here, works proposed by Tran et al. [36], Pizarro et
al. [37] and Lowe [29] are compared with RGM GOR
and BRMM GOR. Figure 5 compares the results using
the artificially deformed Spiderman dataset individually
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Table 3: Comparing RGM GOR, BRMM GOR, Tran et al. [36],
Pizarro et al. [37] [29] and Lowe on artificially deformed Spiderman
datasets (ratio test = 0.7) with respect to average recall and precision.

Mean Mean Mean Mean
Method Recall Precision F-Measure Run Time
RGM GOR 0.986 0.981 0.983 0.0138
BRMM GOR 0.999 0.983 0.991 0.114
Tran et al. 0.983 0.994 0.988 0.0357
Pizarro et al. 0.981 0.997 0.989 0.850
Lowe 0.990 0.987 0.989 0.704

for each image and Table 3 compares all the methods
with respect to average values.

It should be noted that the reported run time in this
table does not include the corresponding point extrac-
tion time. Indeed, the corresponding point extraction
step must be done fairly by all methods and its run time
overhead is identical for all. Moreover, several local im-
age feature descriptors such as ORB, SIFT, SURF and
recently LIFT [30] exist which can be used to extract
the keypoints in images. All of them have GPU-based
and CPU-based implementations with their own time
complexity and accuracy. Someone can select the cor-
responding point extraction method with respect to the
problem definition and limitations. Since, selecting a
proper corresponding point extraction method is not our
main concern in this paper and it has the same overhead
for all the outlier removal methods, we do not report run
time of this step in our experiments.

Moreover, the number of outliers when using SIFT
algorithm can be controlled by applying different
thresholds when applying ratio test. Indeed, the prob-
ability that a matched pair is correct can be determined
by taking the ratio of distance from the closest neighbor
to the distance of the second closest which is called ra-
tio test. Therefore, by applying bigger threshold on ratio
test we allow more outliers and inliers to be selected.

The value of the ratio test threshold is selected with
respect to the number of required corresponding points.
Lowe [29] suggested a ratio test threshold of 0.8. He
demonstrated experimentally that the best value for the
ratio test threshold lies between 0.7 and 0.8. Here
we selected 0.7. Also, Tables 4 and 5 show the re-
sults of RGM GOR and BRMM GOR with respect to
the number of outliers by applying various ratio test
thresholds on Spiderman dataset. Moreover, in Table 6,
RGM GOR and BRMM GOR are compared with the
state-of-the-art methods with respect to average values
when different values of ratio test are applied on Spider-
man dataset.

Table 4: The efficiency of RGM GOR on Spiderman dataset using
different ratio thresholds.

R
atio

TestT
hreshold

#
SIFT

O
utliers

#
SIFT

Inliers

#
R

G
M

G
O

R
O

utliers

#
R

G
M

G
O

R
Inliers

R
ecall

Precision

F-M
easure

0.5 2 202 1 194 0.960 0.995 0.977
0.55 3 243 2 235 0.967 0.992 0.979
0.6 7 292 3 279 0.955 0.989 0.972
0.65 14 342 3 325 0.950 0.991 0.970
0.7 28 392 9 384 0.980 0.977 0.978
0.75 53 427 17 421 0.986 0.961 0.973
0.8 94 459 26 453 0.987 0.946 0.966
0.85 163 499 42 490 0.982 0.921 0.951
Avg. 46 357 13 348 0.9710 0.9715 0.9709

In order to measure the performance and the robust-
ness of the proposed method, we have generated an-
other dataset with 10 completely different images and
various textures. Indeed, a random deformation is ap-
plied to each of the images and 10 pair images are pro-
vided to evaluate the performance of proposed method.
Table 7 shows the comparison between SIFT and the
RGM GOR outlier removal and Table 8 shows the same
for BRMM GOR. Since each image in this dataset
has its own texture, therefore, it is concluded that the

Table 5: The efficiency of BRMM GOR on Spiderman dataset using
different ratio thresholds.

R
atio

TestT
hreshold

#
SIFT

O
utliers

#
SIFT

Inliers

#
B

R
M

M
G

O
R

O
utliers

#
B

R
M

M
G

O
R

Inliers

R
ecall

Precision

F-M
easure

0.5 2 202 2 202 1.000 0.990 0.995
0.55 3 243 3 243 1.000 0.988 0.994
0.6 7 292 3 292 1.000 0.990 0.995
0.65 14 342 6 342 1.000 0.983 0.991
0.7 28 392 13 392 1.000 0.968 0.984
0.75 53 427 23 427 1.000 0.949 0.974
0.8 94 459 32 459 1.000 0.935 0.966
0.85 163 499 46 497 0.996 0.915 0.954
Avg. 46 357 16 356 0.9995 0.9636 0.9811
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(a) (b)

(c) (d)

(e)

Figure 6: The effect of outliers percentage on outlier removal. Comparing our method with Tran et al. [36], Pizarro et al. [37] and Lowe [29] on
Spiderman dataset with different ratio tests.
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Table 6: Comparing the proposed methods with the state-of-the-art
methods on Spiderman dataset with different ratio test threshold

m
ethod

#
A

verage
O

utliers

#
A

verage
Inliers

A
verage

Precision

A
verage

R
ecall

A
verage

F-M
easure

BRMM GOR 16 356 0.9995 0.9636 0.9811
RGM GOR 13 348 0.9710 0.9715 0.9709
Tran et al. 12 320 0.8999 0.9712 0.9339
Pizarro et al. 24 355 0.9909 0.9524 0.9704
Lowe 16 351 0.9856 0.9652 0.9751

proposed geometrical outlier removal approaches espe-
cially BRMM GOR do cope with a variety of image tex-
tures. The results show that BRMM GOR have better
performance than RGM GOR on this dataset too. Ta-
ble 9 compares the average performance of proposed
methods with the other state-of-the-art outlier removal
methods on this dataset.

As it can be seen from Figure 6, the proposed out-
lier removal approaches are very effective in removing
the outliers. It should be noticed that we can find more
inliers by employing higher ratio threshold without any
concern about outliers.

4.2.5. Discussion
In this paper two methods are introduced to remove

outliers from corresponding points between two images.
We aim to maintain the tradeoff between accuracy and
speed by proposing the two approaches, such that the
first method, RGM GOR is super-fast with a reason-
able accuracy, while the second method, BRMM GOR
performs very accurately with an accepted speed. In-
deed, BRMM GOR is proposed since the geometri-
cal features do not always obey a Gaussian distribu-
tion, especially when the surface deformation is sig-
nificant or there is more than one object in the scene.
This is why BRMM GOR has better performance than
RGM GOR on the artificial datasets. However, it runs
at a lower speed. The contrast between BRMM GOR
and RGM GOR is the tradeoff between accuracy and
speed. Any prior knowledge about the dataset can help
one select the most efficient method.

Although it may come to mind that geometrical fea-
tures introduced here, neither are necessary for outlier
removal, nor impose a positive effect when in-plane ro-
tation occurs, the experimental results indicate the pos-

Table 7: Comparing RGM GOR with SIFT on randomly deformed
images with different textures (ratio test = 0.7).

Im
age

num
ber

#
SIFT

O
utliers

#
SIFT

Inliers

#
R

G
M

G
O

R
O

utliers

#
R

G
M

G
O

R
Inliers

R
ecall

Precision

F-M
easure

1 25 893 20 864 0.968 0.977 0.972
2 16 838 15 807 0.963 0.982 0.972
3 33 1610 25 1566 0.984 0.973 0.978
4 16 376 12 360 0.957 0.968 0.963
5 26 1174 23 1146 0.976 0.980 0.978
6 46 845 38 804 0.951 0.955 0.953
7 39 728 29 703 0.966 0.960 0.963
8 33 856 28 822 0.960 0.967 0.964
9 52 1003 47 956 0.953 0.953 0.953
10 38 1200 33 1147 0.956 0.972 0.964
Average 32 952 27 928 0.962 0.970 0.966

itive effectiveness of these features. Figure 7 shows the
in-plane rotation dataset and Table 10 compares the re-
sult of proposed method when displacement features are
used and when they are not.

Another important challenge is when two or more ob-
jects appear in the scene and they move and rotate inde-
pendently. Figure 8 shows such an example. Table 11
compares performance of the proposed algorithm with

Table 8: Comparing BRMM GOR with SIFT on randomly deformed
images with different textures (ratio test = 0.7).

Im
age

num
ber

#
SIFT

O
utliers

#
SIFT

Inliers

#
R

G
M

G
O

R
O

utliers

#
B

R
M

M
G

O
R

Inliers

R
ecall

Precision

F-M
easure

1 25 893 14 893 1 0.985 0.992
2 16 838 6 836 0.998 0.993 0.995
3 33 1610 12 1610 1 0.993 0.996
4 16 376 7 375 0.997 0.982 0.989
5 26 1174 12 1173 0.999 .990 0.995
6 46 845 21 845 1 0.976 0.988
7 39 728 18 726 0.997 0.976 0.986
8 33 856 13 856 1 0.985 0.992
9 52 1003 9 1001 0.998 0.991 0.995
10 38 1200 9 1199 0.999 0.993 0.996
Average 32 952 12 951 0.999 0.986 0.993
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Table 9: Comparing RGM GOR, BRMM GOR, Tran et al. [36],
Pizarro et al. [37] and Lowe [29] on randomly deformed images (ratio
test = 0.7) with respect to average recall and precision.

Mean Mean Mean Mean
Method Recall Precision F-Measure Run Time
RGM GOR 0.9623 0.9699 0.9661 0.0139
BRMM GOR 0.9987 0.9863 0.9925 0.1258
Tran et al. 0.9984 0.9652 0.9815 0.0365
Pizarro et al. 0.9886 0.9847 0.9866 0.9731
Lowe 0.9875 0.9867 0.9871 0.677

(a)

(b)

Figure 7: In-plane rotation dataset. (a) Template image (b) Deformed
image.

the state-of-the-art methods applied on this dataset. As
it was expected, the proposed method has good conse-
quence on these datasets.

Low image resolution is another challenge which
should be discussed here. Indeed, the image resolution
directly affects the number of detected keypoints and as
a result the number of matched pairs between the im-
ages. The lower the resolution, the lower the number of
matched pairs. With respect to the rows 17, 18 and 19
of Table 1 and Table 2, it can be seen that the proposed
outlier removal algorithms have fair performance even
when the matched pairs are not too many.

4.3. Surface Reconstruction

Surface reconstruction consists of two steps. The
first step is to estimate the affine transformation between

(a)

(b)

Figure 8: Multi object dataset. (a) Template image (b) Deformed
image.

matched pairs of the template and deformed images and
the second step is estimating the depth of the matched
pairs.

• Affine Transformation Estimation:

As it is shown in Section 3, the depth of each point
can be estimated by its locations and first-order differ-
ential independently. Here, to calculate the Jacobean
between the keypoints of each pair p, N nearest cor-
responding points to p are extracted. Then, using these

Figure 9: Comparing the proposed method and the one in [23] with
respect to the mean absolute error on kinect paper dataset.
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Table 10: The influence of using displacement features on in-plane
rotation image. BRMM GOR* is modified version of BRMM GOR
which does not use displacement features. True number of inliers is
284 and true number of outlier is 86

m
ethod

#
O

utliers

#
Inliers

Precision

R
ecall

F-M
easure

BRMM GOR 79 291 0.9691 0.9930 0.9809
BRMM GOR* 82 288 0.9722 0.9859 0.9790
Tran et al. 69 301 0.9435 1 0.9709
Pizarro et al. 52 318 0.8931 1 0.9435
Lowe 78 292 0.9623 0.9894 0.9757

points, the affine transformation between the local patch
is estimated.

It is noticed that since an image consists of dis-
cretized pixels, the matched pairs are not exactly peer
to peer and usually some small displacement is likely to
happen between them. Therefore, to address robustness
against these displacement noises between correspond-
ing points, the RANSAC algorithm is used to estimate
the affine transformation between matched pairs N, ac-
curately. Finally, the estimated affine transformation is
assigned to the pair p.

• Depth Estimation:

Eq. 5, which is proposed in [12], is used to esti-
mate the depth of the matched pairs. However, the es-
timated depths may be noisy, since the affine transfor-

Figure 10: Comparing the proposed method and the one in [23] with
respect to reconstruction time on Kinect paper dataset.

Table 11: BRMM GOR can model multi-modal distributions and re-
move outliers. True number of inliers is 2358 and true number of
outlier is 131

m
ethod

#
O

utliers

#
Inliers

Precision

R
ecall

F-M
easure

BRMM GOR 102 2387 0.9849 0.9970 0.9909
Tran et al. 588 1901 0.9826 0.7922 0.8772
Pizarro et al. 497 1992 0.9669 0.8168 0.8855
Lowe 126 2363 0.9932 0.9953 0.9943

Algorithm 3 Pointwise SfT
Input:
It // Template Image
Ii // De f ormed Image
Tm // Template 3D Model
Descriptor // Image Descriptor Like S IFT or ORB
N // Neigbours
Output:
D // Depth o f Grid Points Cp

M = BRMM GOR(It , Ii,Describtor)
for Mt in M do

N t ← NearestNeigbour(Mt ,N) // N Nearest Neighbours of Mt

At ← CalcA f f ine(N) // Calculates Affine Transformation Using
RANSAC
Pt ← EstimateDepth(Mt , At) // Estimates 3D Position of Mt us-
ing [12]

end for
P← RemoveOutliersIn3D(P) // Remove the outliers using [32]
D← Interpolate(P,Cp) // Estimate 3D position of Grid Points.

Return D

mation between two keypoints are effected by displace-
ment noises or some outliers may remain as the result
of keypoint matching.

Therefore, the proposed approach in [32] is used to
remove the keypoints whose depths are not consistent.

The extracted 3D points do not cover all the de-
formed surface completely, therefore, thin plate spline
method [33] is used to interpolate the final deformed
surface. The details of our proposed method are ex-
plained in Algorithm 3.

5. Experimental Results

To evaluate the proposed method, we measured its
performance on real and artificial datasets. We ap-
plied isometric deformation on Spiderman template im-
age to generate new artificial datasets. We compared
our algorithm with the one proposed in [23] on the
‘kinect paper’ [24] dataset in term of accuracy and ef-
ficiency. It is noticed that the original implementation
which is also available on their homepage is considered
for comparisons. The mean absolute error of grid points
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 11: Comparison between the proposed method and the one in [23] (a-d) The deformed images corresponding to the files ‘frame 041.png’,
‘frame 071.png’, ‘frame 081.png’ and ‘frame 101.png’ respectively. (e-h) Ground truths. (i-l) Estimated surfaces by the method proposed by
Ngo et al. [23] (m-p) Estimated surfaces by proposed method. (q-t) The visualized errors of our estimation.
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(a) deformed surface of ‘Image1.jpg’ (b) visualizes the error

(c) our results (d) the ground truth

(e) deformed surface of ‘Image11.jpg’ (f) visualizes the error

(g) our results (h) the ground truth

Figure 12: The results of proposed method on artificially deformed Spiderman datasets ‘Image1.jpg’ and ‘Image11.jpg’.
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(a) deformed surface of ‘Image14.jpg’ (b) visualizes the error

(c) our results (d) the ground truth

(e) deformed surface of ‘Image15.jpg’ (f) visualizes the error

(g) our results (h) the ground truth

Figure 13: The results of proposed method on artificially deformed Spiderman datasets ‘Image14.jpg’ and ‘Image15.jpg’.
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(a) deformed surface of ‘Image19.jpg’ (b) visualizes the error

(c) our results (d) the ground truth

Figure 14: The results of proposed method on artificially deformed Spiderman dataset ‘Image19.jpg’.

Table 12: Comparing the accuracy of the proposed method and the
one in [23] on Kinect paper dataset

Method Average Recunstruction Average Error
Time (ms) (mm)

Our Method 84 6.58
Ngo et al. [23] 1662 5.20

is used to evaluate accuracy. It is noticeable that the pro-
posed algorithm is implemented in Matlab and is run on
an Intel Core i7 2.4 GHz CPU with 8 GB RAM.

5.1. Real Dataset
To evaluate the result of our method, different

datasets are used. Kinect paper dataset is provided by
Varol et al.. [24] It includes 193 frames, which are cap-
tured using Kinect sensor. The first frame is template
image and for all the other frames, the ground truth and
the matched pairs with template frame are available.

The template image is planar and there is no occlu-
sion in the frames. For this dataset, since the corre-

Figure 15: Reconstruction time for artificially deformed Spiderman
dataset. In this dataset, 408 control points are considered to recon-
struct each surface. Someone can accelerate the algorithm by reducing
the number of control points.

sponding points are given, we did not use our match-
ing method to find the new corresponding keypoints.
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Figure 16: The mean absolute error of proposed method on the artifi-
cially deformed Spiderman dataset.

Therefore, nearest keypoints to the control points are
selected and their depths are estimated using the rest of
corresponding points. Of course, there are some outliers
among the provided corresponding points.Figures 9 and
10 show the results with respect to mean absolute error
and efficiency for all the sequences and Table 12 shows
the average of all. Also, Figure 11 shows the recovered
surfaces for ‘frame 041’, ‘frame 071’, ‘frame 081’ and
‘frame 101’.

The proposed method can process 14 FPS that means
it can be used for online purposes. It should be notified
that the time to find the corresponding keypoints are not
considered here, since, these points have already been
provided in this dataset.

5.2. Artificial Dataset

In addition to the real datasets which have been intro-
duced, we evaluate our proposed method on artificially
deformed Spiderman datasets, too. The template image
which is used in the results is planar and it is assumed to
be perpendicular with the camera principal ray. The dis-
tance between virtual camera and the template image is
450mm. Figures 12, 13 and 14 show the results of our
proposed method on five artificially deformed Spider-
man datasets. Figure 15 presents the required time to
extract the deformed surface for Spiderman dataset. For
each deformed image of this dataset, 408 control points
are used. Of course, to accelerate our algorithm, we can
reduce the number of control points. Also, Figure 16
shows the mean absolute error of the deformed images.

6. Conclusion and Future Work

In this paper, a new approach was presented to re-
cover the shape of a deformable surface. The proposed
method directly estimates the depth of each point us-
ing its local texture. Indeed, to find the Jacobian of
the point under deformation, the local texture of control
points were used to extract new corresponding points.
Then these corresponding points were used to estimate
the affine transformation between the original corre-
sponding pair. Finally, the depth of each keypoint was
estimated using its location and first-order differential
statistics. This method not only is super-fast to recon-
struct the surface, but also has good accuracy, compara-
ble with state-of-the-art methods.

Moreover, two new algorithms called Robust
Gaussian Model for Geometrical Outlier Removal
(RBM GOR) and Bayesian Robust Mixture Model for
Geometrical Outlier Removal (BRMM GOR) were pre-
sented to remove the outliers between the corresponding
pairs. Both algorithms are based on Geometrical fea-
tures. These methods not only detect and remove the
outliers, but also find new corresponding points which
play a very important role for reconstructing surfaces.
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