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Abstract This paper studies the 3D reconstruction of

a deformable surface from a single image and a reference

surface, known as the template. This problem is known

as Shape-from-Template and has been recently shown

to be well-posed for isometric deformations, for which

the surface bends without altering geodesics. This pa-

per studies the case of equiareal deformations. They

are elastic deformations where the local area is pre-

served and thus include isometry as a special case. Elas-

tic deformations have been studied before in Shape-

from-Template, yet no theoretical results were given on

the existence or uniqueness of solutions. The equiareal

model is much more widely applicable than isome-

try. This paper brings Monge’s theory, widely used for

studying the solutions of non-linear first-order PDEs,

to the field of 3D reconstruction. It uses this theory to
establish a theoretical framework for equiareal Shape-

from-Template and answers the important question of

whether it is possible to reconstruct a surface exactly

with a much weaker prior than isometry. We prove that

equiareal Shape-from-Template has a maximum of two

local solutions sufficiently near an initial curve that lies

on the surface. In addition we propose an analytical

reconstruction algorithm that can recover the multiple

solutions. Our algorithm uses standard numerical tools

for ODEs. We use the perspective camera model and
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give reconstruction results with both synthetic and real

examples.

1 Introduction

The reconstruction of 3D objects from images is an

important goal in Computer Vision with numerous

scientific and engineering applications. Over the last

few decades, the reconstruction of rigid objects has

been thoroughly studied and solved by Structure-from-

Motion (SfM) [23], which uses multiple 2D images of

the same scene. Rigidity ensures the problem’s well-

posedness in the general case, which means that only

one solution is obtained up to scale.

This paper studies the reconstruction of objects un-

dergoing deformations where SfM solutions cannot be

applied. This has important applications, such as aug-

mented reality in medical endoscopy [31,22,26]. De-

formable reconstruction has been actively studied over

the last two decades in over a hundred articles, yet

it remains an open problem in the general case. Two

main scenarios have been studied: Non-Rigid Structure-

from-Motion (NRSfM) [9,28,35,27,12,4,30] and Shape-

from-Template (SfT) [47,8,37,12]. The former directly

extends SfM to deformable objects and has attracted

most of the attention from the research community. The

latter recovers the object’s shape from the registration

between a single image and a template, that consists of

a reference shape and a texture map. Both NRSfM and

SfT use constraints on the object’s deformation.

The isometric model has been thoroughly investi-

gated for both NRSfM [24,12] and SfT [47,42,8,37,12].

Isometric deformations preserve the surface geodesics

and is an accurate model for the deformation of some

common materials such as paper and fabric. Recently it
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Conformal: 62%

Equiareal: 7%

Fig. 1 Equiareality as a non-rigid deformation model. (a) Classification of non-rigid models. Equiareality belongs to the
category of non-isometric geometric models. (b) Elastic stretching breaks conformity. The conformal [8] and equiareal (our
method) reconstruction errors are 62% and 7%. Equiareality outperforms conformity for a wide variety of non-isometric
deformations, see Fig. 11 for more examples. (c) Number of PDEs imposed by the isometric, conformal and equiareal models.
Equiareality is the least constrained model, imposing only one PDE.

has been demonstrated that isometry makes SfT well-

posed when the registration between the template and

the input image is a known differentiable function [8].

This means that in non-degenerate cases isometric SfT

has a single solution, the true surface, that explains the

image measurements up to noise. Isometric SfT now

counts with efficient methods that may obtain accurate

and dense reconstruction in real-time [37].

However, isometry fails to model the deformation

of extensible objects. Some recent methods have thus

studied both NRSfM [6] and SfT [21,32,39,33,20] with

non-isometric deformations. Two categories of models

can be found, as illustrated by Fig. 1.a: mechanical and

geometric models. On the one hand, the mechanical

models are linear and non-linear elasticity [33,20,32,

21,28]. They lead to energy-based SfT methods, whose

objective is to minimize the deformation energy under

boundary conditions. Because the objective is gener-

ally not in a minimal energy state, these methods do

not guarantee that the true surface is reconstructed. On

the other hand, the geometric models give constraints

satisfied by the true surface only, similarly to the iso-

metric model. This is a very attractive property. How-

ever, there are very few geometric models. One of them

is the angle-preserving conformity [8], which is however

rarely applicable in practice, as can be seen in Fig. 1.b.

Mechanical SfT methods model elasticity well but do

not handle the possible existence of multiple solutions.

Geometric SfT methods compute all possible multiple

solutions as and when they occur.

We study SfT for equiareal deformations, which is

a geometric non-isometric model. Fig. 1.c shows the hi-

erarchy between the isometric, conformal and equiareal

models. Equiareal and conformal deformations are fun-

damentally different as none imply the other. However,

both are implied by isometry and together they im-

ply isometry, showing their high-level of complemen-

tarity. Equiareal SfT can be described with a single

Partial Differential Equation (PDE) and is thus weaker

than conformal SfT, which results in a system of two

PDEs. We can thus see the equiareal deformation as a

‘limit’ geometric model. It is also much more applicable

than the conformal model. Our real data experiments

show that equiareal SfT is accurate for common non-

isometric objects such as clothes and outperforms the

isometric and all the evaluated non-isometric SfT meth-

ods.

We provide a complete framework for solving

equiareal SfT by expressing the problem as a quadratic

first-order PDE in two variables, the spatial coordinates

of the input image. We include a study of the prob-

lem’s well-posedness, a characterization of the bound-

ary conditions and of the possible ambiguities, and a

fast analytical reconstruction algorithm based on stan-

dard ODE solvers. By analytical algorithm, we mean

an algorithm whose convergence in a finite number of

steps is guaranteed, and which returns the problem’s

multiple solution, if any. We base our framework on

Monge’s theory, which is widely used to study the so-

lutions of first-order non-linear PDEs, but was never

used to study deformable reconstruction. Monge’s the-

ory allows us to establishes the following two preliminar

results: 1) given a point belonging to the initial strip1 it

establishes the conditions of existence and uniqueness

of solutions of the PDE in a local domain of the point

and 2) for each point of the initial strip where the previ-

ous conditions are met, there exists a system of ODEs,

called the characteristic system, whose unique solution

is a strip that belongs to the solution of the PDE.

1 A strip is a curve and its normal field on the surface.
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We use the two preliminar results to form our

four core contributions. i) We answer the question of

whether one can reconstruct the surface exactly with

a much weaker prior than isometry: we show that

equiareal SfT simply requires an initial curve that be-

longs to the true surface to bound the amount of solu-

tions. ii) We study the conditions to guarantee solution

uniqueness in equiareal SfT, given an initial curve. We

extend Monge’s local uniqueness condition by finding

its spatial limits, partitioning the image domain in re-

gions where solution uniqueness is guaranteed. We show

that crossing these limits generates multiple solutions

in general. We establish an upper bound on the number

of global solutions and study the impact of the initial

curve on solution uniqueness. iii) We propose a recon-

struction method based on sampling the initial curve

and solving the characteristic system using standard

ODE numerical solvers. This allows us to reconstruct

the surface (and all the additional solutions) by using

convex numerical integration of a discrete number of

characteristic strips. iv) We show that equiareal SfT is

promising to reconstruct a wide variety of real objects,

both isometric and non-isometric, with high accuracy,

outperforming the existing isometric and non-isometric

SfT methods which we compared with.

2 Previous Work

Deformable 3D reconstruction was first proposed for

solving NRSfM by modelling deformations using a lin-

ear shape basis [9]. This statistical model works well for

objects with simple deformations. The method is based

on low-rank factorization and suffers from ambiguities.

Many works that followed [9] improved well-posedness

by including shape [13] or smoothness [27,38] con-

straints. Other methods such as the shape-trajectory

basis [7,19] extended the shape basis formulation [9].

Recently [52] showed that direct trace minimization of

the measurement matrix reduces the amount of ambigu-

ities and resolved the need for a fixed amount of shape

vectors. Based on this approach, [17] proposed one of

the first dense NRSfM approaches for video sequences.

Physics-based modelling for NRSfM is more recent. It

handles more complex deformations and works with

fewer images as compared to statistics-based modelling.

Most of these methods, for instance [44,40,24,1,45],

use isometry as a deformation model, except [3,6,5,

4] which model deformations with elasticity. In addi-

tion, some works include other cues such as shading and

motion [30,50] or silhouettes [35]. Despite the amount

of existing methods, the accuracy and the stability of

NRSfM methods is still far from the results of SfM.

The SfT methods, also called template-based, [47,

42,8,37,12,10,46,48,51] assume a previous 3D model

known as the template of the object. They are mostly

based on physics-based deformation models. SfT is bet-

ter constrained than NRSfM and is suitable for many

applications where the template is known or can be ac-

quired using SfM.

We group existing SfT methods by the type of de-

formation constraint they impose on the object’s sur-

face. The most popular model is isometry, which makes

SfT a well-posed problem, as showed in [8]. We thus

distinguish between isometric and non-isometric meth-

ods. In isometric SfT, we find differences in the way

the existing methods impose the isometry constraints:

i) zeroth-order methods based on inextensibility [48,

46,47,42,51,37], ii) analytical solutions from quadratic

PDEs [8,12] and iii) iterative refinement methods [10,

39]. Methods in i) are based on convex optimization.

They relax isometry with inextensibility and the so-

called maximum depth heuristic [42,47]. Methods in ii)

model isometric SfT with a system of quadratic PDEs.

They propose analytical solutions for depth and depth

gradient by finding the non-holonomic solutions of the

PDE. Refinement methods in iii) require non-convex

optimization and are very accurate, given a good ini-

tialization provided by a method from i) or ii). Re-

cently [37] showed real-time implementations of isomet-

ric SfT that obtain accurate and dense reconstructions

in videos. Additionally, some SfT works include shad-

ing and motion cues [36], combine shading with con-

tours [16] or include the silhouette [10] to improve SfT

solutions for poorly textured objects.

Non-isometric models have been proposed such as

conformity [8], that preserves angles, linear elasticity [2,

32,39] and non-linear elasticity [33,20,21]. In conformal

SfT [8], the problem admits a finite number of solu-

tions, obtained from analytical non-holonomic solutions

of the depth gradient. All existing methods based on

linear and non-linear elasticity optimize a variational

cost based on either FEM models [32,21,4,33,20] or

particle systems [39]. These methods require boundary

conditions. The type and amount of boundary condi-

tions has a significant effect on the solution but this

has only been observed empirically. This makes non-

isometric SfT an open problem.

Our equiareal model is accurate to model a wide

range of elastic deformations. As isometric and con-

formal SfT, equiareal SfT is required one to solve a

quadratic first-order PDE. We show that the problem

requires boundary conditions to be well-posed and we

give a theoretical bound to the number of solutions

given the boundary conditions. We also propose a very

efficient and fast reconstruction algorithm based on
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ODE solvers. As shown in Sect. 5, our method out-

performs the elastic SfT methods we compared with in

terms of speed and accuracy.

3 Problem Formulation

3.1 Notation

Italic upper-case characters denote both regular sur-

faces embedded in R3, such as T , and open subsets of

the usual topology of R2 used in surface parametriza-

tions. A surface parametrization is represented by a pair

(U , Xt), where U is the domain set of the function, fre-

quently the image, and Xt : U → R3 is a parametriza-

tion function, represented by an upper-case letter with a

single subscript. Greek upper-case characters are used

for maps between surfaces, e.g. the equiareal map Ψ ,

and greek lower-case characters denote maps between

subsets of R2, e.g. the warp η. The composition of map-

pings is represented by the ◦ operator. Strips are ori-

ented 5-dimensional curves as we will describe precisely

in Sect. 4.2. We use t to parametrize the character-

istic strips and s to parametrize the initial strips as

explained in Sect. 4.2. The symbol ‖.‖ refers to the Eu-

clidean norm. We consider row vectors of the Euclidean

vector space R3 and we represent them as (x, y, z).

Points in the image are represented by the row coordi-

nate vectors (u, v). We use the canonical basis in both

cases.

3.2 Geometric Modeling

3.2.1 General Points

Fig. 2 illustrates the geometric modeling of the problem.

Let T ⊂ R3 be a known regular parametric surface and

let (U , Xt) be one of its parametrizations. The surface T
is the template. Let S ⊂ R3 be the regular parametric

surface that results from an equiareal transformation

Ψ ∈ C2(T ,R3) of the template T . We define equiareal

maps and their properties rigorously in Sect. 3.3. The

equiareal map Ψ is a diffeomorphism between the tem-

plate T and the deformed surface S. It thus preserves

the topology of T and avoids self-intersections. Both S
and Ψ are unknown.

A camera projects S in the image plane, repre-

sented by the open subset I ⊂ R2. We assume the sur-

face is never self-occluded in the image and thus each

point in S is uniquely projected into I. Therefore, there

exists a unique parametrization of S from the image

plane, namely (I, Xi), where Xi ∈ C2(I,R3) denotes

Fig. 2 The diagram shows the differential geometric model
we use to study equiareal SfT. The known template T is
transformed by an equiareal map into the unknown surface
S which is projected with a perspective camera Πp to create
the image I. Assuming the warp η is known, our objective is
to recover the unknown surface S through one of its param-
eterization (I, Xi). In this diagram one can find identities
by following different paths that connect the domains. The
arrows represent functions and we can thus follow them by
function composition (for instance we have X̄t = Xt ◦ η). See
Sect. 3.2.1 for details.

the image embedding of S. We use the perspective cam-

era model with known intrinsic parameters. The warp

function and its inverse are known and represented by

η ∈ C2(I,R2) and η−1 ∈ C2(U ,R2) respectively. Both

of them are two-diffeomorphisms, that is, twice contin-

uously differentiable bijective maps between the image

I ⊂ R2 and the parametrization space U ⊂ R2 of the

template.

According to the commutative graph in Fig. 2 we

can parametrize the template T from the image I,

which we denote by (I, X̄t), where X̄t = Xt ◦ η. As
both η and Xt are known, X̄t is available.

3.2.2 Camera Model and Image Embedding

We assume that the image plane is at z = 1 in camera

coordinates, which is achieved by working in retinal co-

ordinates. The perspective projection of a point (x, y, z)

is then given by:

Πp : R3 7−→ R2

(x, y, z) 7−→
(x
z
,
y

z

)
, (1)

where the restriction Πp|S : S 7−→ R2 of Πp to the

surface S is bijective. The inverse of this restriction

is the image embedding. It consists of a depth based

parametrization of the surface (I, Xi) expressed in

terms of the depth function ρ : R2 7−→ R:

Xi(u, v) = ρ(u, v) (u, v, 1) . (2)
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Alternatively to ρ, we define the Euclidean distance be-

tween the camera’s projection origin and the surface

point as ρ̃ : R2 7−→ R:

ρ̃(u, v) = ρ(u, v)ε, (3)

where ε =
√

1 + u2 + v2. Now, the perspective

parametrization (I, Xi) can be expressed in terms of

ρ̃ as:

Xi(u, v) =
ρ̃(u, v)

ε
(u, v, 1) . (4)

As will be shown, working with ρ̃ instead of ρ greatly

simplifies the reconstruction equations.

3.3 Equiareal Maps

Let Ψ : S1 7−→ S2 be a diffeomorphism between two

surfaces. Ψ is an equiareal map if the area of each open

set U ⊂ S1 is equal to the area of its image Ψ(U) ⊂
S2. Alternatively, using the pushforward function, it is

common to define equiareal maps as follows.

Definition 1 A diffeomorphism Ψ : S1 7−→ S2 be-

tween surfaces in R3 is an equiareal map if for each

point p ∈ S1, the pushforward function dΨp : TpS1 7−→
TΨ(p)S2 of Ψ in p obeys:

‖w × h‖ = ‖dΨp(w)× dΨp(h)‖ (5)

where w,h ∈ TpS1 are any two vectors of the tangent

plane of S1 at p.

We recall that ‖w × h‖ is the area of the parallelo-

gram defined by the vectors w and h. Isometric maps

preserve distances, angles and areas and thus every iso-

metric map is equiareal. Equiareal maps can also be

characterized in differential geometry as maps that pre-

serve the determinant of the first fundamental form.

Theorem 1 A diffeomorphism Ψ : S1 7−→ S2 between

surfaces in R3 is an equiareal map if and only if it pre-

serves the determinant of the first fundamental form.

Proof Let (U , X) be a parametrization of S1 and let

{Xu, Xv} be a basis of the tangent plane TpS1 of S1 in

p. Using Lagrange’s identity we have:

‖Xu ×Xv‖2 + 〈Xu, Xv〉2 = ‖Xu‖2‖Xv‖2. (6)

Remembering that E = 〈Xu, Xu〉, F = 〈Xu, Xv〉, G =

〈Xv, Xv〉, then:

‖Xu ×Xv‖2 = ‖Xu‖2‖Xv‖2 − 〈Xu, Xv〉2

= EG− F 2 =

∣∣∣∣(E F

F G

)∣∣∣∣ . (7)

As from Definition 1 equiareal maps preserve the mod-

ulus of the cross product between any two different

vectors of the tangent plane, they must thus preserve

the determinant of the first fundamental form, and vice

versa. ut

4 Equiareal Shape-from-Template

4.1 Establishing the Reconstruction PDE

We describe equiareal SfT as a first-order PDE in the

depth function ρ̃ defined in equation (4). We denote

by Ui(u, v) = EG − F 2 and Ū(u, v) = ĒḠ − F̄ 2 the

determinant of the first fundamental form of Xi and X̄t

respectively at point (u, v) ∈ I. From the commutative

diagram of Fig. 2 we have that Xi = Ψ ◦ X̄t with Ψ an

equiareal map. From Theorem 1 we find the following

identity:

Ui(u, v) = Ū(u, v), (8)

where we recall that Ū is a known function obtained

from Xt, η and their first derivatives.

Using equation (4), the coefficients of the first fun-

damental form of S are derived as follows:

E = 〈Xiu, Xiu〉 = ρ̃2u +
ρ̃2(1 + v2)

(1 + u2 + v2)2
= ρ̃2u +

ρ̃2(1 + v2)

ε4

F = 〈Xiu, Xiv〉 = ρ̃uρ̃v −
ρ̃2uv

(1 + u2 + v2)2
= ρ̃uρ̃v −

ρ̃2uv

ε4

G = 〈Xiv, Xiv〉 = ρ̃2v +
ρ̃2(1 + u2)

(1 + u2 + v2)2
= ρ̃2v +

ρ̃2(1 + u2)

ε4

(9)

where Xiu = ∂Xi

∂u , Xiv = ∂Xi

∂v , ρ̃u = ∂ρ̃
∂u and ρ̃v = ∂ρ̃

∂v .

The determinant of the first fundamental form of S is

then:

Ui(u, v) = EG− F 2 =

ρ̃4

ε6
+
ρ̃2

ε4
(
ρ̃2u(1 + u2) + ρ̃2v(1 + v2) + 2ρ̃uρ̃vuv

)
.

(10)

We now apply the following change of variable to

equation (10):

x̃ = ρ̃2 (11)

which implies x̃u = ∂x̃
∂u = 2ρ̃ρ̃u and x̃v = ∂x̃

∂v = 2ρ̃ρ̃v.

We then obtain the following quadratic first-order PDE,

which we call the reconstruction PDE :

x̃2

ε6
+

1

ε4

(
x̃2u
4

(1 + u2) +
x̃2v
4

(1 + v2) +
x̃ux̃v

2
uv

)
= Ū(u, v).

(12)
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Equation (12) is a non-autonomous quadratic PDE that

depends on the squared depth function x̃, its partial

derivatives x̃u and x̃v, the image coordinates u, v and

Ū . Let x̃∗ be a solution of equation (12). Assuming

that x̃∗ does not change the sign in its domain I then

we have:

Xi(u, v) =

√
|x̃∗(u, v)|
ε

(u, v, 1) . (13)

Without additional constraints, such as initial or

boundary conditions, the PDE (12) is ill-posed and in

the general case does not have an analytic solution. We

propose to solve it with numerical methods and to study

the influence of the initial conditions on the existence

and uniqueness of solutions.

4.2 Monge’s Theory and the Characteristic Method

We give a simple introduction to Monge’s theory and

the characteristic method to find and study the solu-

tions of the reconstruction PDE. This theory copes with

general first-order non-linear PDEs and we refer the

reader to [14,25] for details and rigorous proofs and

to [34] for the original manuscripts and theory devel-

oped by Gaspard Monge.

Given a general non-linear PDE in two variables:

F (u, v, x, p, q) = 0, (14)

where F ∈ C2(Ω) and Ω ⊂ R5 is an open domain, u, v

are the independent variables, x is the unknown func-

tion and p = xu, q = xv its derivatives. A solution of

equation (14) can be seen as the surface (u, v, x(u, v)),

usually known as the solution surface Ss.
We define a strip as a general curve in 5 di-

mensions r(t) : I ⊂ R → R5 with r(t) =

(u(t), v(t), x(t), p(t), q(t)). The 5-dimensional strip has

a geometric interpretation in R3. The first three com-

ponents form a spatial curve γ(t) : I ⊂ R→ R3 and the

two last components (p(t), q(t)) give the normal vector

of Ss along the curve γ(t) as:

(−p(t),−q(t), 1). (15)

In Monge’s theory, given the PDE (14), one defines the

following system of five first-order ODEs:

du

dt
= Fp

dv

dt
= Fq

dx

dt
= pFp + qFq

dp

dt
= −Fu − pFx

dq

dt
= −Fv − qFx,

(16)

where Fu, Fv, Fx, Fp, Fq are the partial derivatives of F

with respect to the coordinates in Ω. The ODE system

(16) is called the characteristic system and its solutions

are called the characteristic strips. Each characteristic

strip r(t) contains a three dimensional curve γ(t) called

the characteristic curve, see Fig. 3. The characteristic

system is a central result in Monge’s theory and has a

non-trivial derivation [25].

Fig. 3 We represent the initial strip r(s) with its initial
curve γ(s) (green) and the characteristic strip r(t) with
its characteristic curve γ(t) (blue) computed from a point
(u0, v0, x0, p0, q0) of r(s).

The main property of a characteristic

strip r(t) is that it gives f(t) = F (r(t)) =

F (u(t), v(t), x(t), p(t), q(t)) a constant value. This

is established by simply differentiating f(t) and substi-

tuting the equations of the characteristic system (16):

df

dt
= Fu

du

dt
+ Fv

dv

dt
+ Fx

dx

dt
+ Fp

dp

dt
+ Fq

dq

dt
=

= FuFp + FvFq + Fx(pFp + qFq) +

+ Fp(−Fu − pFx) + Fq(−Fv − qFx) = 0.

(17)

Consequently, a characteristic strip calculated for any

point (u0, v0, x0, p0, q0) ∈ Ω that satisfies the PDE (14)

also satisfies the PDE. This property forms the heart

of our reconstruction algorithm.

Equation (18) shows the characteristic system asso-

ciated with the reconstruction PDE (12):

du

dt
=
p
(
u2 + 1

)
+ quv

2ε4
dv

dt
=
q
(
v2 + 1

)
+ puv

2ε4
dx̃

dt
=
p2u2 + p2 + 2pquv + q2v2 + q2

2ε4
dp

dt
= Ūu +

6ux̃2

ε8
−
(
up2 + qvp

)
2ε4

+
u
(
p2
(
u2 + 1

)
+ q2

(
v2 + 1

)
+ 2pquv

)
− 2px̃

ε6
dq

dt
= Ūv +

6vx̃2

ε8
−
(
vq2 + puq

)
2ε4

+
v
(
p2
(
u2 + 1

)
+ q2

(
v2 + 1

)
+ 2pquv

)
− 2qx̃

ε6
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(18)

We observe that one can compute characteristic strips

by solving the characteristic system (18) from points in

the surface (ui, vi, x̃i) where the corresponding (pi, qi)

are known (oriented points). The Picard-Lindelöf The-

orem [29] guarantees the existence and uniqueness of

these characteristic strips. However, there are no guar-

antees that the surface is uniquely recovered from these

strips. The next section shows that if the initial condi-

tions (ui, vi, x̃i, pi, qi) of the characteristic system be-

long to a curve, the initial curve, that fulfills some con-

strains, the characteristic strips define a unique surface.

4.3 Existence and Uniqueness of Local Solutions

Monge’s theory provides us with a way to reconstruct

the surface solution Ss via characteristic strips. This

requires one to define a strip:

c0(s) = (u0(s), v0(s), x0(s), p0(s), q0(s)) ∈ R5, (19)

called the initial strip. The first three dimensions of

c0(s) represent the initial curve denoted by γ0(s) =

(u0(s), v0(s), x0(s)). In Monge’s theory, the initial strip

has to comply with the following conditions:

– Compatibility condition 1:{
dx0

ds = du0

ds p0 + dv0
ds q0

F (u0(s), v0(s), x0(s), p0(s), q0(s)) = 0
(20)

– Compatibility condition 2:∣∣∣∣( du0

ds
dv0
ds

Fp(γ0(s), p0(s), q0(s)) Fq(γ0(s), p0(s), q0(s))

)∣∣∣∣ 6= 0.

(21)

Both conditions have a geometric interpretation. Com-

patibility condition 1 means that the velocity vector of

the initial curve belongs to the tangent plane of the so-

lution surface and that the initial condition must fulfill

the PDE (14). Compatibility condition 2 tells us that

an initial strip cannot be a solution of the character-

istic system (16). Failure to comply with this would

mean that for each point of the initial strip, solving the

characteristic system (16), one recovers the initial strip

itself. This means that one cannot recover the solution

surface in Ω around the initial strip.

Observe that two initial curves that fulfill the com-

patibility conditions and intersect at a point p, deter-

mine the same characteristic strip. In other words they

are intrinsic to the surface. We can also use intersection

of curves to compute characteristic strips.

Given conditions (20) and (21), the following The-

orem ensures the existence of a local solution around

the initial strip. The proof can be found in [25] and is a

central result of Monge’s theory. It relies on the inverse

function and Picard-Lindelöf Theorems.

Theorem 2 (Monge) Let F (u, v, x, p, q) = 0 be a

first-order PDE where Ω ⊂ R3 × R2, F : Ω 7−→ R
and F ∈ C2(Ω) with |Fp| + |Fq| > 0. Let γ0(s) =

(u0(s), v0(s), x0(s)) be an initial curve with continuous

second-order derivatives and let p0(s) and q0(s) be func-

tions with continuous first-order derivatives that satisfy

the compatibility conditions (20) and (21). Then there

exists a neighbourhood G ⊂ R2 of (u0(s), v0(s)) and a

unique function φ : G ⊂ R2 7−→ R that satisfies:
φ(u0(s), v0(s)) = x0(s)

φu(u0(s), v0(s)) = p0(s)

φv(u0(s), v0(s)) = q0(s) s ∈ I
F (u, v, φ(u, v), φu(u, v), φv(u, v)) = 0 (u, v) ∈ G

(22)

Theorem 2 states that given an initial strip r0(s) =

(u0(s), v0(s), x0(s), p0(s), q0(s)) that meets the compat-

ibility conditions of equations (20) and (21), we can

guarantee the solution of the PDE to be unique in a

neighbourhood G ⊂ R2 of (u0(s), v0(s)). This can be

accomplished by solving the characteristic system using

the initial strip as initialization. This gives the surface

(u(s, t), v(s, t), x(s, t), p(s, t), q(s, t)). We then search for

the mapping ϕ : (u, v) → (s, t) to recover the surface

solution φ(u, v) = x(ϕ(u, v)).

In practice however, the boundary conditions will

most likely be given as curves rather than strips. Be-

cause a curve γ0(s) = (u0(s), v0(s), x0(s)) is a weaker

condition than a strip, we can expect a weaker result on

solution uniqueness. We answer this equation precisely

by giving the following theorem.

Theorem 3 For an initial curve γ0(s) =

(u0(s), v0(s), x̃0(s)) that complies with the com-

patibility conditions (20) and (21), the perspective

reconstruction PDE (12) in the dependent variable x̃

has a maximum of two local solutions x̃1(u, v) and

x̃2(u, v).

Proof By defining F from equation (12) and substitut-

ing into equation (20) we obtain a system composed of

a linear and a quadratic equations in (p, q). This sys-

tem has a maximum of two solutions (p1(s), q1(s)) and

(p2(s), q2(s)). Consequently, a maximum of two initial

strips (γ0(s), p1(s), q1(s)) and (γ0(s), p2(s), q2(s)) exist

with the same initial curve γ0(s). Using Theorem 2, we

conclude that there exist a maximum of two local solu-

tions x̃1(u, v) and x̃2(u, v) with the same initial curve

but a different initial strip. ut
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4.4 Local Domains of Reconstruction

According to Theorem 2 and assuming that an initial

strip is given, the solution of the PDE (14) is only guar-

anteed to exist and to be unique in an open domain near

the initial strip denoted by the local domain G (a subset

of the image plane) where we have |Fp|+|Fq| > 0 for any

surface solution. Applying this result to the PDE (12)

we show that the image domain can be partitioned into

a set of local domains that limit the maximum num-

ber of solutions for the PDE (12). We first define the

set H of critical points, which are points in Ω where

|Fp|+ |Fq| = 0.

Definition 2 A point Pi ∈ Ω is a critical point of a

solution surface Ss if Fp(Pi) = 0 and Fq(Pi) = 0. The

set H contains the critical points of Ss in Ω:

H = {Pi ∈ Ω|Fp = Fq = 0 , F (Pi) = 0} (23)

Our next theorem shows that the critical points corre-

spond to points in Ω where p = q = 0. Hence, they are

points on the surface S whose normal vector is parallel

to the optical ray.

Theorem 4 Given a critical point (ui, vi, xi, pi, qi) ∈
H, the normal vector to the surface S at the critical

point is parallel to the optical ray (ui, vi, 1).

Proof Using the equiareal reconstruction equation (10)

we obtain Fp and Fq as:Fp = 1
ε4

(
(1+u2)

2 p+ uv
2 q
)

Fq = 1
ε4

(
(1+v2)

2 q + uv
2 p
) (24)

Rearranging equation (24) we have that Fp and Fq are

obtained with the following linear system in p and q:(
Fp
Fq

)
=

1

2ε4

(
1 + u2 uv

uv 1 + v2

)(
p

q

)
(25)

This system is non-singular because the determinant

of the system’s matrix is u2 + v2 + 1 > 0. Therefore,

Fp = Fq = 0 if and only if p = q = 0.

Using the depth-based embedding (I, Xi) of equa-

tion (4), the normal vector field N is defined as:

N = Xu ×Xv =(
ρ̃2u− ρ̃ρ̃uε2

ε4
,
ρ̃2v − ρ̃ρ̃vε2

ε4
,
ρ̃2 + ρ̃ε2(ρ̃uu+ ρ̃vv)

ε4

)
.

(26)

As Fp = Fq = 0 ⇐⇒ p = x̃u = q = x̃v = 0, by using

equation (11) we deduce that ρ̃u = 0 and ρ̃v = 0. Con-

sequently, substituting into equation (26) we obtain:

N =
ρ̃2

ε4
(u, v, 1), (27)

which is colinear with the optical ray (u, v, 1). ut

Using Theorem 4 we classify the critical points into

three categories: 1) isolated critical points, 2) critical

curves and 3) critical surfaces. For instance if S is a

plane, H contains a single isolated critical point and

if S is the visible portion of the sphere centered at the

camera center,H contains all points in S and all critical

points form a critical surface. We give a formal charac-

terization of the different categories of critical points in

appendix A.

The projection of the set H in the image plane is

denoted by Hi. It splits the image domain into sub-

domains where the reconstruction solution is unique

thanks to Theorem 2 for a given initial strip. The setHi
can be found by solving the characteristic system (16)

for each initial condition and searching along the char-

acteristic strips the points where p = q = 0. This strat-

egy is not practically relevant because the numerical

ODE solvers that can be used to solve the characteris-

tic system are unstable around critical points. We now

show that Hi can be found without solving the charac-

teristic system. This allows one to find an upper bound

on the number of global solutions to the PDE (12) given

an initial strip.

Setting ρ̃u = ρ̃v = 0 (a consequence of p = q = 0) in

equation (10) we obtain the following surface, defined

by the function x̃max : R2 7−→ R:

x̃max = |ε3|
√
Ū . (28)

that we call the maximal surface and denote by SC . The

maximal surface is not a solution of the reconstruction

PDE (12) but it is tangent to any possible solution at

the critical points. We define HC as the set of all critical

points contained by all the solutions of the reconstruc-

tion PDE (12). Therefore, HC contains H. The next

theorem proves that the extrema of the maximal sur-

face forms the set HC .

Theorem 5 The set of all critical points for all the

solutions HC is the set of all extrema of the maximal

surface SC.

Proof The maximal surface SC is parametrized as:

Xmax(u, v) = (u, v, x̃max) , (29)

where x̃max is given by equation (28). By definition SC
only fulfills the PDE (12) at the extrema of x̃max where
∂x̃max

∂u = ∂x̃max

∂v = 0. Therefore, they are critical points

and they are included in HC . Now, for any particular

solution surface Ss parametrized with (u, v, x̃) we have

p = q = 0 at a critical point. By substitution in the

PDE (12) we have that x̃ = x̃max at the critical point.

Therefore it belongs to the maximal surface and it is

one of its extrema. ut
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According to Theorem 5, we can find HC directly from

SC obtained using equation (28). As H ⊂ HC we use HC
as a way to simplify the detection of the critical points

H of Ss.

4.5 Uniqueness of Global Solutions

Using Theorem 2 we can guarantee the solution of the

PDE (12) to be unique in a local domain near the initial

strip where |Fp|+ |Fq| > 0. Local domains are delimited

by critical curves including also boundaries of critical

surfaces. The effect of isolated critical points can be ne-

glected as they do not generate multiple solutions. As

a consequence, if our initial strip passes through every

region delimited by these curves, Theorem 2 then guar-

antees the uniqueness of the reconstruction. Otherwise

there may exist multiple solutions.

We propose a theorem and a corollary to formal-

ize these properties. Theorem 6 studies the case where

there exists a single critical curve that divides the im-

age into two regions and the initial curve belongs to

one of the regions. We show in that case that there is

a maximum of two solutions. In Corollary 1 we extend

the result to a case with n regions and the initial curve

crossing m of them.

Theorem 6 Given a surface S parametrized with

(I, Xp), a critical curve c(t) that splits I into 2 re-

gions and an initial strip r(s) that does not intersect

c(t), then the number of solutions is upper bounded by

2.

Proof Fig. 4 shows a graphical representation of the

theorem. Let c(t) = (u(t), v(t), x0) be the critical

curve where by definition x̃(u(t), v(t)) = x0 is con-

stant along the curve and thus x̃u(u(t), v(t)) = 0 and

x̃v(u(t), v(t)) = 0. The critical curve has associated the

strip (u(t), v(t), x0, 0, 0). Assume that at t = t0 the di-

rection of the critical curve is aligned with the v axis

(which can be ensured by a local change of variable in

the PDE). In that case we have that
∂nx̃

∂vn
(u(t), v(t)) = 0

for all n. By assuming that x̃ is analytic in c(t) (i.e. it

admits a convergent Taylor series in a neighbourhood

of c(t)), there exists a local 2D neighbourhood ∆ ⊂ I
of (u(t0), v(t0)) where x̃v = 0 (and all its derivatives).

Therefore, restricted to ∆ the original reconstruction

PDE can be transformed into the following first-order

ODE in the independent variable u:

x̃2

ε6
+
x̃2u
4ε4

(1 + u2)− Ū(u, v0) = 0, (30)

where u is the independent variable and v0 = v(t0).

Note that a solution to equation (30) corresponds to

Fig. 4 Illustration of Theorem 6 where a critical curve c(t)
shown in red splits the domain into two regions. As the initial
strip (green) does not intersect the critical curve c(t), there
exist two potential different solutions. The magenta charac-
teristic strip r(t) starts from the initial strip r(si) and reaches
the critical curve at point p. At this point two solutions of
the strip are possible. The pink one lies on Ss1, the blue one
forms a second solution Ss2.

the strip (u, v0, x̃, x̃u, 0). We showed that the type of

equation (30) has a maximum of two local solutions [11].

This implies that in ∆ there exists a maximum of two

strips for each point of the critical curve. By imposing

integrability conditions to the bundle of strips derived

from ODE (30) and the fact that there is a single critical
curve in ∆, then there exists a maximum of two local

solutions of the original PDE in ∆. By using Theorem 2

each solution in ∆, which contains points outside the

critical curve, yields a single solution of the PDE in the

corresponding region of I split by c(t). ut

Corollary 1 Given a surface S parametrized as

(U,Xp) splitted in n regions by n − 1 critical curves

and given an initial strip r(s) that passes through m

of these regions, the number of solutions is bounded by

2n−m.

Proof As the initial strip r(s) passes through m regions,

Theorem 2 guarantees the uniqueness of the solution in

these m regions. We prove the bound by induction using

the previous theorem applied for the n−m regions. Let

i be the induction variable. If i = m+ 1 then the previ-

ous theorem guarantees that the number of solutions is

bounded by 2. If i = n −m, by the induction hypoth-

esis the number of solutions is bounded by 2n−m−1.
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When the characteristic curves reach the new critical

curve, by Theorem 6 the number of possible solutions

is bounded by 2. Consequently, the number of possible

solutions for the iteration i = n − m is bounded by

2 · 2n−m−1 = 2n−m. ut

Note that given an initial curve γ(s) that satisfies

the compatibility conditions (20) and (21), there is a

maximum of two local solutions upgrading the curve to

form an initial strip, see Theorem 3. Applying Corol-

lary 1 for each of the two strips upper bounds the num-

ber of solutions by 2n−m+1.

Critical curves are unstable cases in equiareal SfT

as any small perturbation in the camera location would

remove them by decentering the spherical surface they

belong to with respect to the coordinate origin. In ad-

dition we have observed in Sect. 5.1.2 that some of the

ambiguities lead to unsmooth surfaces that even tend

to invade the retinal plane at z = 1.

4.6 Reconstruction Algorithm

We propose a reconstruction algorithm to obtain the

solutions of equiareal SfT based on our theoretical re-

sults. The inputs to our method are the template T , an

image I of the deformed surface S and an initial curve

γ(s) that lies on S or a complete initial strip c0(s).

The outputs are the surface S or the multiple deformed

surface solutions {Si}, the critical points and critical

curves H and the split regions. The algorithm has the

following steps:

1. Compute the warp η from point correspondences be-

tween the image I and the template’s texture map,

defined in U . Calculate the determinant of the first

fundamental form Ū(u, v) from η and Xt.

2. Case 1: If an initial data curve γ(s) is given, then,

test if it satisfies the compatibility conditions (20)

and (21). If only a finite number of points in the

curve do not satisfy the conditions, split the curve

and run the algorithm for each piece. Upgrade the

initial curve to form the two initial strips φ(s) and

ψ(s) by solving the quadratic system (20) (Theo-

rem 3 guarantees a maximum of two solutions). For

each initial strip, we have at least one solution sur-

face.

Case 2: If an initial strip c0(s) is given, then, test if

the initial curve γ(s) associated with c0(s) satisfies

the compatibility conditions (20). Then, Theorem 2

guarantees a unique local solution around the initial

strip.

3. Compute the maximal surface from equation (28)

and compute the set of critical points HC . If there

is any critical curve, compute Hi and the partition

of the image plane.

4. For each point p = γ(ti), ti ∈ I, solve the ODE

system (16) with a generic ODE solver (we use the

Runge-Kutta method) using (γ(ti), φ(ti), ψ(ti)) as

initial strip. This gives a characteristic strip which

is on the solution surface.

5. At the points where the characteristic curves meet

a critical curve, compute the two possible solutions

and continue the reconstruction for each branch.

6. Integrate all characteristic curves that belong to the

same solution in a single surface.

7. Refine each surface as described in Appendix B.

This uses the Levenberg-Marquardt algorithm to

minimize a maximum a posteriori (MAP) cost.

In practice, computing the warp in Step 1. requires

methods such as [43,49] that solve deformable registra-

tion in the presence of occlusions, self-occlusions and

mismatches. Besides, in case of self-occlusions the warp

becomes piece wise differentiable [18]. This splits the

surface in regions where our reconstruction method can

be applied. When multiple initial curves occur we first

reconstruct surface patches by solving the characteris-

tic system independently for each initial curve. Those

surface patches which intersect and share their normal

vector are considered part of the same surface, thus en-

forcing spatial consistency. We can check the equality

between tangent planes in the intersection area because

the characteristic system (18) gives us the normal vec-

tors through variables p and q.

5 Experimental Results

We evaluate our reconstruction algorithm with syn-

thetic and real data. We compare our reconstruction

algorithm with five different non-isometric SfT meth-

ods (Bartoli12c [8], Malti13 [2], Malti15 [32], Haou-

chine14 [21] and Ozgur16 [39]) and one isometric SfT

method (Chhatkuli17 [12]). We use EquiA-r to denote

our method described in Sect. 4.6 and EquiA to de-

note our method without the refinement step 7. We

also include two alternatives to our method. We de-

note by EquiA-rci the refinement step 7 initialized with

the maximal surface obtained analytically from Ū using

equation (28). We denote by EquiA-rc the same method

without including points from the initial curve in the

refinement cost (with ν = 0 in equation (33)).

We measure the depth Mean Square Error (MSE)

between each 3D reconstruction and the ground truth

to evaluate the reconstruction accuracy.



Equiareal Shape-from-Template 11

5.1 Synthetic Data

5.1.1 Regular Cases

We generate 10 random pieces of bending paper using

the tool provided in [41]. Each shape represents an iso-

metric deformation φi, with i = 1, . . . , 10, of the plane.

We then generate a planar equiareal map ∆ between

two planes. We use the family of planar equiareal map-

pings from [15] with δ(r) = r giving:

∆δ(r) : R2 7−→ R2

(r cos(θ), r sin(θ)) 7−→ (r cos(θ + δ(r)), r sin(θ + δ(r)))

(31)

By composing isometric embeddings with planar

equiareal maps we obtain equiareal embeddings of the

plane ϕi = φi ◦ ∆, with i = 1, . . . , 10. Fig. 5 shows

some examples of these 3D equiareal maps. The com-

Fig. 5 Examples of synthesized equiareal embeddings re-
sulting of an isometric embedding (a bent piece of paper)
composed with a planar equiareal map. We show in magenta
curves in the deformed surface that map to straight lines in
the template.

plete setup is shown in Fig. 6.a.

We generate synthetic images of resolution 640×480
pixels using a camera with a focal length of 200 pix-

els. Each surface has a length comprised between 6cm

and 10cm. None of the generated surfaces has critical

curves. We use N = 1000 point correspondences be-

tween the template and each of the images. Gaussian

noise is added to the images with σ ∈ [0, 3] pixels. An

initial strip is provided in order to run our algorithm

EquiA, see Sect. 4.6. We perform 100 trials for each

noise level. Fig. 6.b shows the average depth MSE of

the 10 generated surfaces against noise level for EquiA.

Standard deviation is also shown on the graph. We ob-

serve that the reconstruction degrades gracefully with

the increase of noise.

In order to compare our method with other non-

isometric methods, we repeat the same experiment with

one surface and 10 trials for each noise value. This is

because Malti13 is very slow (several hours per noise

value are required). Fig. 6.c shows the evaluation re-

sults. Our method obtain the best results for this ex-

periment, nearly followed by Ozgur16. Haouchine14 is

competitive but only in the absence of noise. Malti15

is fast but much less accurate than the other methods.

Malti13 obtained the worst results. Chhatkuli17 was

not evaluated in this experiment as it consistently pro-

vides a very high error.

EquiA and Ozgur16 show similar results in the

previous experiment. There however exist cases where

Ozgur16 fails to recover the surface. We show such a

case in Fig. 7 using synthetic data. We simulate the

equiareal deformation of a cylindrical template with

radius equal to 1. This surface is stretched along the

x-axis. To preserve the area, the cylindrical surface is

shrunk along the y-axis with a factor of 1.5. This way,

the transformation is a 3D equiareal map. We observe

that Ozgur16 does not recover the correct shape even

after more than 10, 000 iterations, while EquiA accu-

rately reconstructs the shape.

5.1.2 Degenerate Cases

Fig. 8.a shows two surfaces (magenta and green) that

are equiareal deformations of the plane and have the

same perspective projection. The magenta surface be-

longs to a cylinder with a symmetry axis on the xy-

plane that passes through the camera center. This

means that this cylinder has a critical curve (see re-

mark 2 in appendix A). By computing HC we find this

critical curve, that splits the image domain in two re-

gions. In this example the initial curve is contained in

one of the regions and according to Theorem 6 there is

a maximum of two solutions to the same reconstruction

PDE (12). Solving the PDE (12) we find two solutions

depicted in Fig. 8.a as the green and magenta surfaces.

The green surface is equal to the cylinder in the region

that contains the initial curve but it differs from the

cylinder in the other region. Fig. 8.a shows the maxi-

mal surface in red. As mentioned in Sect. 4.5, these are

degenerate cases of our method as a small perturba-

tion in the camera position would remove the ambigui-

ties. Fig. 8.b shows the results of EquiA-rci, initializing

the method with the maximal surface (red) and adding

anchor points from the solution closer to the camera

(green). The reconstruction result after refinement is

displayed in blue. Fig. 8.c shows the results of EquiA-

rc by initializing the method with the maximal surface

(red). The reconstruction result (blue) converges to the

cylindrical solution (magenta), which is closer to the

maximal surface. This experiment confirms that the re-

finement algorithm converges to a local minimum and

that it is strongly influenced by the initialization.
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(a) Synthetic experimental setup. (b) Depth-MSE (mm) for EquiA. (c) Comparison: Depth-MSE (mm).

Fig. 6 Synthetic data experiments.
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Fig. 7 The original cylindrical surface (template) is
stretched by a factor 1.5 (ground truth). The result of EquiA
is represented in magenta and Ozgur16 in green. The initial
curve is in orange. We show the depth error in both cases at
the bottom.

5.1.3 Influence of the Initial Strip

We evaluate the influence of the initial strip (ini-

tial curve) in our reconstruction method (EquiA and

EquiA-r), see Fig. 9. The experiment consists of the

reconstruction of a cylindrical surface using different

initial curves. The initial curves are represented with

magenta and orange points in the first and second rows

respectively. The first row in Fig. 9 shows the character-

istic curves computed by EquiA. The second row shows

the reconstruction after the refinement step EquiA-r.

The first four columns (9.a-9.f, 9.b-9.g, 9.c-9.h, 9.d-9.i)

represent different rotations of the same initial curve

with respect to the center of the surface. We rotate the

curve by 20◦ on each step. We observe that the recon-

structed curves derived from the initial curve follow

the same direction in all cases. As was mentioned in

Sect. 4.3, characteristic strips are intrinsic to the sur-

face and do not depend on the shape of the initial curve.

However the shape of the initial curve does affect the

amount of reconstructed area, as is observed by com-

paring 9.a with 9.d. In fact, in the limit case where

the initial curve does not comply with the compatibil-

ity conditions, the reconstructed area is degenerate and

becomes the initial curve itself. We also show that the

entire domain can be completely recovered using our

refinement method EquiA-r (second row of Fig. 9).

The last column of Fig. 9 represents the reconstruc-

tion of the cylindrical surface using a circumference

as initial curve. The characteristic curves obtained by

EquiA with this initial condition 9.e are exactly the

same in all cases as we mentioned previously.

5.2 Real Data

5.2.1 Wide-Baseline Datasets

We propose experiments with 6 different datasets. DS1,

DS2 and DS3 show the stretching of three different t-

shirts, DS4 shows large stretching of an elastic fabric,

DS5 shows the deformation of a balloon and finally,

DS6 shows the deformation of an elastic sock. We use

Microsoft’s Kinect 2 to grab 1920×1080 pixels RGB im-

ages and 512×424 pixels depth images used for ground-

truth. Kinect 2 has a maximum range of 4.5m and a 60

degrees field of view with millimeter accuracy. As we

mention in Sect. 4.5, the existence of critical curves is

possible (see the Sect. 5.1.2) but practically improbable.

None of the recorded datasets contain critical curves.

Therefore, the subset H only contains a finite set of

critical points and there will be a single solution. We

use an initial strip in all real experiments except for

Equi-rc which does not require it. In case of giving an

initial curve, we use EquiA-rc method to disambiguate

from both two solutions as it usually gives a solution

closed to the true surface. In some practical cases, the

initial strip can be obtained trough isometric SfT in ar-

eas where the objects were isometrically deformed, or

from rigid areas using SfM.

We first compare EquiA against the isometric SfT

method Chhatkuli17. We use a piece of bending pa-

per with a strong isometric deformation. We provide
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(a) The green and magenta surfaces are
both solutions of the PDE. The red sur-
face is the maximal surface.

(b) Reconstructed surface with EquiA-
rci (blue) that includes anchor points
from one of the surfaces (green).

(c) The reconstructed surface with
EquiA-rc (blue) falls into the second sur-
face (magenta) which is closer to the
maximal surface (red).

Fig. 8 Double solutions in the reconstruction of a cylinder with the perspective camera.
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gth
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Fig. 9 Reconstruction of a cylinder with different initial strips. The first row shows the characteristic strips obtained with
EquiA. The first four columns use the same initial curve rotated different angles. The fifth column uses a circumference as
initial curve. The last row shows the result after using the refinement step EquiA-r. See Sect. 5.1.3 for more details.

Fig. 10 Isometric deformation of a piece of paper.
Chhatkuli17 achieves excellent shape accuracy without any
initial curve (orange points).

EquiA with an initial strip taken from the ground-truth

shape. Fig. 10 shows the reconstruction results and the

depth error of both methods in millimeters. As expected

Chhatkuli17 is very accurate in this case, not requiring

the initial curve. EquiA obtains also very good results

despite the fact that the equiareal model is much less

constrained than isometry.

We now compare our equiareal SfT methods against

the aforementioned state-of-the-art non-isometric SfT

methods and Chhatkuli2017 using six different datasets

of common objects undergoing elastic deformations. An

initial strip is provided for the equiareal algorithms

EquiA, EquiA-r, EquiA-rci except for EquiA-rc. The

non-isometric SfT methods also use it as boundary con-

ditions but not the isometric one. We show the results in

Fig. 11. We provide for each experiment the coefficient

of non-equiareality for all methods. This coefficient is

a percentage computed by averaging the difference be-

tween the determinant of the first fundamental form

before (template) and after the deformation:

αn-eq =
100

|N |
∑
pi∈P

|Ū(pi)− Ui(pi)|
|Ū(pi)|

(%), (32)

where P ⊂ I is a discrete set of N points.

As can be seen, the proposed equiareal methods

obtain the best results for all the proposed experi-

ments, particularly EquiA-r. EquiA obtains better re-

sults for DS1, DS2, DS3 and DS6 compared with the

other methods, but Haouchine14 achieves better results

than EquiA in DS4 and DS5. If we refine the solutions

(EquiA-r), we obtain the best results in DS1, DS2, DS3,

DS5 and DS6. The refinement method EquiA-rci ob-

tains better results than Haouchine14 in all the experi-

ments, shares the best result with EquiA-r in DS2, DS5

and DS6 and obtains the best result in DS4. The ver-

sion without initial conditions EquiA-rc also has very

good results and is better than the other methods in



14 David Casillas-Perez et al.

172.3 mm

12.1 mm

100.0 mm

74.9 mm

70.6 mm

Chhatkuli17

Chhatkuli17

Chhatkuli17

Chhatkuli17

Chhatkuli17

51.0 mm

Chhatkuli17

D
S
1

13.2 mm 59.1 mm 15.5 mm 16.9 mm

7.8 mm 4.9 mm 6.1 mm 10.1 mm

T

I

Ozgur16Malti15

EquiA-rci

Haouchine14

EquiA-r

Matli13

EquiA-rc

24.7 mm

Bartoli12

EquiA

17.3 mm 8.9 mm 49.9 mm 14.2 mm 12.8 mm

8.5 mm 2.7 mm 2.7 mm 6.3 mm

Ozgur16Malti15

EquiA-rci

Haouchine14

EquiA-r

Matli13

EquiA-rc

Bartoli12

EquiA

32.0 mm 23.9 mm 580.2 mm 32.3 mm 29.0 mm

3.8 mm 3.2 mm 3.3 mm 7.0 mm

Ozgur16Malti15

EquiA-rci

Haouchine14

EquiA-r

Matli13

EquiA-rc

Bartoli12

EquiA

332.7 mm 45.3 mm 90.1 mm 48.8 mm 135.2 mm

49.4 mm 29.0 mm 28.3 mm 40.5 mm

Ozgur16Malti15

EquiA-rci

Haouchine14

EquiA-r

Matli13

EquiA-rc

Bartoli12

EquiA

5.2 mm 2.9 mm 9.5 mm 6.0 mm 5.9 mm

4.9 mm 2.7 mm 2.7 mm 3.7 mm

Ozgur16Malti15

EquiA-rci

Haouchine14

EquiA-r

Matli13

EquiA-rc

Bartoli12

EquiA

Ozgur16

20.6 mm

Malti15

25.0 mm

EquiA-rci

1.4 mm

Haouchine14

13.3 mm

EquiA-r

1.4 mm

Matli13

24.7 mm

EquiA-rc

18.7 mm

Bartoli12

9.8 mm

EquiA

1.7 mm

1
3

.
6

7
%

T

I

T

I

T

I

T

I

T

I

D
S
1

1
3

.
6

7
%

D
S
2

D
S
2

1
7

.
5

5
%

1
7

.
5

5
%

D
S
3

1
5

.
6

7
%

D
S
3

1
5

.
6

7
%

D
S
4

2
0

.
4

1
%

D
S
4

2
0

.
4

1
%

D
S
5

3
5

.
5

5
%

D
S
5

3
5

.
5

5
%

D
S
6

5
0

.
8

2
%

D
S
6

5
0

.
8

2
%

Fig. 11 Comparison of non-isometric SfT methods over DS1, DS2, DS3, DS4, DS5, DS6. The initial strip is in orange.
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DS1, DS2, DS3 and DS4. Bartoli12 does not achieve

very good results even with a small stretching in DS1,

DS3. Besides, it takes substantial time to compute the

reconstruction. Malti15 is the quickest method but it

gives the worst reconstruction error in DS1, DS2, DS3,

DS5 and DS6. Malti13 obtains good results but it takes

a much longer time compared to the other methods.

Ozgur16 obtains results similar to Malti13 except for

DS4 but runs faster than Malti13, Bartoli12 and Haou-

chine14. Chhatkuli17 does not obtain good results in

the relatively simple deformations shown in DS1, DS2

and DS3 as the amount of stretching in these three

cases is enough to break isometry. However, it achieves

better results than Malti15 in experiments DS1 and

DS3, also improving over Bartoli12 and Ozgur16 in

DS4. We can see that all versions of our equiareal

method improve the other methods.

Choosing the best proposed method depends on the

nature of the reconstruction problem and the informa-

tion available a priori. EquiA achieves very good re-

sults. It is an analytical algorithm based on standar

ODE solvers (Runge-Kutta method) which is fast and

recovers all existing solutions. EquiA-r uses non-linear

refinement initialized by EquiA and gives the best re-

sults in almost all our experiments. Both EquiA and

EquiA-r require points from the initial curve. EquiA-

rci also requires points from the initial curve but refine-

ment is initialized with the maximal surface. It achieves

good results but in general is less accurate than EquiA-

r. It is interesting to observe that EquiA-rc, which does

not need any initial curve and is initialized with the

maximal surface, obtains comparable results with the

other equiareal methods and definitely better than the

other non-isometric methods compared.

Table 1 presents quantitative measures of compu-

tation time over the datasets DS4, DS5 and DS6 us-

ing a grid of 400 points. The experiment shows the

average computation time of each method, fixing a

maximum of 500 iterations. Malti13 has the longest

time, which is constant on the experiments as the max-

imum number of iterations is always reached. Bar-

toli12 and Haouchine14 obtain similar results. They

are faster than Malti13 and the convergence time is

more dependent on the experiment. Malti15, Ozgur16

and EquiA have a similar computation time at around 1

second. This is several orders of magnitude faster than

the other methods. EquiA-r, EquiA-rci, EquiA-rc and

Chhatkuli17 have similar computation times in the or-

der of several seconds. These measurements were made

on a mid-range laptop computer (Intel(R) Core(TM)

i7-6700HQ CPU @ 2.60GHz).

5.3 Video Datasets

We check the behaviour of our methods on video se-

quences. In this setup the 3D shape in the first frame

is known and used as the initial condition for EquiA-

rc. We compare this method with Chhatkuli17 and the

best elastic method, Haouchine14. Figs. 12 and 13 show

two video sequences that correspond to frames of the

datasets DS1 and DS4. We evaluate the algorithms

with several levels of frame dropping in the sequence

(5 and 20 frames). Video sequences with a frame drop-

ping of 20 show stronger deformations between consec-

utive frames than if we reconstruct the surfaces frame

by frame. The refinement algorithm requires more iter-

ations to converge to a local minimum.

Our algorithm obtains the best reconstruction in

both experiments. It obtains a similar depth error for

sequences with 1, 5 and 20 frame droppings. The al-

gorithm converges quickly to the minimum. We ob-

serve this behaviour with Chhatkuli17 but with a higher

error due to the non-isometric deformations. Haou-

chine14 outperforms Chhatkuli17 but degrades with

larger frame droppings. Besides, the number of iter-

ations and the computation time is several orders of

magnitude higher than our method’s, see Table. 1.

6 Conclusions

We have given a theoretical framework based on

Monge’s theory to study the existence and uniqueness

of SfT for equiareal deformations. This is the first paper

that studies the ambiguities in SfT for non-isometric de-

formations. We have given the proof of existence of a

maximum of two local solutions around an initial curve.

We have proposed an analytical reconstruction algo-

rithm based on standard numerical solvers for ODEs

that obtains characteristic curves that are guaranteed

to belong to the surface in a local domain. We have

also showed how to identify the domain where the so-

lution is unique and how to find the partitions of the

image domain where Monge’s existence theorem can be

applied. We have showed empirical evidence that the

method based on our theory is able to give accurate

and stable reconstructions of real objects undergoing

non-isometric deformations.

A Appendix: Classification of Critical Points

A.1 Isolated Critical Points

We define isolated critical points as follows.
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Bartoli12 Haouchine14 Malti15 Malti13 Ozgur16 EquiA EquiA-r EquiA-rci EquiA-rc Chhatkuli17
Mean-time (s) 301.92 334.53 1.25 981.77 0.97 1.40 3.55 3.14 14.48 6.90

Table 1 Mean computational time over datasets DS4, DS5 and DS5. The experiment was made while fixing a maximum of
500 iterations per algorithm and using a grid of 400 points.
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Fig. 12 Depth error in sequences with 1, 5 and 20 padding in the reconstruction of the dataset DS1.
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Fig. 13 Depth error in sequences with 1, 5 and 20 padding in the reconstruction of the dataset DS4.

Definition 3 A point p is an isolated critical point if it is
a critical point (ρ̃u = ρ̃v = 0) and the Hessian of the depth
function ρ̃ is non-degenerate.

Consequently, there must exist a neighbourhood around the
critical point p where all points are non-critical except for the
point p. By imposing integrability conditions, if the surface
has a finite number of these points, there exists only one possi-
ble solution to the reconstruction PDE in the neighbourhood
of p.

A.2 Critical Curves

Perspective critical curves are spherical curves. We prove that
perspective critical curves are contained in a spherical surface
whose center is located at the camera center. First of all, we
define critical curves as follows.

Definition 4 A curve C in the surface S is a critical curve of
the surface S with respect to the perspective parametrization
(I, Xp) if all its points are critical (ρ̃u = ρ̃v = 0).

Theorem 7 If C is a critical curve of a surface S with
respect to a perspective parametrization (U,Xp), then, the
curve C belongs to a spherical surface whose center is located
at the camera center.

Proof Fig. 14 illustrates the proof. Suppose that there exist
a point p of the critical curve C that does not belong to the

sphere S whose center is placed at the camera center and
has a radius of ρ0. There are two possibilities. If we assume
that p is not a critical point, then, the curve is non-critical,
contradicting the hypothesis. If we assume that p is a critical
point, there is a neighbourhood Ω ⊂ C of p where there exist
a point q ∈ Ω that is a non-critical point, contradicting the
hypothesis. So, critical curves are spherical curves that belong
to a sphere whose radius is located on the camera coordinate
center. ut

Remark 1 The only possible critical surfaces are the family
of conformal spheres centred at the camera center.

Remark 2 Given any surface of revolution whose axis of sym-
metry is in the xy-plane, that contains the camera center. If
its generatrix has a maximum, minimum or a saddle point
at t = 0, then, the surface has as a critical curve formed by
rotating this point around the generatrix. An example is a
cylinder whose generatrix passes through the camera center,
see Fig. 8.

B Refinement Method

We propose a refinement method for equiareal SfT based on
minimizing a MAP compound cost functional. We proceed by
defining the parametrization of S from the template domain
(U , ϕ), where ϕ ∈ C2(U ,R3). From the commutative diagram
shown in Fig. 2 we have that Xi = ϕ ◦ η, where we recall
that η is a known function. Working with ϕ instead of Xi
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Fig. 14 Proof that critical curves are spherical curves that
lie on a sphere whose center is located at the camera center.
If the curve C is critical, then, if there is a point p out of the
sphere S, either p is a critical point or there is a critical point
q in its neighbourhood.

allows us to propose a MAP data cost. We define the set
of correspondences between the template and the image as
pairs of 2D points (pi ∈ U , qi ∈ I) for i = 1, . . . , N . Our cost
functional is defined as:

ε[ϕ] = λεdata[ϕ] + µεequiA[ϕ] + κεsmth[ϕ] + νεinit[ϕ], (33)

where εdata is the data term:

εdata[ϕ] =

N∑
i=1

‖Πp(ϕ(pi))− qi‖2. (34)

εequiA is the equiareal constraint defined as:

εequiA[ϕ] =
∑
p∈P

‖I[∆(p)]− I[ϕ(p)]‖2, (35)

where P ⊂ U is a regular grid of points defined in the template
domain. I[Xt(p)] and I[ϕ(p)] are the determinants of the first
fundamental form of surfacesXt and ϕ respectively, evaluated
at point p. εsmth is a functional that minimizes the bending
energy of the surface which encourages the solution to be
smooth. Finally, the error of the initial conditions is defined
by:

εinit[ϕ] =
∑
i∈I

‖ϕ(ri)− si‖2, (36)

where I are the index set and ri are points in U that corre-
spond to the set of 3D points si ∈ S taken from the initial
conditions. The set of hyperparameters λ, µ, κ and ν are
scalars that control the importance of each functional and
are fixed.

We use a B-spline to approximate ϕ which converts the
variational problem of equation (33) into a non-convex poly-
nomial cost function. We use the Levenberg-Marquardt algo-
rithm to iteratively minimize the cost given an initial estimate
of ϕ.
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