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Image-Based Models for Specularity
Propagation in Diminished Reality

Souheil Hadj Said, Mohamed Tamaazousti, and Adrien Bartoli

Abstract—The aim of Diminished Reality (DR) is to remove a target object in a live video stream seamlessly. In our approach, the
area of the target object is replaced with new texture that blends with the rest of the image. The result is then propagated to the
next frames of the video. One of the important stages of this technique is to update the target region with respect to the
illumination change. This is a complex and recurrent problem when the viewpoint changes. We show that the state-of-the-art in DR
fails in solving this problem, even under simple scenarios. We then use local illumination models to address this problem.
According to these models, the variation in illumination only affects the specular component of the image. In the context of DR, the
problem is therefore solved by propagating the specularities in the target area. We list a set of structural properties of specularities
which we incorporate in two new models for specularity propagation. Our first model includes the same property as the previous
approaches, which is the smoothness of illumination variation, but has a different estimation method based on the Thin-Plate
Spline. Our second model incorporates more properties of the specularity’s shape on planar surfaces. Experimental results on
synthetic and real data show that our strategy substantially improves the rendering quality compared to the state-of-the-art in DR.

Index Terms—Diminished Reality, Specularity, Propagation, Rendering, Isocontours, Brightest point, Illumination variation.
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1 INTRODUCTION

T The aim of Diminished Reality (DR) is to delete a
selected object from a video stream in real time [12,17,

18, 19, 21, 26, 27, 28, 36, 37]. This technique may be used in
many applications. For example, some pieces of furniture
may be removed to simulate different arrangements in
a room [32, 39]. In live streams, advertising signs can
be removed or replaced by new ones depending on the
viewer. In Augmented Reality (AR) applications, markers
are often used and they can be hidden to achieve seamless
fusion between virtual objects and the real world [23, 25].
In DR, the user-experience is largely enhanced by a real-
istic rendering quality. The state-of-the-art image comple-
tion methods [2,15,20] allow a coherent replacement of the
deleted region which blends perfectly with the rest of the
image, even for textured surfaces. However, for temporal
consistency in the video and for a real-time application,
one cannot apply these methods in each frame. A solution
is to use these methods on a selected image which we call
the “keyframe”. For the next frames of the video stream,
one simply needs to copy the inpainting result, consid-
ering the camera movement as well as the illumination
change around the target area. Here, we address the illu-
mination change problem, which is a crucial stage in any
DR pipeline. This is a difficult problem due to the com-
plex nature of light reflections in the presence of glossy
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Fig. 1: Specularity propagation in DR. In (a), at frame 1
(the keyframe), the user selects a target region TK . In (b),
we copy patches from the rest of the image to obtain the
inpainted keyframe. In (c), the result is transformed using
SLAM to frame 64 without specularity propagation. In
(d), the transformed result at frame 157 is not visually
convincing because a specularity is around TK . In (e), at
frame 157, the image is rectified to the keyframe’s image
plane and the isocontours of light intensity are fitted with
ellipses. This information is used by our model, whose
output is shown in (f), to synthesize the specularity.
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surfaces. In fact, illumination variation is often observed
when the viewpoint changes. Only two of the previous
DR methods explicitly address this problem [18, 22]. We
show that even in simple scenarios, with planar surfaces
and a single point light source, these methods produce
unconvincing results (see figure 4). This is because they
only assume the continuity of the illumination variation.
In this paper, we analyze the origin of this problem and
show that it originates from the specular component in
the image. Actually, local illumination models such as
Phong’s [31], Blinn-Phong’s [6] and Cook-Torrance’s [9]
confirm that only the specular component of light reflec-
tion depends on the viewpoint. Moreover, it was shown
that the specularities play a key role in scene perception
by the human brain [5]. Therefore, we formulate this
problem into a specularity propagation problem. More
specifically, we consider the case of deleting an object
lying on a planar specular surface illuminated by a point
light source. From a set of real videos under these assump-
tions, we observe the structural properties of specularities
and propose two new models:

• Our first model is called Smooth Propagation
Model (SPM). It is generic and exploits the conti-
nuity and smoothness of light intensity. We use the
Thin-Plate Spline (TPS) as a smooth function repre-
sentation. Intensity’s smoothness was exploited by
Kim et al. [24] to separate the specular and diffuse
components in a single image. SPM achieves state-
of-the-art performances and works for general case
scenarios, but incorporates few structural proper-
ties, and has similarities to previous work [18, 22].

• Our second model is called Constrained Propaga-
tion Model (CPM). It incorporates the observed
structural properties of the specularity. It extends
the first model by imposing additional structural
constraints: the ellipticity of the intensity isocon-
tours and the existence of a unique maximum
intensity within a specularity. We refer to this as
the brightest point. CPM is more specific to our
assumptions but gives better results than previous
methods.

Section 2 describes the main structural properties of a
specularity. Section 3 formally states the problem we aim
to solve. Section 4 reviews previous solutions. Section 5
introduces our proposed models and algorithms. Finally,
section 6 shows and discusses our experimental results.

2 THE STRUCTURAL PROPERTIES OF A SPECU-
LARITY

By observing images of specularities on planar surfaces
such as the ones in figure 2, we established some struc-
tural properties of a specularity. These are described in
terms of how the light intensity behaves across a specu-
larity:

1) Smoothness. The light variation is smooth, and thus
continuous.

Fig. 2: In (a) the images show specular highlights on a
flat surface. In (b) we show the corresponding light map
around the specularity for each image and the intensity’s
isocontours. In (c), we show the fitted ellipses for these
isocontours.

2) Brightest point. The specularity has a single brightest
point located approximately at its center.

3) Ellipticity. The isocontours of a specularity are ap-
proximately elliptic.

4) Monotonicity. The further away from the brightest
point, the lower the intensity. This implies that the
isocontours do not intersect.

5) Additivity. Following the local illumination models,
the specular component is a term added to the ambi-
ent and diffuse terms.

Some of these properties were theoretically and empiri-
cally verified on models from Computer Graphics (specif-
ically Phong’s [31] and Blinn-Phong’s [6]). In particular, it
has been empirically verified in [30] that the elliptic shape
is a good approximation for the specularity’s isocontours
in practice. The fifth property is directly deduced from the
Phong illumination model, which suggests that the color
intensity I at a given point is expressed as the sum of
three components:

I = Iambient + Idiffuse + Ispecular. (1)

These properties have not been considered for propagat-
ing specularities in DR in existing methods [18, 22]. Our
goal is to exploit them in order to improve the realism of
specularity rendering in DR.

3 BACKGROUND AND PROBLEM STATEMENT

3.1 Notation

Scalars are in italics (e.g. x), vectors in bold upright (e.g.
v) and matrices in sans-serif (e.g. M). The elements of a
vector are written as in a> = (a1 a2 a3) where > is vector
and matrix transpose. The coordinates of a point in the
image are written with a 2-vector q> = (x y). An image
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domain is written in uppercase calligraphic (e.g. R). A
group of points is written with uppercase italic (e.g. B)
and the number of points in a group as |B|. Functions
are written in upright Greek letters (e.g. ψ) or Latin lower
case in italics. The Euclidean distance between two pixels
p and q is denoted d(p,q).

3.2 Problem Statement
3.2.1 Context
In this section, we introduce two major techniques used
for DR. First, we explain the image inpainting technique.
An image can be mathematically defined by a function χ
giving the color intensities as:

χ :

∥∥∥∥ O ⊂ R2 → Rn
p→ χ(p),

(2)

where p represents a vector indicating the spatial coor-
dinates of a pixel. For the RGB color space (n = 3), the
image is described by three color intensity functions. So, χ
can be written as χ> = (χR χG χB). Image inpainting [14]
was introduced as a term by Bertalmio et al. [4]. Since then,
many real-time image inpainting techniques were pro-
posed [1, 2, 3, 8, 10, 16, 20, 35]. In general, in the inpainting
problem, the image described by χ (i.e. corresponding to
each color channel of the image) is assumed to have gone
through a degradation operation. As a result, the generic
definition domain O of the input image χ can be seen as
composed of two parts O = S ∪T , S being the intact part
of the image (the source region) and T the deleted part of
the image which we search to recover (the target region).
The goal of inpainting is to estimate the color intensities
of the pixels p located in the target region T . As a final
result, this technique reconstructs the inpainted image
described by χ̂. The objective in terms of quality is that
the recovered region looks natural to the human eye, and
is as physically plausible as possible. Typical inpainting
artifacts are unconnected edges, blur and inconsistent
pieces of texture (also called texture garbage).

The second technique we use is Simultaneous Local-
ization and Mapping (SLAM). In our work, it is used to
localize the camera and therefore, map the target region in
all the frames of the video stream. We denote a 3D point
as x ∈ R3, the rotation of the camera as R ∈ SO(3) and its
translation as t ∈ R3. At each frame f , SLAM determines
the coefficients of R and t that coherently project a 3D
point x to the camera’s image plane. SLAM solves this
problem in real time, and is available in mature software
packages. We use the SLAM technique from [34].

3.2.2 DR as Spatio-Temporal Inpainting
We consider DR as a spatio-temporal inpainting problem.
For the keyframe, spatial consistency is ensured by the
inpainting technique. For the next frames of the video,
SLAM propagates the spatially-consistent inpainting re-
sult while ensuring temporal consistency in the video.
However, a specularity may appear around T , which
causes illumination variations. So, the spatial structure of
the inpainting result should be properly modified in order

Fig. 3: Representing the region of interest in the current
frame F . The neighboring area NF is represented by the
blue grid. The purple crosses represent the centers whose
target values will be estimated from equation (12). The
pixels inside the target region TF (delimited by a red
contour) are then interpolated using the TPS.

to achieve spatio-temporal consistency. This modification
is essential to obtain a realistic rendering result. We refer
to the keyframe image by χK and the current video frame
by χF . An inpainting technique is applied on χK to recon-
struct the target region TK . We use a modified version of
PatchMatch which is a real-time capable image inpainting
approach initially proposed by Barnes et al. [2]. The in-
painted image is then propagated to the next frames. We
use SLAM to transform the current frame to the keyframe
image plane. We therefore have dense pixel-wise corre-
spondences between the target region in the keyframe
and the one in the current frame. In other words, for each
pixel pK in the keyframe, we have a corresponding pixel
pF = η(pK ), η being a homography function. So, we can
transform the result of inpainting to all the frames of the
video stream. We define the neighboring region NK ⊂ S
centered around TK with width wN = z wT and height
hN = z hT (see figure 3). N is the set of neighboring
pixels that are outside T . wT and hT are, respectively,
the width and the height of the target region selected
by the user. z > 1 is set manually depending on the
specularity’s size to allow for an efficient observation of
the specularity’s isocontours. The larger the specularity,
the greater z. In our experiments, we set z = 2. By
observing the light variation in the current frame in NF ,
we aim to propagate this variation inside TF . For each
pixel pF in NF , the illumination variation coefficient is
defined as:

vpK
= χF (pF )− χK(pK),pF ∈ NF . (3)

For each frame f , knowing the variation coefficients of
the pixels in NF , we aim to estimate the function ψF that
returns the illumination variation for all pixels in TF ∪NF
and therefore, update their color intensities as:

χ̂F (pF ) = ψF (pK) + χ̂K(pK), pF ∈ TF ∪NF . (4)

ψF (pK) can be seen as the estimated value of vpF
if pF ∈

TF and the real value of vpF
if pF ∈ NF .
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(a) Original image (b) Herling et al. (TVCG 2014) [18] (c) Kawai et al. (TVCG 2015) [22]

Fig. 4: Illustration of the limitations of previous methods. The images in column (a) represent the original image and
the target area (outlined in red). The results of DR by the methods of Herling et al. [18] and Kawai et al. [22] are
respectively shown in columns (b) and (c). These results are not visually convincing in both cases.

4 STATE-OF-THE-ART

The literature has some real-time DR approaches. They
use approximately the same pipeline as ours but with dif-
ferent image inpainting and camera tracking techniques
[25, 26, 32]. However, only two of them consider the light
change problem [18, 22]. They propose heuristic interpo-
lation techniques to estimate the illumination variation in
the target region. They use similar models, which suggest
that the variation is continuous and smooth, and thus
respect the first structural property of section 2. They
however use different estimation approaches, explained
in the next two sections.

4.1 Herling et al.
In the approach of Herling et al. [18], pixels from the
boundary separating the target region from the rest of the
image are monitored over time and the color difference
at each of these pixels is computed. Then, a virtual grid
G is defined, covering the target region. For each node
of the grid inside the target region c, the color correction
function is determined by:

ψHerling :

∥∥∥∥ G ⊂ TF → R
c→ ψHerling(c),

(5)

where:

ψHerling(c) =
1

θ(c)

|BK |∑
j=1

(χK(bK,j)−χF (bF,j))e− |c−bK,j |
1
2 ,

(6)
with BK representing the boundary contour in the
keyframe containing the points bK,1, . . . ,bK,|BK | and
BF being the corresponding boundary contour in
the current frame containing the corresponding points

bF,1, · · · ,bF,|BF |. θ(c) is a normalization factor defined
as follows:

θ(c) =

|BK |∑
j=1

e− |c−bK,j |
1
2 . (7)

Each pixel p of the target region is then corrected by a
bi-linear interpolation considering the coefficients of the
four closest grid nodes.

4.2 Kawai et al.

Kawai et al. [22] analyse the neighboring area to estimate
the variation of illumination in the target region. A grid G
is defined on NF ∪ TF where each node is placed in the
center of a patch. Initially, they assign the mean illumina-
tion variation of each patch in NF to its corresponding
node. The illumination variation in a pixel p ∈ NF
is computed as described in the problem statement in
equation (3). Then, for the target region, the illumination
variation of each grid node is computed separately under
the assumption that the change in brightness between two
adjacent nodes is minimal. We define the function:

ψKawai :

∥∥∥∥ G ⊂ NF ∪ TF → R
c→ ψKawai(c).

(8)

This function is obtained by minimizing the following
global cost:

min
ψKawai

∑
(ci,cj)∈P

(ψKawai(ci)− ψKawai(cj))
2, (9)

with, for ci ∈ NF :

ψKawai(ci) =
1

|Gi|
∑
p∈Gi

vp, (10)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016 5

with ci and cj being the centers of two adjacent patches
of the grid. P is a set of pairs of adjacent patches. Gi
is the group of pixels in the patch centered around ci.
Minimizing this cost allows one to retrieve the values of
the grid nodes inside the target region TF . The coefficient
of color variation ψKawai(p) for each pixel p inside the
mask is then deduced by bi-linear interpolation.

4.3 Discussion
The two methods [18, 22] propose models that handle
global image-level light changes well. However, only
the smoothness property is considered by Kawai et al.
(Property 1 in section 2). Herling et al.’s method [18] also
respects the additivity property (property 5 in section 2).
In other words, [22] uses a multiplicative model to update
the illumination variation, [18] uses an additive model
which is coherent with local illumination models. How-
ever, this is still insufficient in cases with specular surfaces
and artificial lighting condition. Examples of DR show the
limits of these methods in figure 4. Those demonstrate that
even in basic scenarios including a specular planar surface
under a point light source, state-of-the-art methods do not
provide satisfying solutions.

5 PROPOSED MODELS AND METHODS

5.1 The Thin-Plate Spline
We propose two models based on our observations of the
specularity’s structural properties. Both models use the
Thin-Plate Spline (TPS) as an interpolation function. It
is a very suitable tool in this context because it enforces
the smoothness constraint. Here, we briefly introduce the
parameterization of the TPS. As inputs, we consider a
set of l centers ck → uk where ck ∈ R2 holds the
coordinates of a center and uk ∈ R is its corresponding
unknown target value. We define the centers’ coordinate
matrix C = (c1 · · · cl) and the centers’ target vector u> =
(u1 · · ·ul). The correspondence (c1 · · · cl) → (u1 · · ·ul)
represents the control points for the TPS. The TPS is a
smooth function from R2 to R driven by these centers and
given for any point p ∈ R2 by:

φtps(p;u) = l>p Eλ u , (11)

where l>p =
(
ρ
(
d2(c1,p)

)
· · · ρ

(
d2(cl,p)

))
with ρ(d) =

d log(d) being the TPS kernel for the squared distance.
Eλ is the feature-driven parameterization matrix which
incorporates an internal regularization weight λ ∈ R+ [7,
11]. λ controls the sensitivity of the interpolation function
to fine variations. We set it to a small value for small-size
specularities and a larger value for large-size specularities
(λ can be set from 10−3 and up to 2.10−1).

In practice, we have arbitrary positioned centers with
unknown target values u. So, given a set of m data points
qi → vi, we estimate the optimal target values by solving:

min
u

m∑
i=1

(φtps(qi;u)− vi)2. (12)

This forms a linear least squares problem, which we solve
with a simple matrix pseudo-inverse.

Fig. 5: The illumination variation in the image plane be-
tween the keyframe K and the current frame F is viewed
as an elevation map. In this example, a specularity crosses
the target region TF . This demonstrates the smoothness
and continuity properties of a specularity.

5.2 Smooth Propagation Model
5.2.1 Description
The illumination variation can be viewed as a time-
varying elevation map, as shown in figure 5. The base rep-
resents the pixel coordinates in the image and the height
gives the variation’s value. We propose a first model that
only incorporates the smoothness property. We model the
illumination variation by a TPS. This model makes few
assumptions on the scene so it works for general case
scenarios. However, it may generate poor results in some
cases. We call it Smooth Propagation Model (SPM).

5.2.2 Estimation
We use the TPS to represent the function ψF that returns
the illumination variation, for all pixels in NF ∪ TF :

ψF :

∥∥∥∥∥∥
O ⊂ R2 → R

p→ vpK
= χF (pF )− χK(pK), if pF ∈ NF

φtps(pK ;u), if pF = ηF (pK) ∈ TF
(13)

We consider a uniformly distributed grid GF ⊂ NF ∪ TF .
We set the grid so as to have l nodes, with l a perfect
square. Using the parameterization of the TPS introduced
in section 5.1, we consider the grid nodes as the centers
ck and the pixel intensity variations between the keyframe
and the current frame as the target values uk. The points
inNF are considered as the data points used to estimate u.
Using the estimation method from section 5.1, we obtain
the TPS function φtps. The number of centers is chosen as
l = 100, and the number of data points m depends on
how many pixels we have in the neighboring region. In
terms of computation, this method requires a least squares
fit at every frame to solve (12). However, the matrix Eλ is
constant, meaning that it can be precomputed from the
keyframe only. In other words, solving for ψF requires
solving minimization (12) with a simple multiplication
between a constant matrix and the measured vector of
variations v> = (v1 · · · vm). In the RGB color space, we
need to estimate separately three intensity differences for
each pixel pF , Eλ being the same for the three color
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(a) Original images (b) Ellipse fitting (c) Results of model 2

Fig. 6: Isocontour estimation on the brightness map. In (b), we use red represent the points used to estimate the ellipses
and blue for the final estimation. The interpolated ellipses may extend inside the target region, and this allows us to
propagate the specularity with high accuracy.

channels. A TPS was already used in [33] to model image-
based light changes in the context of registration.

5.3 Constrained Propagation Model
5.3.1 Description
We extend SPM by considering more structural properties
of specularities in the case of a scene with a single point
light source. In this case, we constrain the new model by
all the five properties from section 2. We call the second
model Constrained Propagation Model (CPM).

5.3.2 Estimation
We integrate the constraint of the elliptical isocontours
(property 3) by fixing a number s of intensity levels in
the specular highlight. An isocontour is a set of pixels
with the same intensity level (see figure 2 (b)). For each
isocountour with intensity level h, we estimate the ellipse
E by solving:

min
e

r∑
j=1

(
h− χL

(
E(j)

))2
, (14)

where χL returns the L color intensity values of a pixel
in the Lab color space. The ellipse is represented by its
five natural parameters e> = (ox oy a b w) ∈ R5 with
ox and oy as the center’s coordinates, a as the semi-major
axis, b as the semi-minor axis and w as the angle orienting
the major axis. The ellipse is discretized in a group of
points E of size r = 100 to evaluate the cost in (14),
with E(j) ∈ R2 the j-th element in E. Further details
on the fitting algorithm are given in section 5.3.2.2. The
number of intensity levels s also represents the number

of iso-contours considered, corresponding to the levels
hmin · · ·hmax. Since the maximum intensity level hmax
is constant, s is automatically adjusted depending on the
minimum intensity level hmin. This threshold is fixed
manually depending on the light exposure of the camera
and light intensity. In particular, the brighter the light
reflection, the higher the value of hmin.

5.3.2.1 Isocontour Detection

To evaluate the illumination variation, we convert the
image to the Lab color space and consider only the
L channel (Lightness). To reduce the computation cost,
we only search for isocontours where a specularity is
detected. To do so, we use a real-time algorithm for
detecting specular reflections inspired from the methods
in [24, 29]. To properly detect isocontours of intensity
levels as ellipses, we begin by applying the Wiener filter
[38] to segment the Lightness levels and reduce the noise
generated by the roughness in the surface. Then we use a
quantification histogram to segment the image into light
intensity levels. The result is the brightness map. The
detection of isocontours is carried out in this map. For a
light level h, a point from the isocontour is detected when
its corresponding intensity level is h and one of its neigh-
boring points has an intensity level of h-1. Accordingly,
we define s corresponding levels of intensity and detect
their isocontour points.

5.3.2.2 Ellipse Fitting

Considering the brightness map obtained in the neighbor-
ing regionNF , as shown in figure 6. The isocontour points
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Fig. 7: Comparing the ellipse fitting results on the same video frame before and after filtering out the inconsistent
ellipses. In (b), before filtering, many false estimations of ellipses are seen. This generates visual artifacts on the final
result seen in (d). In (c), we were able to filter the false estimated ellipses according to their confidence coefficients as
described in section 5.4.2. In (e), the final result of CPM is visually more convincing than the one in (d). The brightness
maps in (b) and (c) are rectified to the keyframe image plane and zoomed for better visualization.

that are outside TF may be interpolated into ellipses
extending within the target region. Our goal here is to
estimate the extension of these isocontours assuming they
have an elliptic shape. This is equivalent to minimizing
the criterion in equation (14). To do so, we use the al-
gorithm of Fitzgibbon et al. [13] for feature-based least
squares fitting of ellipses. From a set of points from an
isocontour, this method attempts to adjust the best ellipse
which minimizes the algebraic distance. The result is used
as an initialization. The parameters of the ellipse are fed
to a simplex direct search algorithm to solve problem (14).
This algorithm not only allows us to find all the points
of the isocontour that are within the target area, but also
the position of the ellipse’s center. This information will
be exploited to approximate the position of the brightest
point. In this model we assume that the position of the
brightest point is located at the center of the smallest
detected isocontour. For an isocontour C , the difference
of light variation for a color channel z is computed for
points p ∈ C ∩ TF as:

vzp = max
q∈C∩NF

vzq. (15)

with C the set of points in the real isocontour and vzp the
difference in intensity between K and F at pixel p.

5.3.2.3 Consistency Filtering

In practice, due to estimation errors, there may be overlap-
ping ellipses (see figure 7). So, we constrain the estimation
of the ellipses by imposing property 4 from section 2,
which is the monotonic decrease in intensity of the spec-
ular highlights. Based on our formulation of the problem,
this property translates to the fact that each ellipse of
intensity level he should be totally inside any ellipse of intensity
level h < he. In order to respect this condition, we define
a confidence coefficient for each estimated ellipse. The
confidence coefficient for an estimated ellipse of intensity
level he is determined with the function γ defined as:

γ(e) =
s∑

j=1,j 6=e
δ(j, e), (16)

where:

δ(j, e) =


1(Ej ⊂ Ee) if hj > he
1(Ee ⊂ Ej) if hj < he
0 otherwise.

(17)
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After the initialization with the feature-based fitting of
ellipses, we compute the confidence coefficients of the
different estimated contours and we retain the largest
set of consistent ellipses (with the maximum confidence
values). We refer to this operation by consistency filtering
as in figure 7. We then refine the retrieved ellipses by
solving problem (14).

5.3.2.4 Incorporating the Constraints to the TPS

Returning to the estimation of the TPS, we add a fixed
number of pixel coordinates as data points. They belong
to the interpolated ellipses E1, . . . , Es which are within
the target region. Their respective target values are the
differences in intensity of the corresponding isocontours.

6 RESULTS AND DISCUSSION

6.1 Datasets
The video sequences used for comparison in this section
are divided into two categories. The first category includes
two videos: a synthetic one (video 1) which was generated
from the rendering software Blender-3D illustrated in
figure 10, and a real one (video 2) illustrated in figure 11.
The synthetic environment chosen in video 1 allows us to
take full control of the different parameters in the scene
(the light source’s position, its intensity value, the object’s
material, camera orientation, etc). The reflection model is
Phong’s. For both videos, no undesired object is placed in
the target region in order to let us compare the rendered
specularity to the real one. The second category includes
two real videos, video 3 (figure 12) and video 4 (figure 13),
with undesired objects. These videos show the case of a
planar surface crossed by a specularity.

6.2 Comparing Results
We can see that CPM achieves the best results for all
videos in terms of specularity propagation. For the first
two videos, CPM is the closest to the ground truth video.
For the two other videos, its results are more visually
coherent than for the other methods. So, this model shows
an improvement of the rendering quality compared to
SPM and state-of-the-art. This shows the relevance of
incorporating the specularity’s structural properties. Even
though it incorporates only the smoothness property, SPM
still achieves better results than state-of-the-art. In fact,
this demonstrates that the TPS is a well-adapted interpo-
lation function for this problem. In particular, the method
of Kawai et al. [22] works well with weak illumination
variations when the brightest point is outside the target
region. However, it clearly fails when a specularity enters
the target region, with high intensity variations or with
rich-texture surfaces. The method of Herling et al. [18] is
very dependent on the boundary’s shape. Therefore, the
specularity rendering result is not visually convincing. It
generates artifacts that seem unnatural. The interpolation
of illumination variation in the previous methods does not
respect the specularity’s structure, which explains these

results. Video 4 presents a very difficult case of rich texture
surface (strong local variations of colors). In fact, the pres-
ence of such texture in the neighboring region along with
the presence of the white color results in a non-smooth
variation of pixel intensities in the three color channels.
Since these pixels can be saturated in one or more of the
RGB channels, the mean computed variation is usually
insufficient to reproduce the specularity for SPM and pre-
vious methods. However, CPM can overcome this issue by
imposing additional constraints. The fact that we consider
the maximum difference of intensity for the isocontour
points allows us to avoid these extreme cases. Although
some artifacts can still occur, our model gives the best
results by far, compared to previous methods (see figure
13).

Fig. 8: Comparing the results of our second model CPM
using an additive model versus a multiplicative model for
computing the illumination variation coefficients.

6.3 Additive Versus Multiplicative Model

As mentioned in section 4, the previous methods express
differently the illumination variation coefficients. Herling
et al. [18] use an additive model while Kawai et al. [22]
use a multiplicative model. In our proposed methods, our
choice was guided by the local illumination models. This
choice is also supported by the results on real data. In
figure 8, we compare the results of CPM associated for
the two different possibilities. This shows that the pixel
colors are altered when using a multiplicative model (they
become overly bright). This is particularly strong for rich
texture surfaces. This is also confirmed by the results of
[18] (using the additive model) which are more convincing
than the ones of [22] (using the multiplicative model) on
video 4.
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6.4 Computation Time

In figure 9, we present the computation time for each
frame of video 2 using the proposed models as well as
the state-of-the-art methods. We ran these tests on an
Intel i7 processor with a 2.70 GHz frequency. Video 2
has a frame size of 640x480 pixels. The inpainting step is
launched at frame 160, which explains the peak in compu-
tation time for all models. SPM has a stable computation
time at around 70 ms per frame which corresponds to a
performance of 14 frames per second. CPM has a mean
computation time of 160 ms per frame which corresponds
to a performance of about 7 frames per second. Many op-
timizations could be done, including the parallelization of
the algorithm and an optimized choice of the parameters.
However, we can already state that the proposed models
are well adapted for real-time applications.

6.5 Discussion and Limitations

Our proposed model SPM imposes the smoothness prop-
erty of a specularity which is true for any type of specular
surfaces. This property is observed on most types of sur-
faces and it is also imposed by state-of-the-art methods.
However, our model uses a more adapted mathemati-
cal formalism based on the TPS which generates more
plausible results. Our method CPM incorporates further
properties based on the specularity’s shape. However,
the property of the uniqueness of the brightest point is
particularly valid for a point light source. Under these
circumstances, CPM outperforms by far previous methods
as shown on the experimental results. The choice between
the first and second models can be decided depending
on the specifications of the observed scene. The methods
presented in this paper consider a single plane in the
target region and therefore compute a single homography
corresponding to this plane. Kawai et al. [22] propose
to consider multiple homographies in order to handle
multiple planes. Similarly, our estimation method can also
be extended by considering the geometry of the surface if
known.

Our models along with state-of-the-art do not han-
dle a rough surface because in this case the property
of smoothness is no longer valid. Another specific case,

Fig. 9: The computation time per frame in seconds for the
proposed models and previous models on video 2.

which is not considered by our models as well as state-of-
the-art, is when a small specularity fully enters the target
region. For this case, a specularity prediction model using
dynamics is needed. This implies that the light source
position is known or can be estimated using a multiple-
view geometric model as the one from [30].

7 CONCLUSION

This paper deals with the illumination variation problem
in the context of Diminished Reality. This complex prob-
lem can be transformed into a specularity propagation
problem. From multiple empirical observations, we pro-
posed a list of structural properties of a specularity. We
then proposed two models that embed these properties
to estimate the illumination variation. Our first model is
generic, while our second model is more adapted to curvy
surfaces with single point light sources. Our experimental
results show the relevance of our approach compared
to previous work which do not embed these properties.
Particularly, the results of our second model CPM show a
substantial improvement in rendering results with respect
to the specularity’s spatial structure compared to state-of-
the-art. In future work, we plan to address other types of
surfaces. We will introduce further constraints induced by
the specularity’s shape depending on the object’s material
as well as the surface’s roughness and geometry. We
will also handle multiple planes in the target region as
explained in the discussion section.
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Fig. 10: Results of all the methods on frames 64, 71 and 130 of video 1. (a) corresponds to the original image with the
target region in red. (b) SPM. (c) CPM before filtering inconsistent ellipses. (d) CPM after filtering inconsistent ellipses.
(e) Method of Herling et al. [18]. (f) Method of Kawai et al. [22].
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Fig. 11: Results of all the methods on frames 367, 541 and 1227 of video 2. (a) corresponds to the original image with the
target region in red. (b) SPM. (c) CPM before filtering inconsistent ellipses. (d) CPM after filtering inconsistent ellipses.
(e) Method of Herling et al. [18]. (f) Method of Kawai et al. [22].
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Fig. 12: Results of all the methods on frames 168, 202 and 328 of video 3. (a) corresponds to the original image with the
target region in red. (b) SPM. (c) CPM before filtering inconsistent ellipses. (d) CPM after filtering inconsistent ellipses.
(e) Method of Herling et al. [18]. (f) Method of Kawai et al. [22].



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016 14

Fig. 13: Results of all methods on frames 637, 684 and 945 of video 4. (a) corresponds to the original image with the
target region in red. (b) SPM. (c) CPM before filtering inconsistent ellipses. (d) CPM after filtering inconsistent ellipses.
(e) Method of Herling et al. [18]. (f) Method of Kawai et al. [22].


