
Plane-Based Resection for Metric Affine Cameras

Adrien Bartoli Toby Collins

The ENCOV group (Endoscopy and Computer Vision)

Université Clermont Auvergne and CNRS, Institut Pascal

Corresponding author: Adrien Bartoli

Adrien.Bartoli@gmail.com

Accepted by the Journal of Mathematical Imaging and Vision, January 2018

Abstract

We study the problem of resecting the metric affine camera models from at least three non-colinear

point correspondences. A direct application is plane pose estimation. We consider the three most popular

metric affine cameras, namely the paraperspective, weak-perspective and orthographic cameras. For each

model, we give an algebraic procedure which finds the optimal solution, where by optimal we mean the

global minimizer of the reprojection error under the Euclidean norm. Our algebraic procedures cover

both the minimal case of three points and the redundent cases of more than three points. They always

return two solutions, as the problem has a two-way ambiguity on the rotation and translation for the three

cameras in the general case. The scale of the paraperspective and weak-perspective cameras is however

recovered uniquely. The orthographic case is the most involved and has not been solved analytically in

the literature. We characterize its intrinsic complexity by showing that it reduces to finding the roots of

an irreducible and non-solvable by radicals sextic polynomial. The previous algorithms for the paraper-

spective and weak-perspective cases have singularities, while, in contrast, our algebraic procedures do not.

Code release. We have prepared a public release version of our code, which has been released with the

article.

Acknowledgements. This research has received funding from the EU’s FP7 through the ERC research

grant 307483 FLEXABLE. We thank Florian Bugarin and Didier Henrion for their help in using Glop-

tipoly.

Contents 2

Contents

1 Introduction 5

2 Background 7

2.1 Notation . 7

2.2 Camera Models . 7

3 Problem Statement and Formulations 9

3.1 Initial Formulation . 9

3.2 Translationless Formulation . 9

3.3 First Canonical Formulation . 9

3.4 Second Canonical Formulation . 10

3.5 Formulation Group . 11

3.6 Algebraic Procedure . 12

4 Resection of the Orthographic Camera 12

4.1 The Canonical Formulations . 12

4.2 A Difficult Quartically Constrained Problem . 13

4.3 Solving via Multiple Cases . 13

4.4 Cases 2.x.x . 15

4.5 Case 1.2.2 . 16

4.5.1 Parameterization for Cases 1.x.x . 17

4.5.2 Reformulation . 17

4.5.3 Introduction of the Orthonormality Constraints . 18

4.5.4 Solution Strategy . 19

4.5.5 Expressing q as a Function of β . 19

4.5.6 Deriving a Univariate Polynomial in β . 20

4.5.7 Solving for β . 20

4.6 Cases 0.x.x . 23

4.7 Algebraic Procedure . 24

5 Resection of the Weak-Perspective and Paraperspective Cameras 24

5.1 Overview, Relationship to IPPE and Optimality . 26

5.2 Computing B ∈ GL2(R) . 26

Contents 3

5.3 Computing γ ∈ R+ and R ∈ SO3 . 27

5.3.1 Computing γ ∈ R+ and u ∈ R2 . 27

5.3.2 Computing R ∈ SO3 . 27

5.4 Computing t ∈ R3 . 28

5.5 Algebraic Procedures . 28

6 Experimental Results 28

6.1 Compared Methods . 29

6.2 Synthetic Data . 30

6.2.1 Comparison of the Orthographic and Weak-Perspective Cameras 30

6.2.2 Comparison of the Orthographic Algebraic Procedure with Alternative Methods . . . 31

6.2.3 Performance with Perspective Projection and Uncalibrated Images 34

6.2.4 Performance in Plane-Based Structure-from-Motion 35

6.3 Real Data . 37

6.3.1 Pure Rotation . 37

6.3.2 General Motion . 39

6.4 Computation Time Analysis . 41

7 Conclusion 43

A Translationless Formulation 43

B Analytic Expression of the Cholesky Factor of I + dd> 44

C Aligning the Projection Direction to the Z-Axis 44

D Solution of the Rank-1 Equation of Type 3, zuu> + zG = K 45

E Solution of the Rank-1 Equation of Type 4, −zuu> + zG = K 46

F Intersecting a Centred Ellipse and the Unit Circle 47

F.1 Problem Statement . 47

F.2 Finding the Degenerate Conic as a Pair of Lines . 47

F.3 Intersecting the Pair of Lines with the Unit Circle . 48

G Impossibility of Cases 1.x.x Other Than 1.2.2 49

G.1 Case 1.1.2 . 49

Contents 4

G.1.1 Specializing the Parameterization . 49

G.1.2 Reducing the Unknowns to α, ν ∈ R . 49

G.1.3 Impossibility . 50

G.2 Case 1.2.1 . 51

G.3 Case 1.1.1 . 51

G.4 Cases 1.0.x . 52

G.5 Cases 1.x.0 . 52

H Algebraic Procedure for the Weak-Perspective Camera 52

I Derivation Details for Case 2.x.x 53

1 Introduction 5

1 Introduction

Camera resection is the problem of finding the camera parameters from 3D-2D correspondences of geomet-

ric primitives, typically points and lines. It has been thoroughly studied in the literature for the dominant

camera models and the typical types of primitives. The most common case is the resection of the cali-

brated perspective camera from point correspondences, which is also called the PnP problem (Fischler and

Bolles, 1981). The general problem of camera resection is important, as it forms a building block for SfM

(Structure-from-Motion) and SLAM (Simultaneous Localization and Mapping) engines (Klein and Murray,

2007; Snavely et al., 2008), and SfT (Shape-from-Template) to some extent (Bartoli et al., 2015).

We here study the specific case of resecting a metric affine camera from coplanar point correspondences.

A metric affine camera is one of the orthographic, weak-perspective and paraperspective models. We use

the commonly adopted assumption that the data likelihood follows a Gaussian IID model. Under this

assumption, the reprojection error, defined as the sum of squared Euclidean distances between the measured

and the predicted image points, can be minimized to find the statistically optimal solution. We came across

this problem when we studied SfM with metric affine cameras and coplanar points (Collins and Bartoli,

2017). We demonstrated that without additional prior knowledge, plane-based affine SfM is solvable only

with the orthographic camera, which is thus the most important practical case. We gave a comprehensive

SfM framework, where we used Gloptipoly to solve plane-based orthographic resection. Gloptipoly is a

general purpose polynomial optimization tool (Henrion et al., 2009). Plane-based orthographic resection with

Gloptipoly finds the cost’s global minimum. However, it is too slow for realtime applications and unstable

in a very small fraction of cases. Iterative solutions where proposed that run extremely fast (Cardoso and

Zietak, 2015; Steger, 2017a). However, none of these guarantees one to find the cost’s global minimum.

In practice, they may fall in a local minimum for smaller numbers of point correspondences, though this

happens in rare instances (Steger, 2017a).

On the other hand, the weak-perspective and paraperspective models received optimal solutions in the

literature (Collins and Bartoli, 2014; Horaud et al., 1997; Oberkampf et al., 1996). However, the proposed

methods have singularities. The existing weak-perspective solution is part of the POSIT framework for

planar objects (Oberkampf et al., 1996). The solution requires one to solve a complex bivariate quadratic,

whose solution requires one to divide by a possibly vanishing quantity ‖J0‖22−‖I0‖22. Our algebraic procedure

is much simpler and compact to derive, and does not have singularities. The existing paraperspective

solutions are twofold. The first one came out of a generalization of the POSIT framework (Horaud et al.,

1997). This generalized framework may be instantiated with the weak-perspective camera, in which case it

directly uses the weak-perspective solution from (Oberkampf et al., 1996). It may also be instantiated with

1 Introduction 6

the paraperspective camera but using the same formalism as (Oberkampf et al., 1996). The most recent

existing paraperspective solution is called IPPE and is part of a complete perspective plane-based pose

estimation framework (Collins and Bartoli, 2014). IPPE requires one to align the paraperspective viewing

direction to the camera’s optical axis, and fails if these are already close in space. Our algebraic procedure

has similarities with IPPE, but does not have singularities. We give a proof of optimality of our algebraic

procedure. Though IPPE turns out to be optimal away from the singularity, this was not proved.

Our main findings also include that, even if the weak-perspective and paraperspective models are rela-

tively easy to solve analytically, the orthographic model involves solving a non-trivial polynomial system, as

was already observed in (Collins and Bartoli, 2017; Steger, 2017a). This is because the number of unknowns

in the weak-perspective and paraperspective models can be simply reduced to four, which are directly con-

strained by quadratic equations up to a change of variable. In the orthographic model however, the number

of degrees of freedom is reduced to three, which are expressed in terms of four parameters related by a

quartic constraint. These four parameters indeed form a matrix in the group of sub-Stiefel matrices in R2×2.

We show that the polynomial system can be reduced, in the most complicated case, to finding the roots

of an irreducible and non-solvable by radicals univariate sextic polynomial. These roots cannot be found

symbolically, but can be found numerically in a very stable and fast manner.

We give a complete algebraic procedure for each of the three camera models. We experimentally compare

our algebraic procedure for the orthographic camera to the previous solution based on Gloptipoly (Collins

and Bartoli, 2017). Our algebraic procedure runs in about 0.76 ms for fewer than 100 points and 1.2 ms

for 1,000 points while Gloptipoly takes about 0.25 s in both cases. Our algebraic procedure has practical

implications, and we briefly sketch three of them. The first practical implication is in SfM with planar

structures and affine cameras. The slowest step is currently optimal camera resection (Collins and Bartoli,

2017). Using the proposed algebraic procedure would speed up the whole pipeline by an order of magnitude.

The second and third practical implications are in deformable surface 3D reconstruction from monocular

images. Our algebraic procedure can be used to reconstruct a surface piecewise, using local orthographic

camera resection (Collins and Bartoli, 2010; Taylor et al., 2010). Because this process must be run hundreds

or thousands of times per image, the proposed algebraic procedure would considerably improve computation

speed. Our algebraic procedure could also be used to rapidly detect where tearing occurs on a deformable

surface from a monocular image. This is because at a tearing region, a local camera resection will have an

unusually high reprojection error (Taylor et al., 2010).

2 Background 7

2 Background

This section gives our notation and the three metric affine camera models.

2.1 Notation

We use italics for scalar (a, λ), bold for vectors (a, λ) and typewriter fonts for matrices (M). For dimension

d ∈ {2, 3}, we write GLd(R) the general linear group over R, containing the invertible (d × d) matrices,

Od ⊂ GLd(R) the group of orthonormal matrices and SOd ⊂ Od the group of orthonormal matrices with

positive determinant. We write SS23 and SS22 the Stiefel and sub-Stiefel manifolds of O3. We write S the

set of symmetric positive definite matrices. We write the vectors of the standard basis as e1, . . . , ed, where

ej is an all zero vector with a one at the j-th position. We write the vector and matrix two-norm as ‖a‖2

and ‖M‖F respectively. We write the elementwise, Hadamard product as �. We write vertical stacking

for scalars/vectors/matrices as stk(M, N)
def
= [M> N>]>. We define λi(M) and εi(M) for the eigenvalues and

eigenvectors of M ∈ Rd×d. We write µ±(M) for the two singular values of M ∈ R2×2, with µ+(M) ≥ µ−(M) ≥ 0.

We define the operator which factorizes a rank-1 matrix as rank1

(
uu>

)
= ±u, for u ∈ Rd.

We define S
def
=
[

0 −1
1 0

]
∈ SO2 and Πd

def
= [I d], where I is the identity matrix of the right size. We write

X ∈ R3×m and Y ∈ R2×m for the m point correspondences. More specifically, each column of X holds the

coordinates of a model point, with the image coordinates of the corresponding observed point held in the

corresponding column in Y. The points in X are coplanar. The points in X and Y are not colinear.

2.2 Camera Models

An affine camera preserves parallelism (Faugeras et al., 2001; Hartley and Zisserman, 2003). The most

general affine camera is represented by a matrix P ∈ R2×3 for the rotational part and a vector t ∈ R2 for the

translational part. It projects a 3D point Q ∈ R3 to an image point q ∈ R2 as q = PQ + t. A metric affine

camera has its rotational part in a specific subspace. We consider the three most common instances of metric

affine cameras. For the orthographic camera we have P = R̄, with R̄ ∈ SS23. For the weak-perspective camera

we have P = γR̄, with γ ∈ R+ and R̄ ∈ SS23. We recall that Πd
def
= [I d]. For the paraperspective camera

we have P = γΠdR, with γ ∈ R+, d ∈ R2 and R ∈ SO3, and with det(PΠ>0) 6= 0. While the orthographic

and weak-perspective cameras project along the camera’s principal ray, the paraperspective camera projects

along the direction represented by d. We define the set of admissible matrices for these three metric affine

2 Background 8

cameras’ rotational parts as:

MOR

def
= SS23

MWP

def
=

{
P ∈ R2×3 | ∃γ ∈ R+, R̄ ∈ SS23 s.t. P = γR̄

}
MPP

def
=

{
P ∈ R2×3 | ∃γ ∈ R+, R ∈ SO3 s.t. P = γ[I d]R

}
.

Camera resection is to compute the rotational and translational parts of the camera models, as well as

the scale factor if any. More specifically, this means that we consider our unknowns to be R and t for the

orthographic camera and γ, R and t for the weak-perspective and paraperspective cameras. The direction

d used in the paraperspective camera is assumed known. In practice, it is chosen following (Horaud et al.,

1997) as the sightline passing through the centroid of the image points in Y.

We now discuss the question of whether intrinsic camera parameters are needed to apply the above three

models. We define a camera to be calibrated when its usual perspective intrinsic parameter matrix K is

known, which contains in particular its effective focal length f ∈ R and its principal point q0 ∈ R2, both

in px unit. The weak-perspective camera does not have intrinsic parameters and may be fitted directly

to the image data. The notion of calibration does therefore not apply to this model. The orthographic

and paraperspective cameras however require one to use some intrinsic parameters. More specifically, the

orthographic camera has one intrinsic parameter. It is a scale factor, which acts similarly as the scale

factor of the weak-perspective camera. It is defined as γ = f
d , where d is the average camera to object

distance in metric unit. Even though d, and thus γ, are data-dependent, we deem the orthographic camera

to be calibrated when γ is known and uncalibrated otherwise. The paraperspective camera requires one

to estimate the direction d, as explained above, which represents two intrinsic parameters. The process of

mapping the centroid of the image points to the sightline requires matrix K to be known. Even though d

is data-dependent we deem the paraperspective camera to be calibrated when d is known and uncalibrated

otherwise. Consequently, the paraperspective camera is calibrated for any set of image points Y and a known

K matrix.

Approximating the perspective camera is not the only use-case for the affine camera. There exists

another use-case, which is to model telecentric lenses, which in effect perform a parallel projection (Steger,

2017b). Conversely, an affine camera can be interpreted as a camera mounted with a bilateral telecentric

lens (Steger, 2017b, Theorem 1). Therefore, if a camera is calibrated and mounted with a telecentric lens,

the pose computation problem can always be reduced to the orthographic case, which is thus the most

important practical case.

3 Problem Statement and Formulations 9

3 Problem Statement and Formulations

We start from an initial formulation, from which we derive a translationless formulation, following the usual

principle when working with an affine camera of centering the point sets. We then use the SVD (Singular

Value Decomposition) to simplify the formulation and arrive at the first and second canonical formulations,

respectively depending on the camera’s full rotation part and its (2× 2) leading submatrix. Our derivations

are kept generic in that they apply to the three metric affine cameras. The two canonical formulations

are equivalent but both are needed to derive our algebraic procedures. Three equivalent formulations were

derived using the QR decomposition in (Steger, 2017a).

3.1 Initial Formulation

We define ∗ ∈ {OR,WP, PP} as a variable indicating that we work with the three metric affine cameras. The

generic L2-optimal affine resection problem is written as:

min
P∈M∗
t∈R2

O1(P, t) with O1(P, t)
def
=

∥∥∥PX + t1> − Y
∥∥∥2

F
. (1)

3.2 Translationless Formulation

We define X′ ∈ R3×m and Y′ ∈ R2×m as the centred model and observed point sets X and Y respectively,

and x ∈ R3 and y ∈ R2 as their centres of gravity. Following the derivation given in appendix A, the initial

formulation (1) can be rewritten without loss of generality under the translationless formulation:

min
P∈M∗

O3(P) with O3(P)
def
=

∥∥PX′ − Y′
∥∥2

F . (2)

Once the rotational part P is estimated, the translation is given by:

t = y − Px. (3)

3.3 First Canonical Formulation

Because the model points are coplanar, but not colinear, and because X′ is centred, we have rank(X′) = 2.

We use the SVD UΣV>
def
= X′, with U ∈ O3, V ∈ Om and Σ

def
= [Σ̄ 0] ∈ R3×m, with Σ̄

def
= stk(W,0>) ∈ R3×2 and

W
def
= diag(σ1, σ2). We have, thanks to the non-colinearity assumption, σ1 ≥ σ2 > 0. We modify the SVD to

ensure U ∈ SO3 by defining U′
def
= det(U)U and V′

def
= det(U)V, so that X′ = U′ΣV′> and V′ ∈ Om. Substituting

3 Problem Statement and Formulations 10

this modified SVD into the cost function of the translationless formulation, we obtain:

O3(P) =
∥∥∥PU′ΣV′> − Y′

∥∥∥2

F
=
∥∥PU′Σ− Y′V′

∥∥2

F .

Because U′ ∈ SO3 we have A = PU′ ∈M∗. We can thus rewrite the problem as:

min
A∈M∗

O4(A) with O4(A)
def
= ‖AΣ− Y′V′‖2F .

We define [Z Z̄]
def
= Y′V′ ∈ R2×m with Z ∈ R2×2 and Z̄ ∈ R2×(m−2) respectively. The cost function is expanded

as:

O4(A) = ‖AΣ̄− Z‖2F + ‖Z̄‖2F .

The second term is constant, and we thus arrive at the first canonical problem formulation as:

min
A∈M∗

O5(A) with O5(A)
def
= ‖AΣ̄− Z‖2F . (4)

The cost function O5 is related to the initial cost by:

O5(A) = O4(A)−O with O def
= ‖Z̄‖2F . (5)

3.4 Second Canonical Formulation

The last row of Σ̄ is zero, meaning that the cost function does not depend on the last column of A. We may

thus define the first two columns of A as a matrix B
def
= AΠ>0 , and arrive at the second canonical problem

formulation as:

min
B∈M̄∗

O6(B) with O6(B)
def
= ‖BW− Z‖2F , (6)

and M̄∗ is the space of the leading (2× 2) submatrices of members of M∗, defined as:

M̄∗
def
=

{
B ∈ R2×2

∣∣ ∃b ∈ R2 s.t. [B b] ∈M∗
}
.

We have:

O6

(
AΠ>0

)
= O5(A). (7)

3 Problem Statement and Formulations 11

3.5 Formulation Group

An optimization problem’s formulation generally has multiple very similar instances sharing the same pa-

rameterization. These instances are obtained by applying a formulation transformation with which the

solutions covary or are left invariant. This is related but different from the gauge, which represents the

parameterization’s internal degrees of freedom. Identifying the formulation transformations and the gauge

is important as they may then be used to simplify the formulation or the expression of its solutions. The

canonical formulations (4) and (6) have multiple instances but do not have gauge freedoms. They share the

same set of formulation transformations, which forms a group of dimension two, which we call the formula-

tion group. One of these dimensions represents a positive rescaling. This holds for two reasons. First, as for

any optimization problem, multiplying the cost by a positive scalar does not change its extrema. Second,

this also preserves the parameterization in both canonical formulations. The other dimension in the for-

mulation group represents an orthonormal transformation. This holds for two reasons. First, the canonical

formulations are based on the Frobenius norm, which is invariant to orthonormal transformations. Second,

left-multiplying the unknown by an orthonormal transformation also preserves the parameterization. We

aggregate the two degrees of freedom in a scaled orthonormal transformation representing a similarity. The

formulation group can thus be parameterized by three variables a, b ∈ R and s ∈ {−1, 1}, with its members

defined as:

N
def
=

sa sb

−b a

 .
We also define ε

def
=
√
a2 + b2. The cost functions in the canonical formulations then implicitly depend on

parameters a, b and s, as:

O5(A′) = ‖A′Σ̄− 1

ε
NZ‖2F and A′

def
=

1

ε
NA ∈M∗, (8)

and:

O6(B′) = ‖B′W− 1

ε
NZ‖2F and B′

def
=

1

ε
NB ∈ M̄∗. (9)

Therefore,
√
ε represents the cost functions’ rescaling, atan2(b, a) a rotation angle and s the similarity of

the formulation. We are free to choose a and b with ε 6= 0 and s to simplify the problem’s formulation or

solution.

4 Resection of the Orthographic Camera 12

3.6 Algebraic Procedure

We give the algebraic procedure that prepares the canonical formulations’ parameters in table 1. This

procedure does not exploit the formulation group, as it is only used for the orthographic camera.

Function PrepareData(X ∈ R3×m, Y ∈ R2×m)

• Set x← 1
mX1 and y← 1

mY1

• Set X′ ← X− x1> and Y′ ← Y− y1>

• Set (U, Σ, V)← SVD(X′)

• Set Z← det(U)Y′[v1 v2]

• Set O ← ‖Y′[v3 · · · vm]‖22

• Set σ1 ← Σ11 and σ2 ← Σ22 (we have W = diag(σ1, σ2))

Output σ1, σ2 ∈ R+, Z ∈ R2×2, O ∈ R+, x,y ∈ R3, U ∈ O3

Table 1: Algebraic procedure to prepare metric affine planar resection. The procedure prepares
the data for all metric affine cameras.

4 Resection of the Orthographic Camera

The case of the orthographic camera is the most involved. We start with specializing the canonical formu-

lations.

4.1 The Canonical Formulations

For the orthographic camera we have MOR = SS23 and M̄OR = SS22. The canonical formulations for the

orthographic camera are thus respectively given by:

min
A∈SS23

O5(A), (10)

and:

min
B∈SS22

O6(B). (11)

The SS22 group is formed of those matrices whose largest singular value is one (Cardoso and Zietak, 2015).

Our analytic solution uses both canonical formulations. It starts with the first canonical formulation, and

shows that multiple cases arise. It may seem more natural at first to solve the second canonical formulation

directly. We show next the difficulty in trying to do so.

4 Resection of the Orthographic Camera 13

4.2 A Difficult Quartically Constrained Problem

The difficulty of formulation (11) stems from the constraints characterizing SS22. We have:

B ∈ SS22 ⇔ µ+(B) = 1. (12)

This constraint implies by definition of µ±(B) that 0 ≤ µ−(B) ≤ 1. The singular values µ±(B) are given as

the square root of the eigenvalues of B>B, and we thus have:

µ±(B)
def
=

√
1

2

(
‖B‖2F ±

√(
‖b1‖22 − ‖b2‖22

)2
+ 4

(
b>1 b2

)2)
.

Substituting this expression into the characterization (12) of SS22, squaring, multiplying by 2 and subtracting

‖B‖2F , we obtain:

B ∈ SS22 ⇔
√(
‖b1‖22 − ‖b2‖22

)2
+ 4

(
b>1 b2

)2
= 2− ‖B‖2F . (13)

The right-hand side of this equation must be positive, 2−‖B‖2F ≥ 0, and so ‖B‖2F ≤ 2. Squaring, we rewrite

the characterization of SS22 as:

B ∈ SS22 ⇔


(
‖b1‖22 − ‖b2‖22

)2
+ 4

(
b>1 b2

)2
=

(
2− ‖B‖2F

)2
‖B‖2F ≤ 2.

(14)

Expanding and simplifying the first equation, we arrive at:

B ∈ SS22 ⇔

 ‖B‖
2
F − det(B)2 − 1 = 0

‖B‖2F ≤ 2.
(15)

The equality constraint and an equivalent inequality constraint were also derived in (Steger, 2017a). The

implication of equation (15) is that, though the cost function O6 is convex in B, the latter must meet a quartic

equality constraint and a quadratic inequality constraint. An analytic solution to the formulation (11)

is therefore extremely difficult to derive. A numerical solution to a very similar problem was described

in (Steger, 2017a).

4.3 Solving via Multiple Cases

We use the first canonical formulation (10) to show that the problem has multiple cases which are each

solved with a specific procedure. Let a1,a2 ∈ R3 be the two rows of A and z1, z2 ∈ R2 be the two rows of Z.

4 Resection of the Orthographic Camera 14

We rewrite the cost function as:

O5(A) =
∥∥∥Σ̄>a1 − z1

∥∥∥2

2
+
∥∥∥Σ̄>a2 − z2

∥∥∥2

2
.

The constraint A ∈ SS23 is made of three orthonormality constraints, namely ‖a1‖2 = 1, ‖a2‖2 = 1 and

a>1 a2 = 0. So as to form the problem’s Lagrangian, we introduce a vector ` = stk(`1, `2, `3) ∈ R3 of three

Lagrange multipliers, giving:

L(A, `)
def
=

∥∥∥Σ̄>a1

∥∥∥2

2
+‖z1‖22−2a>1 Σ̄z1+

∥∥∥Σ̄>a2

∥∥∥2

2
+‖z2‖22−2a>2 Σ̄z2+`1

(
‖a1‖22 − 1

)
+`2

(
‖a2‖22 − 1

)
+2`3 a>1 a2.

Differentiating with respect to a1 and a2 and nullifying gives:

1

2

∂L
∂a1

= Σ̄Σ̄>a1 − Σ̄z1 + `1a1 + `3a2 = 0

1

2

∂L
∂a2

= Σ̄Σ̄>a2 − Σ̄z2 + `2a2 + `3a1 = 0.

This is equivalent to the following system:

Σ̄Σ̄> + `1I `3I

`3I Σ̄Σ̄> + `2I


a1

a2

 =

Σ̄z1

Σ̄z2

 .
This system cannot be used directly to solve for A because it involves the unknown `, and would require us

to reintroduce the three nonlinear orthonormality constraints to find a solution. We can however use this

system to derive multiple cases with restricted solution spaces. In this system, the design matrix is (6× 6),

symmetric and made of four blocks, each being (3× 3) and diagonal. With this special structure, defining:

M
def
=

`1 `3

`3 `2

 ,
and naming the three columns of A as b1, b2 and b, and the two columns of Z as z′1 and z′2, the system is

equivalent to:

M1b1 = σ1z
′
1 with M1

def
= M + σ2

1I (16)

M2b2 = σ2z
′
2 with M2

def
= M + σ2

2I (17)

Mb = 0. (18)

4 Resection of the Orthographic Camera 15

The multiple cases are derived by analyzing the rank of the three (2 × 2) design matrices M, M1 and M2

involved in the three subsystems. We name each case with three numbers in {0, 1, 2} representing the rank

of these three matrices, and replace the number by ‘x’ to mean any rank in {0, 1, 2}. For instance, our

first cases is 2.x.x, which means that rank(M) = 2, while rank(M1) and rank(M2) can be different and any of

{0, 1, 2}. Because the Lagrange multipliers forming the entries of matrix M are unknown, the matrices M1

and M2 are unknown too. It is thus necessary in our algebraic procedure of §4.7 to test all feasible cases

and select the actual one a posteriori. The following table summarizes our findings on the feasibility of the

different cases:

Cases 2.x.x Implies B ∈ O2, solved in §4.4

Cases 1.x.x Handled with one subcase

Case 1.2.2 Solved in §4.5

Case 1.1.2 Impossible, shown in §G.1

Case 1.2.1 Impossible, shown in §G.2

Case 1.1.1 Impossible, shown in §G.3

Cases 1.0.x Impossible, shown in §G.4

Cases 1.x.0 Impossible, shown in §G.5

Cases 0.x.x Implies B ∈ SS22 \O2, handled with one subcase

Case 0.2.2 Solved in §4.6, handled by the solution of case 1.2.2

All other subcases impossible, shown in §4.6

Case 1.2.2 is the most general, and also the most difficult to solve. Cases 1.x.x and 0.x.x are similar in the

sense that they both have two solutions in general, are represented by only one feasible subcase with the

others subcases leading to contradictions, and can be solved by the same algebraic procedure. Cases 2.x.x

however always possess a single solution, and require a dedicated algebraic procedure. This is because, as

shown in the next section, they imply B ∈ O2 and thus A = diag(B,det(B)). In other words, the optimal

rotation in this case must be about the z axis. The next two sections solve cases 2.x.x and 1.2.2 respectively.

The impossibility of the other cases in 1.x.x is shown in appendix G. The remaining sections study cases

0.x.x and give a complete algebraic procedure covering all cases.

4.4 Cases 2.x.x

We first give the parameterization we use for this specific case and then our solution to the problem. We

finally assemble an expression for R and t.

4 Resection of the Orthographic Camera 16

Solving for B. We have rank(M) = 2 and we can thus use equation (18) to obtain b = 0. Consequently,

A = [B 0] and A ∈ SS23 is written as BB> = I, which means B ∈ O2 ⊂ SS22. The second canonical

formulation (11) is thus simplified to:

min
B∈O2

O6(B).

This is an instance of the absolute orientation or orthogonal Procrustes problem in 2D, which can be solved

by adapting existing 3D methods (Arun et al., 1987; Horn et al., 1988). The other existing methods (Haralick

et al., 1989; Umeyama, 1991) solve a similar problem but under the constraint B ∈ SO2, meaning det(B) = 1,

whereas in our case we have to determine if det(B) = 1 or det(B) = −1 from the data. The problem has an

elegant and compact solution, based on parameterizing B ∈ O2 as:

B =

sa −b

sb a

 with a, b ∈ R, a2 + b2 = 1, s ∈ {−1, 1}. (19)

The problem thus becomes:

min
a,b,s

a2+b2=1
s∈{−1,1}

O6(a, b, s).

We give an optimized solution in appendix I.

Forming R and t. Starting from the parameterization (19) of B, we have:

A =

[
B 0

]
=

sa −b 0

sb a 0

 ,
which leads to:

R = det(U)


sa −b 0

sb a 0

0 0 s

 U>.
and:

t = y − Π0R̄x.

4.5 Case 1.2.2

This is the most general and the most involved case. We first give a specific parameterization for cases 1.x.x

and reformulate the problem to express the orthonormality constraints on a reduced set of parameters. This

results in a system of two polynomials and two rational functions, which leads us to our solution strategy.

4 Resection of the Orthographic Camera 17

We then derive a univariate polynomial, study its characteristics, and show how to subsequently recover B.

4.5.1 Parameterization for Cases 1.x.x

We have rank(M) = 1 and, since M is symmetric, we can parameterize it by q ∈ R2, ‖q‖2 = 1 and β ∈ R∗ as:

M = βqq>. (20)

We have that the kernel of M is ker(M) ∝ q⊥ ∝ Sq and its eigenvector is q, with eigenvalue β. We can then

parameterize b using equation (18), which implies b ∈ ker(M) or b = 0, with a free parameter α ∈ R as:

b = αSq. (21)

We note that from equations (16) and (17) rank(Mj) = 1 is equivalent to β = −σ2
j , for j ∈ {1, 2}. This is

because we have Mj = βqq>+σ2
jI, and a short calculation shows that λ1(Mj) = σ2

j > 0 and λ2(Mj) = β+σ2
j ,

which vanishes for β = −σ2
j . Our goal is now to find q, β, α and B for each subcase.

4.5.2 Reformulation

Our first step is to reformulate the problem in terms of Q>A =
[
Q>B Q>b

]
, with Q

def
= [q Sq] ∈ SO2. This

allows us to express the orthonormality constraints on q, β and α in the next section. We start by forming

the equations concerning Q>B. By substituting the parameterization (20) into equations (16) and (17), and

with j ∈ {1, 2}, we have: (
βqq> + σ2

jI
)

bj = σjz
′
j ,

which forms a set of quartics in q, β and B. By multiplying to the left by q>S and q>, we obtain, respectively:

σjq
>Sbj = q>Sz′j(

β + σ2
j

)
q>bj = σjq

>z′j ,

which forms a set of quadratics and cubics in q, β and B, that we rewrite in matrix form as:

q>SBW = q>SZ

q>B
(
W2 + βI

)
= q>ZW,

4 Resection of the Orthographic Camera 18

and transform in the following two vector equations, where Q>B eventually appears. This is achieved by

multiplying the first equation by −W−1 and using the property −S = S>, and multiplying the second equation

by
(
W2 + βI

)−1
:

q>S>B = q>S>ZW−1

q>B = q>ZW
(
W2 + βI

)−1
.

The first equation is still quadratic, but because of the matrix inverse, the second equation is quadratic and

linear-fractional. We gather these two equations in a single matrix equation:

Q>B = stk
(
q>ZW

(
W2 + βI

)−1
,q>S>ZW−1

)
.

By observing using equation (21) that Q>b = stk(0, α), we arrive at:

Q>A =
[
Q>B Q>b

]
=

q>ZW
(
W2 + βI

)−1
0

q>S>ZW−1 α

 . (22)

4.5.3 Introduction of the Orthonormality Constraints

The orthonormality constraints are AA> = I. Since Q ∈ SO2, we also have Q>AA>Q = I. By substituting Q>A

from equation (22), we arrive at the following system of equations, also including the unit norm constraint

of vector q as last equation: 

∥∥∥(W2 + βI
)−1

WZ>q
∥∥∥2

2
= 1∥∥∥W−1Z>Sq

∥∥∥2

2
+ α2 = 1

q>Z
(
W2 + βI

)−1
Z>Sq = 0

‖q‖22 = 1.

(23)

(24)

(25)

(26)

Equation (25) represents orthogonality, and is a simplication of q>ZW
(
W2 + βI

)−1
W−1Z>Sq obtained from

the property that the product of diagonal matrices is commutative. We now have to solve this system of

4 equations in the 4 variables q, α and β. Equations (23) and (25) are rational functions, respectively

quadratic-quadratic and quadratic-linear, and equations (24) and (26) are quadratic.

4 Resection of the Orthographic Camera 19

4.5.4 Solution Strategy

Our strategy is to reduce the system to a single polynomial equation in β. We first make a few observations

on equations (23), (24), (25) and (26):

• Only equation (24) depends on α; we can thus ignore it to find β and q in a first stage

• The signs of q and α are unconstrained

• The norm of q does not change equation (25)

These observations suggest the following solution steps:

1. Express q as a function of β from equations (23) and (26); even though this fixes the norm of q, we

only express q up to scale at this stage as it yields a simpler expression and does not affect the next

step

2. Substitute this expression for q into equation (25) to construct the polynomial equation in β, and find

candidate solutions for β

3. Retrieve q by backsubstituting β into the expression obtained in step 1 and renormalization

4. Solve for α from equation (24)

5. Keep the solution which minimizes the cost

The next section presents the derivation of step 1, and the two sections after that the derivation of step 2 in

detail. The first of these show that step 2 involves solving a polynomial p1 of degree 18. The second of these

show that 12 roots of p1 can be found analytically and discarded, leaving a polynomial p3 of degree 6, called

a sextic, to be solved. It shows that this sextic is not solvable by radicals and cannot be simplified using the

formulation group. The last section summarizes the proposed solution method in an algebraic procedure.

4.5.5 Expressing q as a Function of β

Equation (26) constrains q to lie on the unit circle, while equation (23) constrains it to lie on an ellipse

centred at the origin. We may thus have between 0 and 4 solutions for q. However, it is obvious that if q

is a solution, −q is a solution too, and we thus have between 0 and 2 solutions up to sign for q. We derive

the solution in appendix F. The two solutions for q are given by:

q± ∝
(
S(Ē− I)±

√
tr(Ē)− det(Ē)− 1I

)
e1 with Ē = ZW

(
W2 + βI

)−2
WZ>. (27)

4 Resection of the Orthographic Camera 20

4.5.6 Deriving a Univariate Polynomial in β

In order to form the polynomial in β, we first need to cancel the fractions with β in the denominator in the

expression of q± and in equation (25), and then to substitute q± into equation (25). We define:

Γ
def
= W2 + βI, Γ′

def
= −SΓS and τ

def
= det(Γ),

and observe that τΓ−1 = Γ′. We multiply the expression of q± by τ2, giving:

q± ∝
(
SL± τ

√
rI
)
e1, (28)

with:

L
def
= ZWΓ′2WZ> − τ2I and r

def
= tr

(
Γ′2WZ>ZW

)
− det(W)2 det(Z)2 − τ2.

We multiply equation (25) by τ , obtaining:

q>Kq = 0 with K
def
= ZΓ′Z>S. (29)

Combining equations (28) and (29), we obtain:

e>1

(
LS> ± τ

√
rI
)
K
(
SL± τ

√
rI
)
e1 = 0,

which we expand to:

e>1

(
LS>KSL + τ2rK

)
e1 = −± τ

√
re>1

(
KSL + LS>K

)
e1.

Squaring to cancel the radical, we arrive at the following polynomial equation of degree 18:

p1(β) = 0 with p1(β)
def
=

(
e>1

(
LS>KSL + τ2rK

)
e1

)2
− τ2r

(
e>1

(
KSL + LS>K

)
e1

)2
. (30)

4.5.7 Solving for β

We use Matlab’s symbolic toolbox and Maple to understand the structure of p1.

Factoring. We first observe that p1 has two simple roots, −σ2
1 and −σ2

2, each repeated once, and that the

remaining part can be factored as the product of two polynomials of lower degrees, a quartic p2 and a sextic

4 Resection of the Orthographic Camera 21

p3, with the quartic being repeated once:

p1(β) =
(
β + σ2

1

)2 (
β + σ2

2

)2
p2(β)2p3(β).

As discussed in §4.5.1, the simple root −σ2
j implies that rank(Mj) = 1, and thus is not dealt with in the

present case, but in cases 1.1.2 and 1.2.1 for j = 1 and j = 2 respectively. The computational cost in solving

for β primarily lies in finding the roots of the sextic p3. We thus first try to use the formulation group in

order to simplify the sextic and examine the quartic afterwards.

Analysis of the sextic. The general expression of the sextic’s coefficients is large, and there is no special

interest to give it at this stage. Anticipating slightly the result of our analysis of the next two paragraphs,

we rather give the sextic’s specialization under a particular formulation transformation, in table 2. In short,

our analysis leads to a formulation transformation which implies Z12 = 0 and σ1 = 1, which shortens the

expression of the sextic’s coefficients, but does not change its complexity and solvability as reflected by its

Galois group. The Galois group of a polynomial is the group of permutation that preserves any algebraic

equation relating the polynomial’s roots. The Galois group is important as its solvability allows one to

determine if the polynomial is solvable by radicals (Stewart, 2015). Using Maple, we found that our sextic’s

Galois group is S6, the symmetric group of degree 6. This is the most general permutation group, and it is

not solvable. This implies that our sextic is not solvable by radicals (Hagedorn, 2000).

Can we simplify the sextic using the formulation group? A natural question which arises is whether

one can simplify the sextic by a suitable choice of the formulation transformation. By simplify, we mean

that (i) one of the sextic’s coefficients would vanish, or (ii) its Galois group would change to a solvable

subgroup of S6. To answer this question, we expressed the coefficients ci, i ∈ [0, 6], with p3(β) =
∑6

i=0 ciβ
i,

as functions of the formulation transformation’s parameters a, b and s. We found that the coefficients change

according to the following rule:

ci → ε10−ici, i ∈ [0, 6]. (31)

Because ε 6= 0, we can answer part (i) of the question, and conclude that the formulation transformation

cannot be used to cancel a power of β. We define a formulation-transformation-dependent version of the

sextic using equation (31) as:

p′3(β)
def
=

6∑
i=0

ε10−iciβ
i = ε10 p3

(
β

ε

)
.

4 Resection of the Orthographic Camera 22

c6 = a4 + c4 + b4 + 2a2c2 − 2a2b2 + 2c2b2

c5 = 2a4 + 2c4 + 4b4 + 4a2c2 − 6a2b2 + 6c2b2 + 4a4d2 + 4c4d2 + 2b4d2 + 8a2c2d2 − 6a2b2d2 + 6c2b2d2

c4 = a4 − a6 + c4 + 6b4 − c6 + 2a2c2 − 6a2b2 − 3a2c4 − 3a4c2 − a2b4 + 2a4b2 + 6c2b2 − c2b4 − 2c4b2

+8a4d2 + 6a4d4 + 8c4d2 + 8b4d2 + 6c4d4 + b4d4 − b6d2 + 16a2c2d2 − 18a2b2d2 + 12a2c2d4

−6a2b2d4 + 2a2b4d2 − a4b2d2 + 18c2b2d2 + 6c2b2d4 − 2c2b4d2 − c4b2d2 − 2a2c2b2d2

c3 = 4b4 − 2a2b2 − 2a2b4 + 2a4b2 + 2c2b2 − 2c2b4 − 2c4b2 + 4a4d2 + 12a4d4 − 4a6d2 + 4a4d6 + 4c4d2

+12b4d2 + 12c4d4 − 4c6d2 + 4b4d4 − 4b6d2 + 4c4d6 + 8a2c2d2 − 18a2b2d2 + 24a2c2d4 − 12a2c4d2

−12a4c2d2 − 18a2b2d4 + 4a2b4d2 + 4a4b2d2 + 8a2c2d6 − 2a2b2d6 + 2a2b4d4 − 2a4b2d4 + 18c2b2d2

+18c2b2d4 − 8c2b4d2 − 8c4b2d2 + 2c2b2d6 − 2c2b4d4 − 2c4b2d4 − 4a2c2b2d2 − 4a2c2b2d4

c2 = b4 − a2b4 − c2b4 + 6a4d4 + 8a4d6 − 6a6d4 + a4d8 + 8b4d2 + 6c4d4 + 6b4d4 − 6b6d2 + 8c4d6 − 6c6d4

+c4d8 + a2c2b4 − 6a2b2d2 + 12a2c2d4 − 18a2b2d4 + 2a2b4d2 + 5a4b2d2 + 16a2c2d6 − 18a2c4d4

−18a4c2d4 − 6a2b2d6 + 5a2b4d4 + a2b6d2 + 2a4b2d4 − 2a4b4d2 + a6b2d2 + 2a2c2d8 − a4b2d6

+6c2b2d2 + 18c2b2d4 − 10c2b4d2 − 7c4b2d2 + 6c2b2d6 − 7c2b4d4 − 10c4b2d4 − c4b2d6 − 2a2c2b2d2

−8a2c2b2d4 + a2c4b2d2 + 2a4c2b2d2 − 2a2c2b2d6 + a2c2b4d4

c1 = 4a4d6 + 2a4d8 − 4a6d6 + 2b4d2 + 4b4d4 − 4b6d2 + 4c4d6 + 2c4d8 − 4c6d6 − 6a2b2d4 + 8a2c2d6

−6a2b2d6 + 4a2b4d4 + 2a2b6d2 + 4a4b2d4 − 2a4b4d2 + 4a2c2d8 − 12a2c4d6 − 12a4c2d6 − 2a4b4d4

+2a6b2d4 + 6c2b2d4 − 4c2b4d2 + 6c2b2d6 − 8c2b4d4 − 8c4b2d4 − 4c4b2d6 − 4a2c2b2d4 + 2a2c2b4d2

−4a2c2b2d6 + 2a2c2b4d4 + 2a2c4b2d4 + 4a4c2b2d4

c0 = a4d8 − a6d8 + b4d4 − b6d2 + c4d8 − c6d8 − 2a2b2d6 + a2b4d4 + a2b6d2 + 2a2c2d8 + a4b2d6

−2a4b4d4 − 3a2c4d8 − 3a4c2d8 + a6b2d6 + 2c2b2d6 − 3c2b4d4 − 3c4b2d6 − 2a2c2b2d6 + 2a2c2b4d4

+a2c4b2d6 + 2a4c2b2d6

Table 2: Coefficients of the sextic p3 under the chosen formulation transformation implying Z12 = 0 and

σ1 = 1. We use a
def
= Z11, b

def
= Z22, c

def
= Z21 and d

def
= σ2.

This means that the roots of p′3 are simply obtained from the roots of p3 by multiplying by a factor ε. We

may thus say that the sextic is rotation-invariant, reflection-invariant and scale-covariant. It follows that

changing ε, and thus acting on the formulation transformation, does not change the sextic’s Galois group,

which answers part (ii) of the question. In conclusion, one cannot simplify the sextic by the formulation

group, which we thus use to simplify the quartic p2.

Analysis of the quartic, choice of the formulation transformation. We found the quartic to be

rotation-dependent: using the same principle as for the sextic, we found that the constant term could be

cancelled by a suitable choice of the rotation. However, we also found that cancelling the top-right element

of matrix Z allows us to find very simple formulas to solve the quartic, which are given in the next paragraph.

This is achieved by choosing the formulation transformation with a = Z2,2, b = −Z1,2 and s = 1, and we thus

have N> = [−Sz′2 z′2] and ε = ‖z′2‖2. In addition, we divide the cost by σ2
1, so that W becomes diag

(
1, σ2σ1

)
.

In practice, we simply perform the following updates:

Z ← 1

σ1‖z′2‖2

z′>2 Sz′1 0

z′>2 z′1 ‖z′2‖22

 , σ2 ←
σ2

σ1
and σ1 ← 1.

4 Resection of the Orthographic Camera 23

Following equation (9), the estimated matrix B will then be updated by B← 1
εN
>B, and the cost multiplied

by σ2
1.

Factorizing and discarding the quartic’s roots. Under the chosen formulation transformation, we

observe that the quartic p2 has the simple root −σ2
2 repeated once, and the two roots −σ1 (σ1 ± Z1,1):

p2(β) =
(
β + σ2

2

)2
(β + σ1 (σ1 + Z1,1)) (β + σ1 (σ1 − Z1,1)) .

As already discussed, the simple root −σ2
2 corresponds to rank(M2) = 1 and is not dealt with in this case

as it corresponds to case 1.2.1. The two other roots can be discarded as well. In order to show why, we

first evaluate the condition det(Ē − I) ≤ 0, which is always met. This is because det(Ē − I) = −Z2
2,1

Z2
1,1

, for

both roots. This means that we always have one or two real solutions for q. However, we can show that

none of them meets the orthogonality constraint (25). We give the detailed derivation of this result for one

of the four cases, with root −σ1 (σ1 + Z1,1) and q+ from equation (28). The other three cases are derived

similarly. Defining t
def
= 1− Z1,1 − σ2

2, we have:

q+ =

−Z1,1Z2,1t
2 (1 + sign(Z2,1t))

0

 ,
and the orthogonality constraint (25) is simplified to:

Z2
1,1Z

3
2,1t

3 (1 + sign(Z2,1t))
2 = 0.

Because q 6= 0 is impossible we cannot fulfill the orthogonality constraint.

4.6 Cases 0.x.x

In that case, we have M = 0, and thus:

M1 = σ2
1I and M2 = σ2

2I.

This implies rank(M1) = 2, as otherwise σ1 would vanish, and contradicts an hypothesis. Similarly, this

implies rank(M2) = 2. Equations (16) and (17) thus imply:

b1 =
z′1
σ1

and b2 =
z′2
σ2
,

5 Resection of the Weak-Perspective and Paraperspective Cameras 24

which we rewrite as:

B = ZW−1.

This solution holds if it verifies equation (15). The general procedure of §4.5 handles this case.

4.7 Algebraic Procedure

We give our algebraic procedure for the orthographic camera in table 3. Because the value of the Lagrange

multipliers is unknown, we do not know the case at hand in advance. We thus have to try all cases and

keep the best estimate. The procedure first computes the best estimate of B in O2, corresponding to cases

2.x.x. It then computes and tries all possible estimates in SS22, corresponding to cases 1.2.2 and 0.2.2, and

keeps the best one. The roots of the sextic p3 are computed using Matlab’s roots function, which uses the

eigenvalues of the companion matrix. All 6 roots are then considered in turn. Because numerical errors

may induce non-zero imaginary parts in some roots, we do not try to discard the complex roots, but simply

use their real parts. The algorithm then selects the root whose real part leads to the lowest cost. Similarly,

because recovering q involves the square root of a possibly negative number, we compose the square root

with function ρ, with ρ(x)
def
= max(x, 0). The estimates B± corresponding to spurious values of β may not lie

in SS22. Instead of introducing the membership of SS22 as a hard requirement, which because of numerical

errors would require us to define a threshold and possibly discarding the optimal solution wrongly, we simply

‘project’ the estimates B± on SS22 and select the one with the lowest cost. Projecting a non-zero (2 × 2)

matrix B on SS22 can be achieved by dividing it by its largest singular value as B ← B
µ+(B) . This is slightly

different from the optimal projector (Cardoso and Zietak, 2015, theorem 5.5). The implementation returns

the projected solutions, thus ensuring all results are exact members of SO3 up to machine precision. Once

the estimate of B is obtained, it is finalized by forming the two rotations and the translation, and the cost

is updated. If the output variable ‘singlesolution’ is true, this means that the solution was found in O2 and

that the two rotations and translations being returned match. If it is false however, the two solutions are

different, but may still be numerically close.

5 Resection of the Weak-Perspective and Paraperspective Cameras

Resecting the weak-perspective camera is a special case of the paraperspective camera obtained with d = 0.

We derive the procedure for the paraperspective camera and then specialize it to the weak-perspective

camera.

5 Resection of the Weak-Perspective and Paraperspective Cameras 25

Function OPR(X ∈ R3×m, Y ∈ R2×m)

• Set (σ1, σ2, Z,O,x,y, U)← PrepareData(X, Y), W← diag(σ1, σ2)

• Recover B in cases 2.x.x

– Set s← sign(det(Z)), a← sσ1Z1,1 + σ2Z2,2, b← sσ1Z2,1 − σ2Z1,2

– Set [ab]← 1√
a2+b2

[ab], B←
[
sa −b
sb a

]
, Ô ← ‖BW− Z‖2F , singlesolution← true

• Check if B has a better solution in cases 1.2.2 and 0.2.2

– Apply the formulation transformation: Set ε← ‖z′2‖2, N> ← [−Sz′2 z′2]

f ← σ2
1, Z← 1

εσ1

[
z′>2 Sz′1 0

z′>2 z′1 ε2

]
, σ2 ← σ2

σ1
, σ1 ← 1, W← diag(1, σ2)

– Form the sextic p3 from table 2, store the real part of the roots in β ∈ R6

– For β ∈ β
∗ If β = σ2

1 or β = σ2
2, continue

∗ Set Ē← ZW(W2 + βI)
−2
WZ>

∗ Set q± ←
(
S(Ē− I)±

√
ρ(tr(Ē)− det(Ē)− 1)I

)
e1

∗ Set q± ← q±
‖q±‖2

∗ Set M± ← βq±q>±

∗ Set B± ←
[
σ1

(
M± + σ2

1I
)−1

z′1 σ2

(
M± + σ2

2I
)−1

z′2

]
∗ Set B± ← B±

µ+(B±)

∗ Set O′± ← f‖B±W− Z‖2F
∗ If O′± < Ô, Set Ô ← O′±, B← 1

εN
>B±, singlesolution← false

• Finalize the estimate

– If singlesolution, Set R± ← det(U)
[

B 0
0> s

]
U>, t± ← y −Π0R±x

Else

∗ Set Q̄← [B rank1

(
I− BB>

)
]

∗ Form Q+ from Q̄ and the cross-product of its two rows

∗ Set Q− ← Q+ �
[

1 1 −1
1 1 −1
−1 −1 1

]
∗ Set R+ ← det(U)Q+U

> and R− ← det(U)Q−U
>

∗ Set t+ ← y −Π0R+x and t− ← y −Π0R−x

• Update the cost, Set O ← O + Ô

Output R+, R− ∈ SO3, t+, t− ∈ R2, O, singlesolution

Table 3: Algebraic procedure solving orthographic planar resection. The procedure may return one
or two rotation and translation pairs and a single cost. This is because the problem may have one or two
solutions in general. In the latter case, the two solutions become equal for B ∈ O2. We have by construction
that the involved denominators are never zero (a2 + b2 6= 0, ε 6= 0, σ1 6= 0 and ‖q±‖2 6= 0). We recall that

ρ(x)
def
= max(x, 0).

5 Resection of the Weak-Perspective and Paraperspective Cameras 26

5.1 Overview, Relationship to IPPE and Optimality

After preprocessing the data points to obtain the second canonical formulation (6), we follow the solution

strategy we developed for IPPE (Collins and Bartoli, 2014). This is as follows. First, matrix B is estimated,

which represents the optimal affine transform between transformed point correspondences. It is then de-

composed into the scale γ and the rotation R from B = γΠdRU
′Π>0 . The translation is then computed from

equation (3).

To solve the decomposition, IPPE uses a coordinate transform which simplifies the problem by converting

the paraperspective into a weak-perspective resection problem. The coordinate transform is a rotation Rd

of the camera to align its optical axis with the camera’s projection direction given by d. Once solved,

the coordinate transform is undone in a final step. In IPPE, Rd is computed with Rodrigues’s formula. If

the camera’s optical axis is already aligned with its projection direction, Rodrigues’s formula fails due to

a division by zero. This could be handled by detecting the event, for instance by thresholding ‖d‖2, and

setting Rd = I. We have however developed a better approach to compute Rd that handles this situation

seamlessly and also requires fewer floating point operations.

The overall approach’s optimality is proved as follows. First, for any B ∈ R2×2, B 6= 0, there exist a

decomposition which is unique in the scale γ and two-way ambiguous in the rotation R (Collins and Bartoli,

2014). Second, the optimal affine transform B is also the optimal solution of the resection problem. This is

shown in the next paragraph.

5.2 Computing B ∈ GL2(R)

The second canonical formulation (6) involves finding matrix B ∈ M̄PP. We establish the following result:

(
arg min

B∈M̄PP

O6(B)

)
= ZW−1.

Our proof is based on showing that M̄PP ≡ GL2(R). This relationship holds for any d ∈ R2 specifying

M̄PP. The proof forms the basis of the algebraic procedure given in the next section. Proving the forward

implication MPP ⊂ GL2(R) is straightforward. Let B ∈ M̄PP. By definition, B is the leading submatrix of a

paraperspective projection. It is thus full-rank and therefore B ∈ GL2(R). Proving the backward implication

GL2(R) ⊂ MPP is very simple, by invoking a result from (Collins and Bartoli, 2014). Let F ∈ GL2(R). We

can always find γ ∈ R+ and Q ∈ SO3 such that F = γΠdQΠ
>
0 . This stems from theorems 3 and 4 in (Collins

and Bartoli, 2014). Given that matrix B ∈ MPP and MPP ≡ GL2(R), the cost in the second canonical

formulation vanishes by setting B = ZW−1 ∈ GL2(R). A direct consequence is that the overall cost of the

5 Resection of the Weak-Perspective and Paraperspective Cameras 27

estimate is O from equation (5). This is obtained because O6

(
ZW−1

)
= 0, by applying equations (7) and (5).

5.3 Computing γ ∈ R+ and R ∈ SO3

We wish to recover γ and R, forming the parameters of P = γΠdR ∈ MPP, from B. Recall that we defined

A = PU′ ∈ MPP and B = AΠ0 ∈ M̄PP. We proceed in two steps. First, we recover γ and u ∈ R2, with γu

defined as the third column of A, from B. Second, we recover R from A and γ.

5.3.1 Computing γ ∈ R+ and u ∈ R2

We wish to compute γ and complete A as A = [B γu]. Indeed, given that B = AΠ0 we have:

[B γu] = γΠdRU
′. (32)

Multiplying each side of this equation to the right by its transpose gives:

BB> + γ2uu> = γ2
(
I + dd>

)
.

This is a rank-1 equation of type 4, whose solution is given in appendix E. Proposition 2 with z = γ2,

K = BB> and G = I+ dd> shows that γ has a unique solution, and that u has two, defined by a simple sign

change, which we represent by s ∈ {−1, 1}. Computing the solution requires the Cholesky decomposition

G = VV>, which is given analytically in appendix B.

5.3.2 Computing R ∈ SO3

We first introduce Rd ∈ SO3 defined such that there exist H ∈ GL2(R) such that HΠ0
def
= ΠdRd. In other

words, we rotate the camera to align the projection direction with the Z-axis. We give an efficient way of

choosing Rd from d in appendix C, which involves the Cholesky factor V and leads to H = V. By introducing

RdR
>
d in the right-hand side of equation (32), we obtain:

[B sγu] = γHΠ0R
>
dRU

′. (33)

The fact that s ∈ {−1, 1} is undetermined leads to two solutions. Defining Q
def
= R>dRU

′ ∈ SO3, we have:

H−1

[
1

γ
B su

]
= Π0Qs,

6 Experimental Results 28

where the index in Qs emphasizes the dependency on s. This equation directly gives the two top rows of Qs.

The bottom row qs is obtained as their cross-product. With B = [b1 b2], this is given by:

q>s = det
(
H−1
) 1

γ

[
s det ([b2 u]) sdet ([u b1]) 1

γ det(B)

]
.

Recalling that U′ = det(U)U, we finally obtain two solutions for R, depending on which value of s is used in

assembling Qs, as:

Rs = det(U)RdQsU
>. (34)

5.4 Computing t ∈ R3

We compute the translation from the rotation using equation (3). We thus obtain a different translation ts

for each of the two rotation solutions Rs, s ∈ {−1, 1}, as:

ts = y − γΠdRsx

= y − γ det(U)ΠdRdQsU
>x

= y − det(U)[B sγu]U>x.

The second equation is obtained by replacing Rs by its expression (34). The third equation is obtained by

substituting the definition ΠdRd = HΠ0 of H, and by introducing equation (33).

5.5 Algebraic Procedures

We give our algebraic procedure for the paraperspective camera in table 4. The weak-perspective case is

obtained from the paraperspective case by setting d = 0. This introduces the following simplications in the

procedure: (i) line two is removed, (ii) B̃ becomes B and ũ becomes u, and (iii) Rd is the identity matrix

and can be ignored in the products computing R±. We give the simplified procedure in appendix H.

6 Experimental Results

Our experimental results compare the proposed algebraic procedures with alternative solutions based on

polynomial global optimization and gradient-based refinement, with the perspective camera model in some

experiments, with uncalibrated versions of these in some other experiments and even with bundle adjustment

in SfM experiments. An emphasis is given to the orthographic model because it forms the most complex

resection problem and algebraic procedure we have derived. It is therefore important to understand if using

6 Experimental Results 29

Function PPR(X ∈ R3×m, Y ∈ R2×m, d ∈ R2)

• Set (σ1, σ2, Z,O,x,y, U)← PrepareData(X, Y), B← Z diag(σ−1
1 , σ−1

2)

• Set (H, H−1, Rd)← CholeskyAndProjectionAxisToZAxis(d), B̃← H−1B

• Compute γ,u by solving the rank-1 equation of type 4

Set A← B̃B̃>, γ2 ← λ1(A), ũ← rank1

(
I− 1

γ2
A
)

, u← Hũ

• Set Q̄←
[

1
γ B̃ ũ

]
• Form Q+ from Q̄ and the cross-product of its two rows

• Set Q− ← Q+ �
[

1 1 −1
1 1 −1
−1 −1 1

]
• Set R+ ← det(U)RdQ+U

> and R− ← det(U)RdQ−U
>

• Set t+ ← y − det(U)[B γu]U>x and t− ← y − det(U)[B − γu]U>x

Output γ ∈ R+, R+, R− ∈ SO3, t+, t− ∈ R2, O ∈ R2

Table 4: Algebraic procedure solving paraperspective planar resection. The procedure always
returns two rotation and translation pairs and a single cost. This is because the problem has two solutions
in general. These two solutions become equal for u = 0.

this procedure is worthwhile in practice, in particular given that resection with the weak-perspective model

turned out to be much simpler to solve and implement, and that the weak-perspective model can be directly

used in place of the orthographic model in almost all use cases. This is not the case for the paraperspective

and perspective models however, which both require the camera’s perspective intrinsics to be known in order

to compute pose. We use the rotation error extensively, which is measured in degrees, denoted ‘deg’. It is

computed as the smallest angle required to align the estimated to the groundtruth pose. We also use the

reprojection error, given in number of pixels, denoted ‘px’.

6.1 Compared Methods

Our algebraic procedures are abbreviated as Alg, followed by two letters indicating the camera model, OR,

WP or PP. The alternative global polynomial optimization methods are based on a direct formulation of

the second canonical formulation (6) in Gloptipoly (Henrion et al., 2009). Three types of implementation

are introduced in §6.2.2 and tested. These methods are abbreviated as Poly, followed by the two camera

model letters. We also used the best result in terms of distance to groundtruth among Alg and Poly to

initialize direct iterative minimization with Levenberg-Marquardt using Matlab’s optimization toolbox. This

is abbreviated as Ref, followed by the two camera model letters. We consider a method to be calibrated by

default, which means that the intrinsic parameters of the model it involves are known, as defined in §2.2.

6 Experimental Results 30

On the contrary, an uncalibrated method estimates some of its intrinsic parameters from the data. More

specifically, the intrinsics to be estimated for each model and the estimation methods are discussed in §6.2.3,

which contains all our experiments done in an uncalibrated setting. Calibrated and uncalibrated methods

are indicated by Cal and Unc when required.

6.2 Synthetic Data

We provide four batches of experiments with synthetic data, each with a specific purpose: comparing the

orthographic and weak-perspective cameras, comparing our algebraic procedure with alternative methods,

assessing performance under perspective projection in the uncalibrated setting, and assessing performance

in orthographic SfM.

6.2.1 Comparison of the Orthographic and Weak-Perspective Cameras

The goal of this experiment is to assess the benefit of using the orthographic camera to solve resection

compared to the weak-perspective camera. In other words, if knowing the camera’s scale factor a priori

has a real benefit. We thus simulated a set of m coplanar points observed by an orthographic camera. We

work in px units directly. The points are chosen so that they have an average distance to their centroid of

50
√

2 ≈ 70.7 px. The points are projected to form an image and gaussian noise is added, whose standard

deviation varies between 0 to 2.5 px. The experiment is repeated 5,000 times for each noise level and the

average error is reported. For each trial, the coplanar point set and camera pose are randomly drawn. The

generated camera pose has a tilt angle of 80 degrees at most and no translation, as this does not influence

the result. The scale of the generated points can be understood from their convex hull, and more precisely

by the square root of their convex hull’s area, which we measured to be approximately 54.7 px with standard

deviation 11.4 px. The highest noise level of 2.5 px thus represents a relative noise of approximately 4.6 %.

We run our algebraic procedure for the orthographic and weak-perspective cameras, respectively denoted

AlgOR and AlgWP. The next experiment shows very clearly that there is no need to report the results

of alternative orthographic resection methods in this experiment. The results of rotation error in degrees

for m ∈ {3, 5, 20} point sets are given in figure 1.

We observe that, as expected, the error increases linearly with the level of noise and decreases as the

number of points increases. The orthographic camera consistently performs significantly better than the

weak-perspective camera. Intuitively, this is explained by the fact that the orthographic camera has fewer

parameters than the weak-perspective camera, namely 5 against 6 parameters. It is thus better constrained

by the data, which allows it to reduce the effect of noise on the estimate with an improved efficiency. This

6 Experimental Results 31

0 0.5 1 1.5 2

Noise (px)

0

1

2

3

4

5

6

7

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP

0 0.5 1 1.5 2

Noise (px)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP

0 0.5 1 1.5 2

Noise (px)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP

m = 3 points m = 5 points m = 20 points

Figure 1: Results obtained from synthetic data to compare the orthographic and weak-perspective cameras
using the proposed algebraic procedures.

also means that knowing the scale factor benefits to the rotation estimate. Interestingly, we do not observe

a crossover point between the two methods as the number of points increases. This means that even for

stable configurations with low noise or large point sets the orthographic camera still performs noticeably

better than the weak-perspective camera.

6.2.2 Comparison of the Orthographic Algebraic Procedure with Alternative Methods

The goal of this experiment is to assess the benefit of the algebraic procedure for the orthographic camera

compared to solutions based on polynomial global optimization and gradient-based nonlinear refinement.

The latter is denoted as RefOR. It uses Matlab’s lsqnonlin procedure with ‘FunctionTolerance’ and

‘StepTolerance’ set to 10−8. As for polynomial global optimization, we used Gloptipoly and tested three

different ways of handling the rotation, which is where the polynomial constraints stem in this problem.

The first implementation, PolyOR1, uses a unit quaternion parameterization. The second implementation,

PolyOR2, uses the quartic constraints (15). The third implementation, PolyOR3, uses an SVD-based

parameterization of the leading (2× 2) block of the orthographic projection matrix. More specifically, recall

that in the second canonical formulation (11) for the orthographic camera, the unknown is matrix B ∈ SS22.

Let the SVD of B be B = UBΣBV
>
B . We know from equation (12) that ΣB = diag(1, ζ) with 0 ≤ ζ ≤ 1. We

can then represent matrix B by U, V ∈ O2 and ζ ∈ [0, 1] or, equivalently, by U, V ∈ SO2 and |ζ| ∈ [0, 1].

Concretely, we parameterize U ∈ SO2 by u1, u2 ∈ R as U =
[
u1 −u2
u2 u1

]
with u2

1 + u2
2 = 1 and V ∈ SO2

likewise. We also add the constraint u1 ≥ 0 to raise the common sign ambiguity between U and V. Our final

parameterization thus has five parameters, two quadratic equality constraints and three linear inequality

constraints. In the three polynomial optimization methods, the cost polynomial constructed from the cost

function from formulation (11) was normalized by dividing its coefficients by the norm of its coefficient

vector. The simulated data are similar to the first experiment described in §6.2.1 with a noise standard

6 Experimental Results 32

deviation of 1.0 px.

Running the experiments, we found that the methods based on polynomial optimization failed in rare

occasions for numerical reasons. More specifically, we found that this happens for problem instances where

the cost polynomial’s coefficients were unbalanced and caused either the failure of SeDuMi to solve the

SDP Gloptipoly relies on or the failure of Gloptipoly to extract the solutions from the measure vector. We

use ‘unbalanced’ to mean that there is a significant discrepancy between the orders of magnitude of the

polynomial’s coefficients. We found that SeDuMi’s precision parameter could be left at its default value

1 × 10−8, as setting it to 0, meaning that the iterations continue until no improvement is made, did not

change our results. However, Gloptipoly’s relaxation order was found to be a very important parameter,

as it trades-off success rate and speed. We thus ran Gloptipoly with relaxation order 1, which is very fast,

and increased the relaxation order in case of failure, with a maximum value of 5. In order to quantify the

performance of each parameterization, we chose to run three batches of experiments and only keep the trials

for which the tested method completed properly. For each batch we report the success rate of the tested

polynomial optimization based method. We also report, for all three methods tested in a batch, the absolute

reprojection error difference and the reprojection error rank. The former is the absolute difference between

a method’s reprojection error and the best reprojection error over all methods. The latter is the rank of

a method according to its reprojection error. The rank varies between 1, which is best, and 3, which is

worst. We chose to use the reprojection error because this is the criterion which we minimize in the resection

problem (1). The stability of a method is thus directly indicated by monitoring how small it renders the

reprojection error. Our results are given in table 5. Because the size of the imaged point set is 54.7 px

on average, we may multiply the value of the reprojection error in px by a factor of 2 to obtain a rough

estimate of the relative error in %.

We first make the following two general comments. First, all methods are in good agreement in terms of

absolute reprojection error. This agreement is especially strong for AlgOR and RefOR. Second, all meth-

ods have good accuracy. More specifically, AlgOR and RefOR outperform the polynomial optimization

based methods consistently by several orders of magnitudes, though the latters still give acceptable results,

with an absolute reprojection error difference consistently lower than or equal to 10−7.

We observe differences between the three implementations of global polynomial optimization. In terms

of absolute reprojection error difference, the SVD-based implementation PolyOR3 gives the best re-

sults, followed by the quaternion-based implementation PolyOR1 and the constraint-based implementation

PolyOR2. The difference with the other two methods is nonetheless always mild, being approximately

10−10, 10−8 and 10−7 respectively for PolyOR3, PolyOR1 and PolyOR2. In terms of reprojection error

6 Experimental Results 33

Number of points 3 4 5 10 20

Absolute reprojection error difference in px
PolyOR1 4.61× 10−8 2.31× 10−8 1.99× 10−8 1.50× 10−8 2.37× 10−8

AlgOR 0 8.05× 10−16 0 0 0
RefOR 1.11× 10−15 0 0 8.88× 10−16 8.88× 10−16

Reprojection error rank
PolyOR1 3.00 3.00 3.00 3.00 3.00
AlgOR 1.47 1.50 1.48 1.47 1.46
RefOR 1.53 1.50 1.52 1.53 1.54

Success rate in %
PolyOR1 100 100 99.9 100 100

Number of points 3 4 5 10 20

Absolute reprojection error difference in px
PolyOR2 2.14× 10−7 1.11× 10−7 1.17× 10−7 9.84× 10−8 1.06× 10−7

AlgOR 1.91× 10−15 1.78× 10−15 1.77× 10−15 8.88× 10−16 1.77× 10−15

RefOR 2.50× 10−15 0 4.44× 10−16 1.78× 10−15 2.66× 10−15

Reprojection error rank
PolyOR2 2.90 2.91 2.89 2.86 2.81
AlgOR 1.54 1.52 1.54 1.54 1.55
RefOR 1.56 1.57 1.57 1.60 1.64

Success rate in %
PolyOR2 99.7 100 100 100 98.5

Number of points 3 4 5 10 20

Absolute reprojection error difference in px
PolyOR3 1.75× 10−9 4.87× 10−10 8.18× 10−10 4.29× 10−10 5.48× 10−10

AlgOR 5.78× 10−14 2.59× 10−14 1.86× 10−14 1.15× 10−14 9.77× 10−15

RefOR 7.19× 10−14 4.77× 10−14 3.19× 10−14 4.31× 10−14 1.48× 10−11

Reprojection error rank
PolyOR3 2.13 2.14 2.15 2.23 2.32
AlgOR 1.92 1.90 1.91 1.86 1.79
RefOR 1.95 1.96 1.94 1.91 1.89

Success rate in %
PolyOR3 99.5 99.6 99.5 99.6 99.7

Table 5: Results obtained from synthetic data to compare the proposed algebraic procedure for the ortho-
graphic camera with three implementations of polynomial optimization and nonlinear refinement. We use 0
for numbers lower than 10−16. PolyOR1 uses a unit quaternion parameterization, PolyOR2 uses quartic
constraints and PolyOR3 uses an SVD-based parameterization.

6 Experimental Results 34

rank, PolyOR1 is consistenly last while PolyOR2 and PolyOR3 are generally last but in a noticeable

number of cases. In contrast AlgOR and RefOR are first in very similar numbers of times. This may be

explained by the fact that Gloptipoly uses a relaxation of the original constraints.

Importantly, in terms of success rate, the quaternion-based PolyOR1 is the best method, with a 100 %

success rate in almost all tested cases. Both the SVD-based PolyOR3 and the constraint-based PolyOR2

follow with almost 100 % successes. More specifically, PolyOR2 reaches 100 %, except for m = 3 and

m = 20 points, while PolyOR3 never reaches 100 %, but is always greater than or equal to 99.5 %. This

may be explained by the fact that PolyOR3 has a singularity when ξ → 1, as U, V are then not unique,

contrarily to the general case. The success rate of AlgOR and RefOR is not shown in the result table as

it is always 100 %. Overall, PolyOR1 then appears as the best-behaved polynomial method.

6.2.3 Performance with Perspective Projection and Uncalibrated Images

The goal of this experiment is to assess which camera model performs best in realistic conditions close to

affine projection. We used the same simulation setup to simulate coplanar points as in the first experiment

described in §6.2.1. However, we simulated a perspective camera with a long focal length of 4,000 px and an

image of 500×500 px. The scene plane is then located at a distance of approximately twice the focal length

from the camera. As above, we assessed the proposed algebraic procedures for the three metric affine camera

models. However, we also implemented an uncalibrated version of these and methods for the perspective

camera model, which we now describe. For the orthographic camera, the calibrated version is denoted

AlgOR-Cal and the uncalibrated version AlgOR-Unc. The latter estimates both the pose and the scale

factor γ described in §2.2 by running the algebraic procedure AlgWP for the weak-perspective camera on

10 different images and keeping the average scale factor. For the weak-perspective camera, as described

in §2.2, the notion of calibration does not apply and the algebraic procedure is simply denoted AlgWP. For

the paraperspective camera, the calibrated version is denoted AlgPP-Cal and the uncalibrated version

RefPP-Unc. The latter estimates both the pose and the camera’s effective focal length f . It uses the true

value of the other entries of the perspective camera intrinsic matrix K. The estimation is carried out by a joint

refinement of pose and the effective focal length using Levenberg-Marquardt on the same 10 different image

batches as for AlgOR-Unc. For the perspective camera, the calibrated version is denoted RefPE-Cal and

the uncalibrated version RefPE-Unc. The former estimates pose and is solved by Levenberg-Marquardt

refinement on each image independently. The latter estimates pose and the camera’s effective focal length

and is solved similarly to RefPP-Unc. The results of rotation error in degrees for m ∈ {3, 5, 20} point sets

are given in figure 2.

6 Experimental Results 35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Noise (px)

0

5

10

15

20

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR-Cal
AlgOR-Unc
AlgWP
AlgPP-Cal
RefPE-Cal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Noise (px)

0

5

10

15

20

25

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR-Cal
AlgOR-Unc
AlgWP
AlgPP-Cal
AlgPP-Unc
RefPE-Cal
RefPE-Unc

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Noise (px)

0

1

2

3

4

5

6

7

R
ot

at
io

n
er

ro
r

(d
eg

) AlgOR-Cal
AlgOR-Unc
AlgWP
AlgPP-Cal
AlgPP-Unc
RefPE-Cal
RefPE-Unc

m = 3 points m = 5 points m = 20 points

Figure 2: Results obtained from synthetic data to compare calibrated and uncalibrated versions of our
algebraic procedures with the perspective camera model.

The uncalibrated paraperspective and perspective camera methods RefPP-Unc and RefPE-Unc are

not shown in the m = 3 point case as they both require at least 4 points. We observe that without noise,

the modeling error of the orthographic and weak-perspective methods leads to an approximate rotation

error of 6 deg, while for the calibrated paraperspective method AlgPP-Cal it leads to 1.2 deg and for the

calibrated perspective method RefPE-Cal it leads to 0 deg, as there is no modeling error. Interestingly, we

have that the weak-perspective camera performs always slightly worse than the orthographic camera, which

strengthens the conclusions of §6.2.1 stating that one cannot simply swap the weak-perspective model in

place of the orthographic model to ease the solution method. The paraperspective and perspective cameras

perform better than the orthographic camera in their calibrated versions. It is interesting to see however

that for slightly more than a 1 px noise a crossover point appears in the case of m = 3 points, beyond which

the orthographic camera outperforms. We do not observe this crossover point for m ∈ {5, 20} points, at least

within the [0, 2] px noise span that we simulated, because the influence of noise is then reduced. It is also

interesting to see that for m ∈ {3, 5} the calibrated and uncalibrated versions of orthographic resection are

undistinguishable and that for m = 20 for uncalibrated version performs better. The uncalibrated version

of the paraperspective and perspective camera models lead to different conclusions. They turned out to

be much more sensitive to noise as compared to their calibrated versions. This is especially true for a low

number of points, typically less than 10, and for a noise level larger than about 0.5 px, in which case the

orthographic camera should be preferred.

6.2.4 Performance in Plane-Based Structure-from-Motion

The goal of this experiment is to assess if using the proposed algebraic procedure for the orthographic camera

model is beneficial to perform resection in a plane-based orthographic SfM pipeline which we described

in (Collins and Bartoli, 2017). Our SfM pipeline solves for structure first and then resects all cameras, one

6 Experimental Results 36

at a time. We originally solved camera resection with polynomial optimization, specifically using the quartic

constraints leading to implementation PolyOR2, which was slow and failed at times, as also observed in

§6.2.2. We compare the algebraic procedure AlgOR and nonlinear refinement RefOR for the orthographic

camera and the algebraic procedure AlgWP for the weak-perspective camera as the resection method

embedded in our SfM pipeline. We also compare with orthographic bundle adjustment BundAdjOR,

which comes as an optional final step of our SfM pipeline. We used the same simulation setup to simulate

coplanar points as in the first experiment described in §6.2.1, but consider the object structure as unknown

and use several images to run SfM. We varied noise, the number of points and the number of views.

3 points 4 points 10 points

3
v
ie

w
s

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

2

4

6

8

10

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

1

2

3

4

5

6

7

8

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

1

2

3

4

5

6

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

4
v
ie

w
s

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

1

2

3

4

5

6

7

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

1

2

3

4

5

6

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

0.5

1

1.5

2

2.5

3

3.5

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

1
0

v
ie

w
s

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

0 0.2 0.4 0.6 0.8 1

Noise (px)

0

0.5

1

1.5

2

R
ot

at
io

n
er

ro
r

(d
eg

)

AlgOR
AlgWP
RefOR
BundAdjOR

Figure 3: Results obtained from synthetic data to show how our algebraic procedures benefit to our SfM
pipeline (Collins and Bartoli, 2017) and compare to bundle adjustment.

We observe that the rotation error for all methods degrades gracefully with an increasing amount of

noise. Using resection AlgWP with the weak-perspective camera always performs significantly worse than

the other models. There is a small gap between orthographic bundle adjustment BundAdjOR and our

6 Experimental Results 37

initialization pipeline based on orthographic resection. This difference is negligible for a small number of

views but increases with the number of views, though remaining limited for 10 views. For the orthographic

camera the algebraic procedure AlgOR yields no differences with the nonlinear refinement RefOR in all

cases. This confirms that nonlinear refinement of the resection is not necessary and that our algebraic

procedure AlgOR can be safely used in our SfM pipeline.

6.3 Real Data

The goal of our real data experiments is to compare the accuracy of the orthographic, weak-perspective and

paraperspective camera models at computing pose. Our methodology is to compute absolute pose and use

it to form relative pose between image pairs for which groundtruth is available. We consider two scenarios:

pure rotation and general motion. In all experiments, we used the camera calibration toolbox for Matlab to

compute the camera’s intrinsic parameter matrix K and to undistort the images. We used a high resolution,

full-frame DSLR camera fitted with a 70-300 mm focal length zoom lens.

6.3.1 Pure Rotation

We estimate the rotation of a small object undergoing a pure rotation about a fixed axis. The effective

focal length from matrix K was estimated at f = 31, 025 px. The object is a wooden stick on which we

drew a square of 10 mm side length. We measured the distance between the stick and the camera using a

measuring tape and found 5.667 m. More precisely, we used the corner of the stick serving as the model’s

origin as the start point and the centre of the front of the camera’s lens as the end point. We then precisely

rotated the stick with 10 deg steps using a protractor between 0 and 90 deg with a precision lower than

1 deg. We took three pictures for every angle, which resulted in a total of 30 pictures. The stick and an

excerpt of the images for every angle are shown in figure 4. For each image we manually clicked the 4 corners

of the squares. We first ran pose estimation with the weak-perspective camera. This gave an estimate of

the scale factor for each of the 30 images, from which, using the focal length, we could compute the object

to camera distance. We then computed pose for both the weak-perspective and orthographic cameras. For

each pair of images we found the rotation angle and compared it to groundtruth, from which we obtained

the rotation error for the 1
2

(
302 − 30

)
= 435 image pairs. The statistics are reported in table 6 for the

5 possible combinations of m ≥ 3 point sets. We first comment on the distance estimation for the weak-

perspective and paraperspective cameras. We observe that they produce almost indistinguishable estimates.

In particular, they have the same average estimate and average error, which are |566.7 − 567.7| = 1.0 cm

for the average and |566.7 − 568.4| = 1.7 cm for the median. This may be found to be accurate. Recall

6 Experimental Results 38

4 3

21

𝑥

𝑦

0 degrees 10 degrees 20 degrees 30 degrees 40 degrees

50 degrees 60 degrees 70 degrees 80 degrees 90 degrees

Figure 4: The wooden stick object we used for comparing rotation estimation. (left) the stick has a square
of 10 mm side length located 10 mm away along x and y of the origin. (right) the stick was rotated between
0 and 90 deg.

Point id sets

234 134 124 123 1234 Average

Weak-perspective camera
Distance in m, average 5.662 5.703 5.687 5.649 5.682 5.677
Distance in m, median 5.664 5.703 5.698 5.667 5.690 5.684
Rotation error in deg, average 3.85 3.53 3.06 3.62 3.16 3.44
Rotation error in deg, median 2.76 3.12 2.56 2.80 2.45 2.74

Paraperspective camera
Distance in m, average 5.662 5.703 5.687 5.649 5.683 5.677
Distance in m, median 5.664 5.703 5.698 5.667 5.690 5.684
Rotation error in deg, average 3.80 3.48 3.01 3.57 3.11 3.39
Rotation error in deg, median 2.67 3.03 2.52 2.74 2.40 2.67

Orthographic camera
Rotation error in deg, average 3.13 3.01 2.55 3.15 2.51 2.46
Rotation error in deg, median 2.18 2.29 1.71 2.17 1.62 1.99

Table 6: Results obtained on the wooden stick object shown in figure 4.

6 Experimental Results 39

nonetheless that the measured distance of 566.7 cm is already uncertain for the camera model, because

the entrance pupil is the virtual image of the centre of the aperture stop, typically located within the

lens (Steger, 2017b). As for the rotation estimation, we observe that the weak-perspective camera has the

highest error and is closely followed by the paraperspective camera, both for the average and median angle

errors. In spite of the accuracy of the distance estimates for the weak-perspective and paraperspective

cameras, the orthographic camera produces significantly better estimates of the rotation. For instance, the

relative average and median error differences between the weak-perspective and orthographic cameras are

respectively 23.44−2.46
3.44+2.46 = 33.2 % and 2.74−1.99

2.74+1.99 = 31.7 %. We conclude that first, the difference of the order

of centimeters in the distance estimate has a significant influence on the rotation estimate, second, that the

paraperspective approximation does not compensate for this error and third, that the orthographic camera

is able to reduce noise significantly in spite of the distance measurement uncertainty.

6.3.2 General Motion

We estimate the pose of a smartphone using its screen’s four corners. The effective focal length from matrix

K was estimated at f = 12, 759 px. In this experiment the object was static but the camera moved. In

order to acquire the camera’s groundtruth displacement magnitude, we mounted it on a tripod to which a

regular calibration checkerboard was rigidly attached. We named this camera A and introduced a second

camera named camera B. Camera B is fixed and used to track camera A’s groundtruth displacement by

computing the checkerboard’s relative pose. We took 7 pictures with camera A and camera B in this setup,

which are shown in figure 5. For each image we measured the distance from the smartphone to camera

A. We then clicked the 4 corners of the smartphone’s screen in each image from camera A. We used the

4 correspondences to estimate the weak-perspective and paraperspective cameras. Their scale factor then

gives an estimate of the distance, which we compare to the measured distance in the following table:

Image id 1 2 3 4 5 6 7

Measured distance in m 2.5065 2.5010 2.4163 2.3052 2.3553 2.1479 2.6375
Weak-perspective distance in m 2.4781 2.4574 2.3753 2.2498 2.3238 2.1203 2.5900
Paraperspective distance in m 2.4824 2.4612 2.3775 2.2503 2.3250 2.1203 2.5974

The average discrepancy between the measured distance and the weak-perspective and paraperspective

cameras are 3.9 cm and 3.6 cm respectively. We then computed the pose for all combinations of the

1
2

(
72 − 7

)
= 21 image pairs. For each pair of images we then found the rotation angle and translation

magnitude and compared them to groundtruth, from which we obtained the rotation and translation errors.

The statistics are reported in table 7. We observe that the best rotation estimates are obtained with the

6 Experimental Results 40

B

A
A

displacement

p
o

se
 𝑃
1

smartphone

static camera

smartphone

camera A

view from camera B

top view

images from
camera A

images from
camera B

Figure 5: The smartphone we used for comparing full pose estimation. Camera A acquires the images used
for pose estimation and camera B is used to find camera A’s groundtruth displacement. (top left) the view
from camera A. (top right) the setup. (bottom) the seven images from camera A and camera B.

Point id sets

234 134 124 123 1234 Average

Weak-perspective camera
Rotation error in deg, average 3.33 3.48 4.14 3.90 3.55 3.68
Rotation error in deg, median 3.48 3.69 3.95 4.06 3.18 3.67
Translation error in %, average 7.85 3.43 10.85 9.59 5.55 7.45
Translation error in %, median 6.13 3.15 5.86 6.24 4.31 5.14

Paraperspective camera
Rotation error in deg, average 2.61 2.75 2.88 2.85 2.50 2.71
Rotation error in deg, median 2.41 2.69 2.65 2.68 2.18 2.52
Translation error in %, average 7.72 7.27 15.95 13.62 8.35 10.58
Translation error in %, median 6.57 6.00 11.79 13.02 6.75 8.82

Orthographic camera
Rotation error in deg, average 3.14 3.21 3.05 2.72 2.85 2.99
Rotation error in deg, median 3.07 3.09 3.17 2.71 2.97 3.00
Translation error in %, average 4.34 6.47 9.15 6.29 2.14 5.67
Translation error in %, median 3.26 6.08 6.51 4.45 0.58 4.17

Table 7: Pose results obtained on the smartphone shown in figure 5.

6 Experimental Results 41

paraperspective camera, followed by the orthographic camera and then by the weak-perspective camera.

For translation however, we have that the paraperspective camera produces the worst results, followed by

the weak-perspective camera and then by the orthographic camera. We conclude that the orthographic

camera is able to exploit the known distance in a very beneficial way, as it significantly outperforms the

weak-perspective camera. The paraperspective approximation slightly improves the rotation part of pose

but significantly degrades its translational part compared to the orthographic approximation.

6.4 Computation Time Analysis

We now evaluate the runtime of our algebraic procedure AlgOR for the orthographic camera and compare it

to the alternative solutions PolyOR1, PolyOR2 and PolyOR3 based on Gloptipoly. Our implementation

uses Matlab and our tests were run on a 1.8 GHz Intel Core i7-4500U CPU under Windows 10. For these

experiments, we specifically fixed Gloptipoly’s relaxation order to 3 and left SeDuMi’s precision to its

default value. These were chosen to ensure convergence for the majority of test cases. We used simulated

data generated as described in §6.2.1 with a 1 px noise and varied the number of point correspondences

m. The results were obtained by averaging over 10,000 trials. The four compared methods share the same

two steps. The first step is to prepare the data for the canonical formulation (11) using the PrepareData

procedure from table 1. The second step is to solve the canonical formulation. Our results are shown in

figure 6.

The top-left graph shows that for m ≤ 100 the second step dominates the computation time in AlgOR.

This second step has a fairly constant computation time. A figure for the overall computation time is

0.76 ms. We measured the standard deviation for m ∈ {3, 5, 20, 100} and obtained 0.041 ms. The bottom-

left graph shows that for m > 100 however, the first step dominates the computation time in AlgOR.

For instance, for m = 1, 000, we have an overall computation time of 1.2 ms. The two graphs of the right

column show that for the Gloptipoly based methods the second step has a fairly constant computation time

which however always dominates the overall computation time at 0.25 s, 0.36 s and 1.42 s for PolyOR1,

PolyOR2 and PolyOR3 respectively.

Lower overall runtimes were reported in (Steger, 2017a). Though it is difficult to figure out exactly why

this is so, this may be explained by at least two reasons: (Steger, 2017a) uses a C implementation whereas

ours uses Matlab and (Steger, 2017a) used a more powerful CPU than ours and ran under Linux whereas

we used Windows. In any case, our tests show that our algebraic procedure is significantly faster than the

Gloptipoly based solutions, which remains true independently of the test platform.

6 Experimental Results 42

20 40 60 80 100

Number of points

0

2

4

6

8

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

10-4

PrepareData
Solving part
AlgOR

20 40 60 80 100

Number of points

0

0.5

1

1.5

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

PolyOR1
PolyOR2
PolyOR3

200 400 600 800 1000

Number of points

0

0.005

0.01

0.015

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

200 400 600 800 1000

Number of points

0

0.5

1

1.5

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure 6: Computation time evaluation results. The top and bottom rows are for smaller and larger
numbers of points respectively. The left and right columns are for PrepareData and AlgOR, and PolyOR1,
PolyOR2 and PolyOR3 respectively.

A Translationless Formulation 43

7 Conclusion

We have studied the plane-based camera resection problem for the metric affine camera models. We have

given a detailed analysis of its solution space, and showed that it could be solved exactly and efficiently. We

found that the orthographic camera formed the most difficult case to handle for this problem. Nonetheless,

we found that it led to an irreducible and non-solvable univariate sextic, whose roots form the problem’s

solution. We have given algebraic procedures which can be readily translated to a programming language.

This paper means that all three main metric affine camera models now have an analytic, singularity-free

and optimal resection solution with planar structures.

A Translationless Formulation

We show how to eliminate the translation from the problem’s initial formulation (1). We compute the centre

of gravity of the model points as:

x
def
=

1

m
X1.

We then define a new set of model points by centering the initial ones, meaning that we translate their

centre of gravity to the origin:

X′
def
= X− x1>.

Defining the translation for the new set of model points as t′
def
= t + Px, the problem is rewritten as:

min
P∈M∗
t′∈R2

O2(P, t′) with O2(P, t′)
def
=

∥∥∥PX′ + t′1> − Y
∥∥∥2

F
.

Taking the partial derivatives of O2 with respect to t′, we obtain:

2mt′ − 2my + 2mPx′ = 0,

where y = 1
mY1 is the centre of gravity of the observed points and x′ = 1

mX′1. Because the new model

points in X′ were obtained by centering the model points in X, we have x′ = 0. We thus obtain:

t′ = y.

C Aligning the Projection Direction to the Z-Axis 44

Defining Y′
def
= Y − y1> as a new set of observed points by centering the initial ones, we arrive at the

translationless formulation:

min
P∈M∗

O3(P) with O3(P)
def
=

∥∥PX′ − Y′
∥∥2

F .

Once the rotational part P is estimated, the translation is given by:

t = y − Px. (35)

B Analytic Expression of the Cholesky Factor of I + dd>

The Cholesky factor V defined as I + dd> = VV> and its inverse are given by:

V =


√

1 + d2
1 0

d1d2√
1+d21

√
1+d21+d22√

1+d21

 and V−1 =

 1√
1+d21

0

− d1d2√
1+d21

√
1+d21+d22

√
1+d21√

1+d21+d22

 .
C Aligning the Projection Direction to the Z-Axis

We need to choose Rd ∈ SO3 such that ΠdRd = [H 0] for some matrix H ∈ GL2(R). This means finding a

rotation which aligns the projection direction d with the z-axis stk(0, 0, 1). In IPPE (Collins and Bartoli,

2014), we chose the smallest angle rotation, using Rodrigues’s formula. This has three limitations. (i) The

formula fails for d = 0, and is unstable for ‖d‖2 small. (ii) The formula involves trigonometry. (iii) The

analytic expression of the required H−1 and det(H−1) are very involved.

We propose a solution in radicals which addresses the above three limitations. This is a general solution,

which has the smallest rotation solution as a special case. The requirement on Rd is rewritten as Πd = [H 0]R>d .

Multiplying each side of this equation to the right by its transpose leads to ΠdΠ
>
d = HH>, or equivalently

to I + dd> = HH>. The general solution to this equation has one free degree of freedom, and is given

by H = VF, with F ∈ O2 an arbitrary orthonormal matrix and V ∈ GL2(R) a lower triangular matrix

representing a Cholesky factor of I + dd> = VV>. The first two rows of R>d are obtained from Πd = HΠ0R
>
d

as Π0R
>
d = F>V−1Πd, and its third row is then obtained as their cross-product. A simple solution is obtained

D Solution of the Rank-1 Equation of Type 3, zuu> + zG = K 45

by choosing F = I as:

Rd
def
=


1 −d1d2 −d1

0 1 + d2
1 −d2

d1 d2 1



a′′

a′′b′′

b′′

 with a′′
def
=

1√
1 + d2

1

and b′′
def
=

1√
1 + d2

1 + d2
2

.

We have that H−1 is the leading (2 × 2) sub-matrix of R>d , and det(H−1) is its bottom-right element. We

propose an efficient algorithm to compute the Cholesky factor and its inverse, and matrix Rd, given in

table 8.

Function CholeskyAndProjectionAxisToZAxis(d ∈ R2)

• Set a← 1 + d2
1, b← a+ d2

2

• Set a′ ←
√
a, b′ ←

√
b

• Set a′′ ← 1
a′ , b

′′ ← 1
b′

• Set c← a′′d1, d← b′′d2

• Set H←
[
a′ 0
cd2 a′′b′

]
, H−1 ←

[
a′′ 0
−cd a′b′′

]

• Set R>d ←

 H−1 c
a′′d

−b′′d1 −d b′′


Output H, H−1 ∈ GL2(R), Rd ∈ SO3

Table 8: Algebraic procedure to align the projection axis to the Z axis. The procedure computes
the rotation matrix required to solve paraperspective resection.

D Solution of the Rank-1 Equation of Type 3, zuu> + zG = K

Proposition 1 (Rank-1 equation, type 3). Let G ∈ S and K ∈ S be two known matrices. The following

matrix equation defines three constraints on three unknowns in u ∈ R2 and z ∈ R+:

zuu> + zG = K. (36)

Equation (36) has always a unique solution for z and one or two solutions for u. Let V ∈ R2×2 be an upper

triangular full rank matrix obtained from the Cholesky decomposition G = VV> and set A ← V−1KV−>. The

solution for z is given by z = λ2(A). The two solutions for u are given by u = ±rank1

(
1

λ2(A)K− G
)

. They

both vanish if λ1(A) = λ2(A).

E Solution of the Rank-1 Equation of Type 4, −zuu> + zG = K 46

Proof. Because G ∈ S, we can always compute its Cholesky decomposition and rewrite equation (36) as:

zee> + zI = A, (37)

with e
def
= V−1u and A

def
= V−1KV−>, A ∈ S. Since zee> = A−zI is rank-1 positive semi-definite, equation (37)

is equivalent to:

λ1(A− zI) ≥ 0 (38)

λ2(A− zI) = 0. (39)

Equation (39) implies det(A− zI) = 0 and so ∃j ∈ {1, 2}, z = λj(A). Equation (38) and lemma 2 in (Bartoli

et al., 2015) then imply that z has a single solution given by z = λ2(A). Substituting the solution for z into

equation (36), we obtain:

uu> =
1

λ2(A)
K− G,

and that u is then obtained by invoking rank-1 factorization. Multiplying this equation by V−1 to the left

and V−> to the right, we obtain:

ee> =
1

λ2(A)
A− I,

whose right-hand side vanishes for λ1(A) = λ2(A), leading to e = u = 0.

E Solution of the Rank-1 Equation of Type 4, −zuu> + zG = K

Proposition 2 (Rank-1 equation, type 4). Let G ∈ S and K ∈ S be two known matrices. The following

matrix equation defines three constraints on three unknowns in u ∈ R2 and z ∈ R+:

−zuu> + zG = K. (40)

Equation (40) has always a unique solution for z and one or two solutions for u. Let V ∈ R2×2 be an upper

triangular full rank matrix obtained from the Cholesky decomposition G = VV> and set A ← V−1KV−>. The

solution for z is given by z = λ1(A). The two solutions for u are given by u = ±rank1

(
1

λ1(A)K− G
)

. They

both vanish if λ1(A) = λ2(A).

F Intersecting a Centred Ellipse and the Unit Circle 47

Proof. The proof is very similar to the proof of proposition 1. The conditions are now:

λ1(A− zI) = 0 (41)

λ2(A− zI) ≤ 0, (42)

from which we obtain z = λ1(A), and allows us to use rank-1 factorization to retrieve u.

F Intersecting a Centred Ellipse and the Unit Circle

F.1 Problem Statement

Given Ē ∈ R2×2, Ē � 0, representing the centred ellipse, the problem is to solve for the intersection points

with coordinates q ∈ R2 such that: q>Ēq = 1

q>q = 1.

(43)

(44)

The intersection points of two conics are generally found in two steps. The first step finds a degenerate

member of the pencil defined by the two conics. This degenerate member is a pair of lines, and the second

step is to recover and intersect these with one of the conics to retrieve the intersection points.

F.2 Finding the Degenerate Conic as a Pair of Lines

By expanding and equating equations (43) and (44), we have:

q>Ēq = q>q,

and thus:

q>P̄q = 0 with P̄
def
= Ē− I,

which represents one of the sought degenerate conics in the pencil. The degenerate conic P
def
= diag(P̄, 0)

generally represents a pair of lines, but degenerates to a single line if P̄ is rank-1. These two lines intersect

at the origin, as ker(P) = stk(0, 0, 1). The two lines have homogeneous coefficient vectors m, l ∈ R3, with

m3 = l3 = 0, as they contain the origin. We have:

P̄
def
=

a′ c′

c′ b′

 = m̄l̄> + l̄m̄>,

F Intersecting a Centred Ellipse and the Unit Circle 48

which we expand to:

a′ = 2m1l1

b′ = 2m2l2

c′ = m1l2 +m2l1.

Because the role of m and l is perfectly similar, we can find both by solving for only one of them. We chose

to eliminate l̄ and rewrite the first two equations as l1 = a′

2m1
and l2 = b′

2m2
. Substituting into the third

equation we have:

m2
1b
′ +m2

2a
′ − 2m1m2c

′ = 0.

This is a homogeneous quadratic in two variables. We solve for m2 by fixing m1 = 1, and rescale the result

for convenience. Of the two solutions of the quadratic, one is associated to m̄ and one to l̄, giving:

m̄ =
sign(a′)√

2|a′|


a′
c′

+

 0√
−det(P̄)


 and l̄ =

1√
2|a′|


a′
c′

−
 0√
−det(P̄)


 .

The sign of det(P̄) gives the number of real intersection points up to symmetry about the origin: det(P̄) < 0

corresponds to two real intersection points, det(P̄) = 0 corresponds to one real intersection point and

det(P̄) > 0 corresponds to two complex intersection points.

F.3 Intersecting the Pair of Lines with the Unit Circle

By intersecting the two lines with the unit circle, we retrieve the two solution points up to symmetry, with

coordinates q1,q2 ∈ R2. We have:

m̄>q1 = 0 and ‖q1‖2 = 1,

and:

l̄>q2 = 0 and ‖q2‖2 = 1.

Because we only need q1 and q2 up to scale, we have:

q1 ∝ Sm̄ ∝ S


a′
c′

+

 0√
−det(P̄)


 ,

G Impossibility of Cases 1.x.x Other Than 1.2.2 49

and:

q2 ∝ S̄l ∝ S


a′
c′

−
 0√
− det(P̄)


 .

Expanding, and using det(P̄) = 1 + det(Ē)− tr(Ē), we rewrite these compactly in terms of Ē as:

q1 ∝
(
S(Ē− I)−

√
tr(Ē)− det(Ē)− 1I

)
e1

q2 ∝
(
S(Ē− I) +

√
tr(Ē)− det(Ē)− 1I

)
e1.

G Impossibility of Cases 1.x.x Other Than 1.2.2

Case 1.2.2 is studied in §4.5. We show that all other subcases of 1.x.x are impossible under the problem’s

inputs.

G.1 Case 1.1.2

We first specialize the parameterization of cases 1.x.x and reduce it to two unknowns. We then show that

the orthonormality constraint yields a pair of incompatible equations on one of these two unknowns.

G.1.1 Specializing the Parameterization

We have rank(M) = rank(M1) = 1. This is equivalent to β = −σ2
1, as shown in §4.5.1. Using parameteriza-

tion (20), we thus have:

M = −σ2
1qq>.

G.1.2 Reducing the Unknowns to α, ν ∈ R

Solving for q. We have from equation (16) that:

M1 = −σ2
1qq> + σ2

1I = σ2
1

(
I− qq>

)
.

It is easy to verify that this matrix has q as nullvector and Sq as eigenvector, with eigenvalue σ2
1. Still using

equation (16), we thus have:

σ1

(
I− qq>

)
b1 = z′1. (45)

Left-multiplying by q> gives q>z′1 = 0. Because ‖q‖2 = 1, we obtain:

q = ± Sz′1
‖z′1‖2

. (46)

G Impossibility of Cases 1.x.x Other Than 1.2.2 50

Solving for b2. We have from equation (17) that:

b2 = σ2M
−1
2 z′2.

By substituting M2 = M + σ2
2I = −σ2

1qq> + σ2
2I, and q from equation (46), we obtain:

b2 = σ2

(
σ2

2I− σ2
1

Sz′1z
′>
1 S

‖z′1‖22

)−1

z′2. (47)

Solving for b1. We left-multiply equation (45) by its eigenvector q>S>, giving:

σ1q
>S>b1 = q>S>z′1.

Substituting q from equation (46), we obtain:

σ1z
′>
1 S>S>b1 = z′>1 S>S>z′1.

Because S>S> = −I, we arrive at:

σ1z
′>
1 b1 = ‖z′1‖22.

The general solution to this equation has one free parameter ν ∈ R and takes the form:

b1 =
z′1
σ1

+ νSz′1. (48)

Expressing b. We use the expression b = αSq from the parameterization (21), giving, using equation (46):

b = α
z′1
‖z′1‖2

. (49)

G.1.3 Impossibility

We have a reduced expression of A in terms of the two unknowns α, ν ∈ R, from the expressions (48) and (47)

of b1 and b2, and (49) of b. We observe that they have a stronger dependency on z′1 than on z′2. We thus

use the formulation group to fix Z2,1 = 0, giving the following simplified expression for A:

A =

 Z1,1

σ1

Z1,2

σ2
α sign(Z1,1)

νZ1,1
σ2Z2,2

σ2
2−σ2

1
0

 .

G Impossibility of Cases 1.x.x Other Than 1.2.2 51

It is then straightforward to see that the orthonormality constraint AA> = I yields three equations, one

quadratic in α, ‖[1 0]A‖22 = 1, one quadratic in ν, ‖[0 1]A‖22 = 1, and one linear in ν, [1 0]AA> stk(0, 1) = 0.

The linear equation in ν gives:

ν0 =
σ1Z1,2Z2,2

(σ2
1 − σ2

2)Z2
1,1

,

and the quadratic equation gives two complex solutions:

ν± = ± σ2Z2,2i

(σ2
1 − σ2

2)Z2
1,1

,

with i2 =
√
−1. The linear and the quadratic equations are thus compatible only if they both vanish, which

occurs if σ2 = 0, which contradicts the hypothesis of non-colinearity of the model points, or Z2,2 = 0, which,

because Z2,1 = 0, contradicts the hypothesis that rank(Z) = 2.

G.2 Case 1.2.1

The proof of impossibility is obtained very similarly to case 1.1.2. We have:

q = ± Sz′2
‖z′2‖2

b1 = σ1M
−1
1 z′1

b2 =
z′2
σ2

+ νSz′2

b = α
z′2
‖z′2‖2

.

We use to formulation group to set Z1,2 = 0, which leads, using the orthonormality constraint, to two

incompatible equations in ν.

G.3 Case 1.1.1

We have rank(M) = rank(M1) = rank(M2) = 1 and σ1 = σ2. Following cases 1.1.2 and 1.2.1, we have:

q = ± Sz′1
‖z′1‖2

and q = ± Sz′2
‖z′2‖2

.

Therefore, we must have z′1 ∝ z′2, which contradicts the hypothesis that rank(Z) = 2.

H Algebraic Procedure for the Weak-Perspective Camera 52

G.4 Cases 1.0.x

We have M1 = 0, and from equation (16) and parameterization (20):

βqq> + σ2
1I = 0.

The off-diagonal equation reduces to βq1q2 = 0, which means that one of these three variables must vanish.

However, the diagonal equations are βq2
1 + σ2

1 = 0 and βq2
2 + σ2

1 = 0. Because σ1 6= 0, they respectively

imply β 6= 0, q1 6= 0 and β 6= 0, q2 6= 0, which contradicts the off-diagonal equation.

G.5 Cases 1.x.0

We have M2 = 0, and follow cases 1.0.x to discard this case.

H Algebraic Procedure for the Weak-Perspective Camera

We give our algebraic procedure for the weak-perspective camera, obtained as a simplication of the parap-

erspective camera case, in table 9.

Function WPR(X ∈ R3×m, Y ∈ R2×m)

• Set (σ1, σ2, Z,O,x,y, U)← PrepareData(X, Y), B← Zdiag(σ−1
1 , σ−1

2)

• Compute γ,u by solving the rank-1 equation of type 4

Set A← BB>, γ2 ← λ1(A), u← rank1

(
I− 1

γ2
A
)

• Set Q̄←
[

1
γB u

]
• Form Q+ from Q̄ and the cross-product of its two rows

• Set Q− ← Q+ �
[

1 1 −1
1 1 −1
−1 −1 1

]
• Set R+ ← det(U)Q+U

> and R− ← det(U)Q−U
>

• Set t+ ← y − det(U)[B γu]U>x and t− ← y − det(U)[B − γu]U>x

Output γ ∈ R+, R+, R− ∈ SO3, t+, t− ∈ R2, O ∈ R+

Table 9: Algebraic procedure solving weak-perspective planar resection. The procedure always
returns two rotation and translation pairs and a single cost. This is because the problem has two solutions
in general. These two solutions become equal for u = 0.

I Derivation Details for Case 2.x.x 53

I Derivation Details for Case 2.x.x

We derive an optimized solution for case 2.x.x using the formulation give in §4.4.

Solving for B. We define z
def
= vect(Z), g

def
= stk(a, b) and:

K
def
=



sσ1

sσ1

−σ2

σ2


.

This allows us to rewrite the cost function as:

O7(a, b, s) = ‖Kg − z‖22.

We find the optimal solution for g. We define a Lagrange multiplier ` to enforce the constraint a2 + b2 = 1

and the Lagrangian:

L′(a, b, s, `) def
= O7(a, b, s) + `

(
‖g‖22 − 1

)
.

Differentiating with respect to g and nullifying, we obtain:

∂L′

∂g
= 2K>Kg − 2K>z + 2`g = 0.

We obtain g as a function of ` and s as:

g =
(
K>K + `I

)−1
K>z =

1

σ2
1 + σ2

2 + `
K>z with K>z =

sσ1Z1,1 + σ2Z2,2

sσ1Z2,1 − σ2Z1,2

 .
We determine two possible values for ` by substituting the solution for g into the constraint, giving:

∥∥∥K>z
∥∥∥2

2
=
(
σ2

1 + σ2
2 + `

)2
,

which we expand to the following quadratic in `:

`2 + 2
(
σ2

1 + σ2
2

)
`+

(
σ2

1 + σ2
2

)2 − ∥∥∥K>z
∥∥∥2

2
= 0.

I Derivation Details for Case 2.x.x 54

The discriminant is δ = 4
∥∥K>z

∥∥2

2
> 0 and we thus obtain:

` = −σ2
1 − σ2

2 + r
∥∥∥K>z

∥∥∥
2

with r ∈ {−1, 1}.

As expected, we obtain g with unitary norm as:

g =
rK>z

‖K>z‖2
.

The final step is to find the optimal solution for s and r. Substituting the solution for g into the cost

function yields:

min
s,r∈{−1,1}

O8(s, r) with O8(s, r)
def
=

∥∥∥∥ rKK>z

‖K>z‖2
− z.

∥∥∥∥2

2

.

Expanding the cost function, we obtain:

O8(s, r) =

∥∥KK>z
∥∥2

2

‖K>z‖22
+ ‖z‖22 − 2r

z>KK>z

‖K>z‖2
.

The first and second terms do not depend on r. The third term may be rewritten as:

−2r
z>KK>z

‖K>z‖2
= −2r

∥∥K>z
∥∥2

2

‖K>z‖2
= −2r

∥∥∥K>z
∥∥∥

2
,

and is thus minimized for r = 1. We now solve for s. The problem becomes:

min
s∈{−1,1}

O8(s, 1).

We have ‖Kh‖22 = (σ2
1 + σ2

2)‖h‖22, and we can thus expand the cost function as:

O8(s, 1) = σ2
1 + σ2

2 + ‖z‖22 − 2
∥∥∥K>z

∥∥∥
2
.

Only the last term depends on s. Because of the negative sign, we have to maximize it, and because it is

always positive, we can maximize its square. We thus have:

max
s∈{−1,1}

O9(s) with O9(s)
def
=

∥∥∥K>z
∥∥∥2

2
.

The cost function is expanded to:

O9(s) = σ2
1‖z′1‖22 + σ2

2‖z′2‖22 + 2sσ1σ2 det(Z).

References 55

Only the last term depends on s, and we thus have s = sign(det(Z)).

References

K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-D points sets. ieee Transactions on

Pattern Analysis and Machine Intelligence, 9(5):698–700, September 1987.

A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D. Pizarro. Shape-from-template. ieee Transactions

on Pattern Analysis and Machine Intelligence, 37(10):2099–2118, October 2015.

J. R. Cardoso and K. Zietak. On a substiefel procrustes problem arising in computer vision. Numerical

Linear Algebra With Applications, 22(3):523–547, May 2015.

T. Collins and A. Bartoli. Locally affine and planar deformable surface reconstruction from video. In

International Workshop on Vision, Modeling and Visualization, 2010.

T. Collins and A. Bartoli. Infinitesimal plane-based pose estimation. International Journal of Computer

Vision, 109(3):252–286, September 2014.

T. Collins and A. Bartoli. Planar structure-from-motion with affine camera models: Closed-form solutions,

ambiguities and degeneracy analysis. ieee Transactions on Pattern Analysis and Machine Intelligence,

39(6):1237–1255, 2017.

O. Faugeras, Q.-T. Luong, and T. Papadopoulo. The Geometry of Multiple Images. MIT Press, 2001.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications

to image analysis and automated cartography. Computer Vision, Graphics and Image Processing, 24(6):

381–395, June 1981.

T. R. Hagedorn. General formulas for solving solvable sextic equations. Journal of Algebra, 233(2):704–757,

November 2000.

R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim. Pose estimation from corresponding

point data. ieee Transactions on Systems, Man and Cybernetics, 6(19):1426–1446, November 1989.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,

2003. Second Edition.

D. Henrion, J. B. Lasserre, and J. Loefberg. Gloptipoly 3: Moments, optimization and semidefinite pro-

gramming. Optimization Methods and Software, 24(4-5):761–779, 2009.

References 56

R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy. Object pose: The link between weak perspective,

paraperspective and full perspective. International Journal of Computer Vision, 22(2):173–189, March

1997.

B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute orientation using

orthonormal matrices. Journal of the Optical Society of America A, 5(7):1127–1135, July 1988.

G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In International Sympo-

sium on Mixed and Augmented Reality, 2007.

D. Oberkampf, D. F. DeMenthon, and L. S. Davis. Iterative pose estimation using coplanar feature points.

Computer Vision and Image Understanding, 63(3):495–511, May 1996.

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections. International

Journal of Computer Vision, 80(2):189–201, November 2008.

C. Steger. Algorithms for the orthographic-n-point problem. Journal of Mathematical Imaging and Vision,

2017a. To appear.

C. Steger. A comprehensive and versatile camera model for cameras with tilt lenses. International Journal

of Computer Vision, 123(2):121–159, 2017b.

I. Stewart. Galois Theory. CRC Press, 2015. Fourth Edition.

J. Taylor, A. D. Jepson, and K. Kutulakos. Non-rigid structure from locally-rigid motion. In International

Conference on Computer Vision and Pattern Recognition, 2010.

S. Umeyama. Least-squares estimation of transformation parameters between two point patterns. ieee

Transactions on Pattern Analysis and Machine Intelligence, 13(4):376–380, 1991.

