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Abstract

Single-View Geometry (SVG) studies the world-to-image-mapping or warp, which is the relationship

that exists between a body’s model and its image. For a rigid body observed by a projective camera, the

warp is described by the usual camera matrix and its properties. However, it is clear that for a body whose

deformation state changes between the body’s model and its image, the ‘simple’, globally parameterized

warp described solely by the camera matrix breaks down. Existing work has exploited deformation to

reconstruct the deformed body from its image, but did not establish the properties of the deformable

warp. Studying these properties is part of deformable SVG and forms a recent research topic. Because

deformations may take place anywhere in the object’s body, and because they may be uncorrelated, the

warp is local in nature. Using a differential framework is thus an obvious choice. We propose a differential-

algebraic projective framework based on modeling the body’s surface by a locally-rational projective

embedding and on the 1D projective camera. We show that this leads, via the study of univariate rational

functions, to differential invariants that the warp must satisfy. It may seem surprising, given the generic

hypothesis made on the observed body, hardly stronger than mere local-smoothness, that constraints can

still be found. Our framework generalizes the Schwarzian derivative, the first-order projective differential

invariant, which holds under the assumption that the body’s shape is locally-linear. Our invariants may

be used to construct regularizers to be used in warp estimation. We report experimental results of two

types on simulated and real data. The first type shows that the proposed invariants hold well for an

independently estimated warp. The second type shows that the proposed regularizers improve warp

estimation from point correspondences compared to the classical derivative-penalizing regularizers.
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1 Introduction

Single-View Geometry (SVG) is concerned with how cameras form images of the world geometrically. More

precisely, SVG deals with the geometry and algebra of the warp, a mapping that exists between a model of

the world and a model of the image, as illustrated by figure 1. SVG endeavors to (i) establish the existence

and form of such mappings, (ii) study their characteristics and (iii) estimate them numerically. For rigid

bodies, SVG uses simple geometric primitives such as points and an algebraic projective framework, which

led to a deep understanding of points (i), (ii) and (iii) (Faugeras, 1993; Forsyth and Ponce, 2012; Hartley

and Zisserman, 2003). Point (i) merely uses the body’s pose and the camera’s pin-hole projection model,

and leads to the projective camera represented by a (3× 4) matrix, point (ii) studies what properties make

a (3 × 4) matrix valid as a camera and point (iii) solves the so-called camera resection or pose estimation

problem. The case of deformable bodies forms an open and challenging research challenge, owing to the

deformation causing the model and observed body shapes to be different. Deformable SVG is important

because it will form the mathematical framework for and deepen our understanding of the Shape-from-

Template (SfT) problem (Gumerov et al., 2006; Perriollat et al., 2011; Salzmann et al., 2007). In order to

define deformable SVG more specifically, we start with the informal definition of an important mapping, the

embedding. The embedding maps points from the body’s model to its deformed state in camera coordinates,

and thus extends the notion of relative body-camera pose from the rigid case as it also holds the body’s

deformation. As in the rigid case, the projection mapping represents the camera, mapping points from the

deformed body to its observed image. The warp is then defined as the composition of the projection with

the embedding. It maps points from the body’s model to the observed image of the deformed body. This

informal definition of the warp already provides a simple and generic answer to point (i). In contrast, point

(ii) is much more involved, but tremendously important to understand, for two main reasons. The first

reason is to understand the theoretical possibility of characterizing the observations forming valid images

independently of the body’s deformed state. It contrasts with the rigid case where the body’s state is already

known: in the deformable case, the observed shape is unknown because deformation occured between the

body’s state in the model and the body’s state as observed in the image. The second reason is that the

theoretical characteristics of the warp may be used to improve point (iii). For deformable bodies, it is

indeed very common to estimate the warp using a derivative-penalizing regularizer, as in the Thin-Plate

Spline (Bookstein, 1989) and optic flow computation (Fortun et al., 2015). An understanding of point (ii)

can provide physically sound regularizers, with the potential to improve warp estimation. Importantly, these

regularizers are independent of the observed shape and thus insensitive to reconstruction ambiguities. These

considerations however require further assumptions on the embedding, for, by definition, the warp is so far
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Figure 1: Geometric setup used in studying SVG. The mapping to be studied is the warp, which exists
between the body’s model and the body’s image. In the rigid case, the image shows the body’s model up to
pose and perspective projection. In the deformable case, the body’s shape changes between the model and
image with much higher complexity and the setup uses the embedding-projection framework. The 1D setup
is simpler to study that the 2D setup, yet provides valuable theoretical and practical insights for both cases.

just a mere locally-smooth mapping.

We propose to study deformable SVG for locally-rational projective embeddings. Locally-rational means

that the embeddings ressemble a rational function of some degree in the infinitesimal vicinity of any smooth

point. A rational function is formed by the ratio of two polynomials and thus naturally includes simple poly-

nomial functions. It is simple to see that the locally-rational embeddings lead to locally-rational warps, as

the projection mapping is essentially a ratio. A noteworthy consequence is that the polynomial embeddings

do not lead to a simplified form of the warp and thus of the SVG. Our motivations for choosing these embed-

dings are three-fold. Our first motivation is genericity: the chosen embeddings can represent the surface of

thin or thick objects, whether they deform isometrically or in more complex ways. Indeed, any embedding

can be locally approximated to a good extent by its Taylor or Padé approximation (Press et al., 2007) at

some finite order. Understanding the limits of using such an extremely generic prior, slightly stronger than

mere local-smoothness, forms a fundamental research question. A locally-linear embedding was successfully

used in isometric deformable reconstruction (Parashar et al., 2018). The chosen embeddings generalize this

concept, as they can behave locally as polynomials of a fixed but arbitrary degree, beyond linearity. Our

experimental results show that in terms of warp estimation, the quadratic and cubic locally-rational models

outperform the linear model, and so that the proposed generalization brings a practical improvement. Our

second motivation is simplicity and stability of the representation. A global embedding model would have

to adjust its complexity to the actual deformation. Therefore, coping with complex deformations would

come at the price of a higher degree, potentially causing instabilities. In contrast, the chosen embeddings

are locally constrained to behave similarly to rational functions of low degree. Our third motivation is

that this representation allows us to truly model perspective projection without ever approximating it. In-

deed, perspective projection is simply expressed by rationality, which is perfectly respected by the proposed
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invariants.

Our methodology is to first study point (ii) for strictly rational embeddings, establishing differential

invariants on the warp. Because the existence and study of such invariants for an arbitrary degree were not

previously established, except for the special case of linear rational functions (Ovsienko and Tabachnikov,

2005), this forms a main contribution of our work. We specifically studied the differential invariants though

other non-differential invariants may exist. We then study point (iii), deriving warp regularizers from our

differential invariants. We use these regularizers as soft penalties in warp estimation in place of the usual

derivative-penalizing regularizers. Concretely, we have chosen to work with a 1D setup, for which the

deformable body is a plane curve, the camera a projection from 2D to 1D and the warp a 1D mapping.

Our motivations are two-fold. Our first motivation is that the 1D warp case forms a necessary step to

establish the 2D warp case, where the deformable body is a surface and the camera a usual pin-hole.

The 1D case is simpler than the 2D case, yet conveys valuable insights on the theoretical form of the

sought invariants, their use in warp estimation and their practical impact. Indeed, our experimental results

show that in terms of warp estimation, the locally-rational representation substantially outperforms the

locally-polynomial representation assumed by the existing derivative-penalizing regularizers, when used in

a compound cost exploiting point correspondences. Our second motivation is that the 1D warp invariants

already give a subset of the 2D warp invariants. We show this fact by constructing a virtual 1D setup from

the 2D setup. The main result is that the 1D invariants hold for a 1D warp along any rational curve chosen

in the 2D model and for any 1D projection of the 2D image.

We first review previous work in §2 and give background material in §3. We then give our theoretical

results on the invariants of univariate rational functions in §4 and show how this applies to deformable 1D

SVG in §5. We give experimental results on warp estimation in §6 and a conclusion in §7. Finally, a first

appendix discusses the extension of our 1D framework to higher dimensions, in particular to form a basis

for 2D deformable SVG, and a second appendix gives the proof of our proposition regarding the invariants.

2 Previous Work

We split our review of previous work into four parts: deformable SVG, the 1D camera, rational functions

and the embedding-projection framework.

Deformable SVG. SVG has been well studied for rigid bodies (Faugeras, 1993; Forsyth and Ponce, 2012;

Hartley and Zisserman, 2003) and very scarcely for deformable bodies. Most of the work in SfT, whose geo-

metric setup is modeled by SVG, focuses on computing the body’s 3D deformation and not on characterizing

the warp’s properties (Gumerov et al., 2006; Perriollat et al., 2011; Salzmann et al., 2007). The estima-
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tion of rigid SVG and Multiple-View Geometry (MVG) from images of algebraic curves was thoroughly

studied (Kaminski and Shashua, 2004; Schmid and Zisserman, 2000). The deformable case of multiview

reconstruction was specifically studied for isometric curves (Faugeras, 1993). A comprehensive differential

framework was given in (Fabbri and Kimia, 2016). There are two main differences between these works and

ours. First, they use a rigid or an isometric prior, while we use a locally-rational model, which is a much more

generic, and thus much weaker constraint. Second, they study the differential relationships between space

and image curves for quantities such as speed, curvature and torsion, while we establish generic invariants

at any order.

The 1D camera. We use the 1D camera as a simplified case of the regular 2D camera. The 1D camera

was introduced in (Quan and Kanade, 1997) for line-based affine Structure-from-Motion but can be also

derived by analogy to the usual 2D camera. It has a total of 5 parameters which are 2 intrinsics (the

focal length f and the principal point q0, both expressed in number of pixels) and 3 extrinsics (a rotation

angle and two translation parameters). The strategy of using the 1D camera to simplify a 2D problem

was used in the rigid case, for instance the 1D trifocal tensor is much easier to understand and work with

than the 2D trifocal tensor (Faugeras and Mourrain, 1995; Faugeras et al., 2000). We defined the 1DSfT

problem, and showed that it makes expressing a constraint such as isometry much easier than in the usual

2D formulation (Gallardo et al., 2015). We showed that, in general configuration, 1DSfT has a discrete

number of solution if the isometric prior is used, but an infinite number of ambiguities otherwise. Solutions

derived in the 1D case can sometimes be used directly in the 2D case. For instance, the geometry of a 2D

camera in planar motion is equivalent to a 1D camera on the trifocal plane of the 2D cameras (Faugeras

et al., 2000).

Rational functions. Rational functions are used in several areas of applied mathematics such as data

interpolation via the Padé approximation (Press et al., 2007) and the Non-Uniform Rational B-Spline

(NURBS) (Piegl and Tiller, 1997). Their properties were studied for instance in (Sendra et al., 2008; Walker,

1978). The closest fundamental result to ours is probably the Schwarzian derivative (Ovsienko and Tabach-

nikov, 2009), a differential version of the cross-ratio which we showed may be directly used in warp estima-

tion (Pizarro et al., 2016). The Schwarzian is also the solution of the ODE 2µ(1)µ(3)− 3µ(2)2
= 0 (Ovsienko

and Tabachnikov, 2005), where µ(k) represents the k-th derivative of µ. In the context of SVG it is derived by

considering a linear projective embedding, or equivalently, making the assumption that the curve is locally

flat. Our theory generalizes the Schwarzian by considering rational projective embeddings of an arbitrary

degree and has the Schwarzian as a special case.

The embedding-projection framework. The embedding-projection framework has been extensively
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used to model SfT. In the 2D setup, differential solutions were found to resolve reconstruction for the

isometric and conformal models (Bartoli et al., 2015). The framework has more recently been used in

the 1D setup to study isometric reconstruction (Gallardo et al., 2015). These works and their extensions

use differential equations giving the reconstruction in terms of the warp. However, none of them studied

deformable SVG. They thus assume that the warp is computed in a preliminary step, independently of the

reconstruction, thereby neglecting valuable constraints. In contrast, our study of deformable SVG shows

that the warp strongly depends on the assumptions made on the embedding. Deriving these warp invariants

by marginalising the embedding is far from trivial, but using them in warp estimation then brings substantial

improvements.

3 Background

3.1 Notation

We write logical equivalence as ⇔. We use C∞(Rc,Rd) for the set of smooth functions from Rc to Rd and

use the shortcut C∞
def
= C∞(R,R). We write U = [a, b] the set of natural numbers in the interval [a, b], for

a, b ∈ N. For a set U ⊂ N, U = [u1, u|U|], we define µ(U) def
= (µ(u1) · · · µ(u|U|))> as a multivalued function

giving the orders of derivatives of µ from U . We use R∗ to denote the set of non-zero real numbers and N∗

to denote the set of non-zero natural numbers.

3.2 Univariate Polynomial Functions

Let Pn be the set of univariate polynomials of degree n and P̄n
def
= P0 ∪ · · · ∪ Pn the set of univariate

polynomials of degree at most n. For instance, P0 is the set of constant functions, P1 the set of linear

functions, and P̄1 = P0 ∪ P1 the set of constant and linear functions. We have:

δ ∈ Pn ⇒ {δ(e) = 0 | e > n} (1)

δ(e) = 0 ⇒ {δ ∈ Pn | n < e} (2)

δ(e) = 0 ⇔ δ ∈ P̄e−1. (3)

3.3 Univariate Rational Functions

A univariate rational function µ is a fraction of two polynomials of degrees a, b ∈ N respectively. We define

µ’s degree as the pair (a, b) ∈ N2. Formally, a function µ is a univariate rational function if and only if
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∃a, b ∈ N s.t. Ra,b[µ] with:

Ra,b[µ]
def⇔

(
∃α ∈ Pa, γ ∈ Pb, gcd(α, γ) ∈ R∗ s.t. µ =

α

γ

)
, (4)

where gcd(α, γ) is the polynomial greatest common divisor of α and γ. The condition on gcd(α, γ) means that

the fraction cannot be simplified to a lower degree. The domain of µ is Ω ⊂ R with Ω = {x ∈ R | γ(x) 6= 0}.

A function µ is a univariate rational function of degree at most (a, b) if R̄a,b[µ] holds with:

R̄a,b[µ]
def⇔

(
∃α ∈ P̄a, γ ∈ P̄b s.t. µ =

α

γ

)
. (5)

Abusing notation, we write µ ∈ Ra,b and µ ∈ R̄a,b equivalently to Ra,b[µ] and R̄a,b[µ] respectively. The

set of univariate rational functions forms a field, meaning that the addition, subtraction, multiplication and

division of rational functions is a rational function.

4 Canonical Invariants of Univariate Rational Functions

We show that a univariate rational function µ of degree (a, b) satisfies differential invariants. These invariants

form an infinite set for a given degree (a, b), as function µ also satisfies the invariants of higher degrees.

We here define and study the canonical invariant of degree (a, b). Importantly, when applied to a function

µ ∈ C∞, the canonical invariant constrains µ to be a univariate rational function of degree at most (a, b).

It is straightforward to see that the canonical invariant thus implies all the invariants of higher degrees.

Our key result is given in the next proposition. It is an equivalence between the set of univariate rational

functions of some maximal degree and the canonical differential invariant of that degree. The proof of this

proposition is given as appendix B.

Proposition 1 (Canonical invariants). A function µ is a univariate rational function of degree at most

(a, b) if and only if it satisfies the canonical invariant Ia,b. Formally:

∀µ ∈ C∞, a, b ∈ N R̄a,b[µ] ⇔ Ia,b[µ]

with:

Ia,b[µ]
def⇔

 ∑
s∈Sb+1

sgn(s)

b+1∏
i=1

(
a+ i

si − 1

)
µ(a+i−si+1) = 0

 . (6)

We use Sb+1 to generate all permutations of the set [1, b+1] and sgn(s) ∈ {−1, 1} to compute the signature1

1We have that sgn(s) = 1 if s can be generated by an even number of interchanges of the elements of [1, b+1], and sgn(s) = −1
otherwise.
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of permutation s = {s1, . . . , sb+1}. Ia,b[µ] is an homogeneous polynomial ODE of degree b + 1. The lowest

and greatest orders it involves are max(a− b+ 1, 0) and a+ b+ 1 respectively.

Examples. We give four examples of univariate rational functions and canonical invariants, and discuss

the general case and advanced examples. An important case is the one of linear fractional functions, which

are univariate rational functions of degree (1, 1). Any univariate rational function µ of degree (1, 1) can be

written as µ(x) = a1x+a0
b1x+b0

for a0, a1, b0, b1 ∈ R. Proposition 1 says that such functions are also characterized

by the following differential canonical invariant:

I1,1[µ] ⇔
(
−2µ(1)µ(3) + 3µ(2)µ(2) = 0

)
.

This can be easily verified. This invariant is the ODE from which the Schwarzian derivative was de-

rived (Ovsienko and Tabachnikov, 2005), and as expected, it corresponds to linear fractional functions,

called homographies in the context of projective geometry. The same reasoning leads to the differential

canonical invariant for the quadratic fractional functions, using (a, b) = (2, 2), as:

I2,2[µ] ⇔
(
− 12µ(1)µ(3)µ(5) + 15µ(1)µ(4)µ(4)

+ 18µ(2)µ(2)µ(5) − 30µ(2)µ(4)µ(3)

+ 40µ(3)µ(3)µ(3) − 30µ(3)µ(2)µ(4) = 0
)
.

The numerator’s and denominator’s degrees need not be equal, and we can for instance derive the canonical

invariants for the constant-quadratic or the quadratic-linear fractional functions as:

I0,2[µ] ⇔
(
µ(0)µ(0)µ(3) − 3µ(0)µ(2)µ(1)

+ 6µ(1)µ(1)µ(1) − 3µ(1)µ(0)µ(2) = 0
)
,

and:

I2,1[µ] ⇔
(
−3µ(2)µ(4) + 4µ(3)µ(3) = 0

)
.

We observe that the order of the invariants increases with a, while the number of terms and degrees increase

with b.

Generally speaking, any rational plane curve induces a rational warp which thus satisfies the proposed

invariants. For example, the warp µ induced by a cubic B-spline satisfies I3,3[µ], while the warp µ induced

by a cubic NURBS satisfies I9,9[µ], as shown in §5.3.
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Polynomial kernel of the canonical invariants. The kernel of the simple derivative invariant of order

e is formed by the polynomials of degree e − 1, see equation (3). The canonical invariant of order (a, b)

also includes polynomials in its kernel, forming the polynomial kernel of the canonical invariant. Their

degree is now derived in terms of a, b. As can be seen from equation (6) and from the examples above, the

canonical invariant Ia,b[µ] is a sum where each term has partial derivatives of µ as factors. Therefore, using

equation (1), there must exist a polynomial µ̂ so that Ia,b[µ̂] holds. We call µ̂ ∈ P̄d the polynomial kernel

of Ia,b, and define the polynomial kernel’s degree d as the greatest natural number so that ∀µ̂ ∈ P̄d, Ia,b[µ̂]

holds. It is easy to show that d = a. This is obtained by considering that each term in Ia,b[µ] must vanish.

Because a term is a product of derivatives, what matters is thus the greatest order involved in the term, as

the derivative at this order vanishes with a higher degree polynomial than the other derivatives. Overall,

for all terms to vanish, we must thus select d + 1 as the minimum over the terms in Ia,b[µ] of the greatest

order involved in each term. By examining equation (6) we can compute the sum of orders on each term

as
∑b+1

i=1(a+ i− si + 1) = (a+ 1)(b+ 1), which is a constant value. Additionally, there is a term in Ia,b[µ]

where all orders are equal. Together, these imply that d + 1, the minimum over the terms of the greatest

order per term, is given by the order of the term where all factors have the same order. Because we have

b+ 1 factors per term, we obtain d = (a+1)(b+1)
b+1 − 1 = a. For the four examples above we have d = 1, d = 2,

d = 0 and d = 2. In the first example, it says that the polynomial kernel is made of linear functions µ̂ ∈ P1,

for which µ̂(2) = 0. Of course the canonical invariant does not only have polynomials in its kernel, but also

univariate rational functions, according to proposition 1. The polynomial kernel is indeed included in the

general kernel, as µ̂ ∈ P̄a ⇒ R̄a,0[µ̂]⇒ R̄a,b[µ̂] for b ≥ 0.

5 Deformable Single-View Geometry

We first give our notation and show how the warp is derived for a generic embedding and perspective

projection. We then specialize the derivation to rational embeddings, showing that the warp is then itself

rational. We finally show how to estimate the warp under a locally-rational regularization constructed from

the canonical invariants.

5.1 Notation

We denote the deformed plane curve as C in the projective plane P2. We represent C by a projective

embedding ϕ : Ω→ P2 where Ω ⊂ R is the curve parameterization’s domain, leading to C = ϕ(Ω). In other

words, we have that C is the set of points of the projective plane Q = ϕ(p) ∈ P2 obtained by embedding any

point p ∈ Ω. The camera is given by a function Π : P2 → R representing a 1D projective camera (Quan and
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Kanade, 1997), and the warp is simply η
def
= Π ◦ ϕ. We require η ∈ C∞(Ω,R), meaning that the warp must

be a smooth function, except at some points where the invariants may not be evaluated. This is implied by

requiring that C is a smooth curve lying entirely in the open projective half-plane representing the front or

the back of the camera, but however forms a weaker requirement.

5.2 The Warp for a Generic Embedding

The general 1D projective camera Π can be defined as the composition of a 2D homography h : P2 → P2

and the canonical perspective projection as:

Π(Q)
def
=

h>1 Q

h>2 Q
, (7)

with h1,h2 ∈ R3 and not both identically zero. These 6 parameters are defined up to scale, meaning that

only 5 of them are independent, and contain the camera’s 2 intrinsics and 3 extrinsics. Whether the camera

is calibrated or not does not change the way deformable SVG is defined in this context. Using equation (7)

we derive the warp as:

η = Π ◦ ϕ =
h>1 ϕ

h>2 ϕ
. (8)

5.3 The Warp for a Locally-Rational Embedding

We denote the three components of the projective embedding as ϕ> = [ϕ1 ϕ2 ϕ3]. We first assume that

the embedding is rational, meaning that we have ϕi ∈ R̄ai,bi , and so that there exist αi ∈ P̄ai , γi ∈ P̄bi ,

i ∈ {1, 2, 3} with ϕi = αi
γi

. We analyse the numerator and denominator of η in equation (8) by letting

l ∈ {1, 2} as:

h>l ϕ = hl1ϕ1 + hl2ϕ2 + hl3ϕ3

= hl1
α1

γ1
+ hl2

α2

γ2
+ hl3

α3

γ3

=
hl1α1γ2γ3 + hl2α2γ3γ1 + hl3α3γ1γ2

γ1γ2γ3
.

We thus have:

h>1 ϕ

h>2 ϕ
=

h11α1γ2γ3 + h12α2γ3γ1 + h13α3γ1γ2

h21α1γ2γ3 + h22α2γ3γ1 + h23α3γ1γ2
.

Since δ1 ∈ P̄a, δ2 ∈ P̄b ⇒ δ1δ2 ∈ P̄a+b, δ1 + δ2 ∈ P̄max(a,b) we have η ∈ R̄a,b with:

a = b = max(a1 + b2 + b3, a2 + b3 + b1, a3 + b1 + b2),
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where we recall that (ai, bi) is the degree of ϕi, i ∈ {1, 2, 3}. Therefore, we have η ∈ R̄a,a, and we can

use proposition 1 to state that Ia,a[η] must hold. This way, we have obtained constraints that the warp

must satisfy in order to be geometrically valid for a rational embedding. This brings an answer to point

(ii) of SVG, which we defined in the introduction as a study of the warp’s characteristics, independently

of the embedding and projection. Our target assumption however is that the embedding is locally-rational,

meaning that it is rational in an infinitesimal neighbourhood of each point p ∈ Ω. Consequently, the warp

is also locally-rational. The key advantage is that representing a non-trivial curve with a globally rational

embedding requires one to use high-degree polynomials for its numerator, its denominator or both of them,

whereas using high-degree polynomials is not stable in practice (Press et al., 2007). In contrast, a locally-

rational warp is a flexible and stable warp, which will be constrained to behave similarly to a low-degree

rational warp on a local basis. A similar reasoning may be found in the definition of B-spline curves, which

are both flexible and stable thanks to the use of local low-degree polynomials (Piegl and Tiller, 1997).

In practice, we use a stable generic deformable model for the warp and perform warp estimation using a

regularizer constructed from the canonical invariants. When used as a penalty term in warp estimation, this

regularizer makes the warp behave locally like a rational map. This process is described in the next section,

where we use a simple gaussian radial basis function to model the warp.

5.4 Estimating the Warp from Correspondences

We describe how the canonical invariants fit into a framework to estimate the warp from point correspon-

dences. This framework preserves the generic warp model’s natural flexibility while making it locally-

rational. It is different from using an explicit rational embedding which would make the warp globally

rational.

General methodology. We want to estimate the warp η from m point correspondences {pj , qj}, pj ∈

Ω, qj ∈ R, j ∈ [1,m]. The general methodology is to define a correspondence cost functional C[η] =

1
m

∑m
j=1 (η(pj)− qj)2 and a regularizer R[η], and to solve the following variational problem:

min
η
C[η] + λR[η], (9)

where λ ∈ R+ is the regularization weight, controlling the relative influence of the two terms in relationship

to the intrinsic scale of each term.

Regularization weight. The value of λ is important. We choose it by splitting the correspondences into

a training, a validation and a test set. We then sample λ on a predefined range, solve problem (9) for each
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value of λ using the training set and finally keep the warp with the lowest validation residual. The sampling

range is chosen such that outside it the resulting warp does not exibit significant changes. We use 30 samples

in our experiments.

Regularizer. In the literature, the regularizer is often derived from the L2 norm of the warp’s partial

derivatives integrated over the domain. For example, the B-spline (Piegl and Tiller, 1997) and the Thin-

Plate Spline (Duchon, 1976) were constructed by penalizing second-order derivatives. We call these the

polynomial regularizers because they constrain the warp to be locally-polynomial. We use a low order

k ∈ {1, 2, 3} because the regularizers are differential, thus measured very locally. This already allows

significant flexibility on the warp. They are defined as:

Rpolk[η]
def
=

∫
Ω

(
η(k)(p)

)2
dp.

We however show in §5.3 that a locally-polynomial or rational embedding leads to a locally-rational warp

with degree (a, a). We thus use the canonical rational invariant Ia,a given in proposition 1 to construct new

regularizers, for a ∈ {1, 2, 3}, as:

Rrata[η]
def
=

∫
Ω

(Ia,a[η](p))2dp.

The regularizers are applied to the whole warp. However, they are constructed as integrals over the domain

Ω. Importantly, the integrands measure the warp’s closeness to a polynomial or a rational function at

point p ∈ Ω. The regularizers thus measure the extent to which the warp is everywhere locally similar to a

polynomial or a rational function. In other words, the lower the regularizer, the closer the warp to a local

polynomial or rational function on each and every point of its domain.

Minimization. In order to solve problem (9), we introduce a flexible parametric representation of the warp

using a gaussian radial basis function (Bishop, 2006). The l gaussian bases are uniformly spread across the

domain Ω, which we define as Ω = {p ∈ R | 0 ≤ p ≤ 1} by default. Their position are defined as c1, . . . , cl ∈ Ω

and thus given by ck = k−1
l−1 , k ∈ [1, l]. Their standard deviation σ is fixed. The parameters to estimate are

thus contained in a set ω ∈ Rl of l weights, one for each gaussian basis. We use l = 50 gaussian bases with

σ = 5
l in our experiments. The parametric warp representation is thus η(p;ω)

def
=
∑l

k=1 ωk exp
(
− (p−ck)2

2σ2

)
.

We use gradient descent starting from the identity warp.

Results. Each estimated warp is tied to a regularizer and thus denoted accordingly, as pol1, pol2, pol3,

rat1, rat2 and rat3. As a baseline, we also used the radial basis function representation fitted without a

regularizer, by setting λ = 0 in problem (9). The resulting warp is denoted plain.
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Figure 2: Results of simulated data experiments. From left to right, the object is slanted, curved and both
slanted and curved. From top to bottom, the simulated camera and object with the observed point shown
in black, individual plots and joint plot with normalization of the six measured quantities.
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6 Experimental Results

Our two main goals are (i) to assess to which extent the invariants hold on an independent warp and (ii)

to assess their contribution to the stability of warp estimation when used to form regularizers. We report

two sets of experiments to evaluate these two main goals, both using simulated and real data.

6.1 Assessing the Invariants on Independent Warps

We want to compare the value of the invariants estimated for independent warps, in order to objectively

find the ability of each invariant to capture the warp’s behavior. This is because, even if theoretically the

rational invariants use a more physically valid representation of the warp than the simple warp derivatives,

their dependency on higher-order derivatives may cause instabilities. For simulated data, we use the true

warp, while for real data, we use the plain warp. We first describe the measured quantities.

6.1.1 Measured Quantities

We measured six quantities related to the six regularizers defined in §5.4. These are the first three derivatives

of the warp, namely |η(1)|, |η(2)| and |η(3)|, related to the classical polynomial regularizers, and the first three

canonical invariants, namely |I1,1[η]|, |I2,2[η]| and |I3,3[η]|, related to the rational regularizers. We use the

absolute value as only the magnitude of these quantities matters, not their sign. However, because they

are of different orders of magnitude, they cannot be cross-compared individually. We thus also report a

normalized version of these six quantities achieved by dividing by the maximum over a set of values.

6.1.2 Simulated Data

Simulation setup. We simulated a 1D perspective camera with a 1 unit focal length observing a 1D flat

object of size 4 units whose midpoint is located 10 units from the centre of projection. The flat object is then

deformed, which is represented by simulating its embedding from the template domain Ω. By projecting the

object, we arrive at a simulated image. Because the warp η is the composition of the known projection and

embedding functions, as shown by equation (8), we can estimate the warp’s target value and its derivatives

analytically at any point in Ω. We use a fixed point shown in black on the simulated shape in figure 2

to monitor the six measured quantities. We then did three types of basic transformations of the object:

slanting, curving and a combination of both. The embedding is rational for the former but not for the last

two transformations, as it involves trigonometric functions. This way, our measurements depend directly on

the basic transformations of slanting and curving, and can be plotted according to the amount of perspective,

of curvature, and of their combination.
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Perspective. The default fronto-parallel view of the object does not contain perspective. In order to

increase the perspective effect, we slanted the object by rotating it around its midpoint with an angle θ

varying between 0 and 45 degrees. The results are shown in the left column of figure 2. We observe that

the warp derivatives are sensitive to perspective. More precisely, |η(2)| and |η(3)| vanish at θ = 0, when

the object is exactly fronto-parallel, but then quickly increase with perspective, while |η(1)| does not even

vanish at θ = 0. On the other hand, all three canonical invariants |I1,1[η]|, |I2,2[η]| and |I3,3[η]| vanish

independently of the amount of perspective.

Curvature. The default flat-shaped object does not contain curvature. In order to increase curvature, we

curved the object by linearly morphing its shape with an arc of radius 4 units. Importantly, the resulting

shape is not described by a polynomial or a rational function. The results are shown in the middle column of

figure 2. We make the same observation on the warp derivatives as in the increasing perspective case: these

are sensitive to curvature. On the other hand, contrarily to the case of perspective, the canonical invariants

also show sensitivity to curvature. We observe that the sensitivity decreases with the order. More precisely,

|I1,1[η]| performs very similarly to |η(2)| and |η(3)|, while |I2,2[η]| and |I3,3[η]| show better performance,

|I3,3[η]| having a flat regime approximately twice as long as |I2,2[η]|. We observe that |I2,2[η]| and |I3,3[η]|

have a large intrinsic scale, exhibiting larger values than the other four invariants. The intrinsic scale of an

invariant is arbitrary. Importantly however, it does not influence the results of warp estimation, thanks to

the cross-validation mechanism selecting the regularization weight automatically.

Combined perspective and curvature. We increased both perspective and curvature by combining

slanting and curving of the object as above-described. The results are shown in the right column of figure 2.

We make the same observations as in the increasing curvature case: all six measured quantities are sensitive

to the combined effect of perspective and curvature. There are two important differences however. First,

there is a larger gap between the group formed by the warp derivatives and |I1,1[η]| and the group formed

by |I2,2[η]| and |I3,3[η]|. Second, there is a smaller gap between |I2,2[η]| and |I3,3[η]|.

Synthesis. Our experimental observations perfectly confirm the theory. First, we have that the warp

derivatives are not invariant to camera perspective and object curvature. Second, we have that all canonical

invariants are insensitive to camera perspective and have various sensitivities to object curvature. The first-

order canonical invariant is very sensitive to object curvature while the second- and third-order canonical

invariants have a good tolerance. This is sensible because a higher order canonical invariant models a higher

order rational embedding able to represent the object’s local curvature.
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Figure 3: Results of real data experiments. The top row shows the input 2D images from which the 1D
images were constructed. The middle and bottom rows show the six measured quantities individually and
in a joint plot with normalization, respectively.
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6.1.3 Real Data

Data acquisition and result presentation. We emulated a 1D camera by slicing space along a plane

containing the centre of projection of a 2D camera. Concretely, we created a 1D template with 30 regularly

spaced black tick marks which we printed on a paper sheet. We then selected a horizontal line crossing the

ticks on the 2D image of the deformed paper sheet. The ticks were manually marked in the 2D image and

these locations projected on the line. The 1D coordinates of the ticks along this line define the 1D image

obeying the geometry of a 1D camera. Each tick thus gives a 1D correspondence between the template and

the image. The interest of this dataset lies in the noise distribution on the data, which is more realistic than

on simulated data, in the realism of the 2D shape and in the realism of the physical imaging process, to

which the pin-hole camera is just an approximation. We fitted the warp plain to the correspondences. We

then chose 100 points uniformly spread in the template and used the warp to estimate their location in the

image and their derivatives. From these we estimated the value of the six measured quantities, sorted them,

and plotted them individually and jointly with normalization, as for the simulated data. For a particular

quantity, the plotted curve thus starts with the lowest values, obtained for the points where the warp best

minimizes the quantity, and increases towards the highest values, obtained for the points where the warp is

least compatible with the quantity.

Results. The results obtained for three images are shown in figure 3. The first-order derivative |η(1)| does

clearly not do a good job, as it has a steady logarithmic or linear increase. The second- and third-order

derivatives |η(2)| and |η(3)| perform better, but also show an increase at all points. Similarly, the first-order

canonical invariant |I1,1[η]| show an increase at all points, performing worse than |η(2)| and |η(3)|. The

second- and third-order canonical invariants |I2,2[η]| and |I3,3[η]| however both have a flat part starting at

the beginning of their curves. This flat part means that these two quantities, and thus the corresponding

invariants, form a better model of the warp than the other quantities. The third-order canonical invariant

|I3,3[η]| is significantly better than the second-order one |I2,2[η]|. These results agree with the synthetic data

experiments to some extent. Indeed, as predicted by theory, we have that the canonical invariants perform

better than the mere derivatives, because they model the effect of perspective. The results also differ from

the synthetic data experiments as for the canonical invariants, the larger the degree the better the results.

This is explained by the fact that the local shape is probably of higher complexity in the real data case, and

thus requires a more complex warp to be accurately captured.
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6.2 Assessing the Invariants in Warp Estimation

We want to evaluate the performance of the six regularizers defined in §5.4 in warp estimation from point

correspondences.

6.2.1 Simulated Data

We describe the simulation setup and then the results obtained when varying the amount of noise, the

number of points and when creating an extrapolation area.

Simulation setup. We used the same simulation setup as in §6.1.2 with a more complex shape obtained

by combining sines and cosines with a global rotation and translation. An example of shape is shown in

figure 4. We generated a finite number of point correspondences which we corrupted with noise following

a gaussian distribution whose standard deviation controls the noise level. We used a default noise level of

0.5% of the object’s image size and number of points of 20. We splitted the correspondence set equally

in a training and validation sets. We used the true warp to assess the estimated warps by measuring the

discrepancy at 1,000 regularly sampled test points at the zeroth-, first- and second-orders. The zeroth-order

discrepancy is the distance between the position predicted by the true and the estimated warp. The first-

and second-order discrepancies are the differences between the first- and second-order derivatives predicted

by the true and the estimated warp. The results are averages over 50 trials.

Noise. We vary the noise level between 0 to 1% of the object’s image size. The results are shown in the

left column of figure 4. We observe that the overall accuracy does not show the typical trend of degrading

with noise. This is explained by the fact that regularization smoothes out noise. We observe that the pol1

warp gives the poorest performance. It is followed by a group comprising the plain, pol2 and pol3 warps,

with pol2 performing slightly better in terms of first-order error. We next find the rat2 and rat3 warps

followed by the rat1 warp. These three warps are on par in terms of zeroth-order error but the rat1 warp

performs clearly best in terms of the first- and second-order errors.

Number of points. We vary the number of points between 10 and 50. The results are shown in the middle

column of figure 4. We observe that the accuracy increases with the number of points for all warps at zeroth-

and first-order. However, this increase becomes very shallow for the pol1, pol2, pol3 and plain warps

at second-order. The pol1 warp has the worst performance, followed by a group with the pol2, pol3 and

plain warps. The rat2 and rat3 warps perform better and the rat1 warp outperforms, except for lower

numbers of points. The differences between the warps increase with the order.

Extrapolation. We created an extrapolation domain by removing input correspondences in a localized
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Figure 4: Results of simulated data experiments. The top row shows an example of simulated configuration.
From left to right, the noise, number of points and extrapolation domain are varied. From the second to
fourth row, the zeroth-, first- and second-order errors are shown for the seven tested warps.
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Figure 5: Results of real data experiments. The top row shows the input 2D images from which the 1D
images were constructed. The other three rows show the result of the mild interpolation, strong interpolation
and extrapolation experiments, respectively.
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part on the side of the object. We observe that the accuracy degrades with the size of the extrapolation

domain. The pol1 warp has the worst performance and the rat1 warp has the best performance. We find

inbetween the five other warps with performances depending on the order and the size of the extrapolation

domain. In particular, the rat3 warp always outperforms at zeroth- and first-orders. It outperforms at

second-order when the extrapolation domain is smaller than 10% of the object.

Synthesis. Our experimental observations show that there is a real benefit in using a rational regularizer

over a regular polynomial regularizer in warp estimation. We have that the first-order rational regularizer

outperforms in almost all cases. It is closely followed by the second- and third-order rational regularizers,

then by the second- and third-order polynomial regularizers. Interestingly, the plain gaussian radial basis

function is on par with the second- and third-order rational regularizers. Finally, the first-order polynomial

regularizer underperforms in almost all cases. The differences across the warps generally increase with the

order of the estimated derivatives. The reason for these results is that the first-order rational regularizer

forms the optimal trade-off in terms of local shape capture capability and local constraint strength. Indeed,

the higher the degree, the more flexible the modeling capability but the weaker the constraint. The powerful

modeling capability of the second- and third-order rational regularizers is thus impaired by the weakened

local constraint they exert on the warp, compared to the first-order rational regularizer.

6.2.2 Real Data

In the case of real data, we do not have access to ground truth. We followed the estimation methodology

described in §5.4 and three cases of splitting the 30 input point correspondences into training, validation

and test sets. This allowed us to emulate mild and strong interpolation and extrapolation. The results are

the test residuals given in figure 5. They are averages over 50 trials for each configuration in each case.

Mild interpolation. The mild interpolation case emulates the non-uniformity of data by changing the size

of the training set, without creating overly large areas of missing data. We used a fixed size of 10 points for

each of the validation and test sets while vaying the number of training points from 10 to 5. These points

are all chosen randomly at each trial. The results are shown in the second row of figure 5. We observe that

all warps follow the same trend of nicely degrading for a decreasing number of training points. The plain

warp always performs worst while the rat2 warp always performs best, except for the convex shape where

the rat3 warp performs slightly better for larger numbers of training points. The second worst is the pol1

warp. It is followed by the pol2 and then the pol3 warps. The pol3 warp has performances close to the

rat1 warp, which is itself below the rat2 warp. Overall, the rat2 warp has the best performance. This

is because the rat2 warp has increased modeling capabilities compared to the rat1 warp from its higher
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degree. However, because the interpolation range is limited, the extra modeling capabilities of the rat3

warp did not compensate its lower constraining strength on the warp.

Strong interpolation. The strong interpolation case emulates the lack of data in possibly large areas

surrounded by available data by changing the size of the test set within the domain. We split the input

points in three parts. The left and right parts are used to sample the training and validation sets while the

middle part forms the test set. We use a fixed number of 10 points for each of the training and validation

sets and ensure that 5 of each lies in the left and right parts. The number of test points is then varied from

1 to 9. It represents the size of the gap that the warp has to interpolate. The results are shown in the third

row of figure 5. We observe that all warps roughly follow the same trend of degrading for an increasing

interpolation range. The plain and pol1 warps are the worst, except for the convex shape where the pol2

and rat1 warps also perform poorly. The pol3 and rat3 warps show better performances. The rat1

warp is on par, except for the convex shape. The rat2 warp performs better in all cases, except a single

configuration with one point on the concave shape. Overall, the rat2 warp has the best performance. The

explanation for these results are similar to the mild interpolation case. Even though the interpolation range

is larger, this remains a relatively easy task for the warps, and the extra modeling capability of the rat3

warp is not needed.

Extrapolation. The extrapolation case emulates the lack of data on the boundary of the domain by

changing the size of the test set. We vary the number of test points from 1 to 9 and choose them as the left-

most points in the input points. We use a fixed number of 10 points for each of the training and validation

sets. They are chosen randomly in the remaining input points. The results are shown in the fourth row of

figure 5. We observe a mild error increase or a slight error decrease, depending on the shape, for all warps but

the pol1 warp, for an increasing extrapolation range. Indeed, the pol1 warp quickly degrades dramatically

in all three shapes. It is then difficult to give a general ordering of the warps, as their performance changes

significantly across the configurations and shapes. Nonetheless, we observe that the plain warp does well

as compared to the two previous cases of interpolation. While the best results is generally achieved by the

rat3 warp, the pol2 and pol3 warps outperform on the concave shape for smaller extrapolations. Overall,

the rat3 warp has the best performance. This is explained by the fact that the rat3 warp has the highest

modeling capabilities of all the tested warps, and that extrapolation is fundamentally a more difficult task

than interpolation, in the sense that the model must capture the structure of the data to a very good extent

in order to make reliable predictions.
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7 Conclusion

We have proposed a theoretical framework based on locally-rational embeddings and univariate rational

functions to formulate the SVG of a deformable body observed by a 1D projective camera. This framework

is generic in the sense that it does not impose a specific deformation constraint, but uses mere local-

smoothness represented by a locally-rational embedding. Our work is theoretic and includes experimental

results showing the ability of the proposed invariants to improve the estimation of warps. Our framework

fits in the recent and fascinating research topic of understanding the visual geometry of a deformable body.

We now discuss two possibilities of future work based on our framework: deformable MVG and higher

dimensions.

A natural question when working on deformable SVG is whether the framework would form a basis

for deformable MVG. Local smoothness surely forms a good basis for deformable MVG because locally-

smooth warps have a local group structure. Concretely for two images, deformable SVG studies the smooth

warps ηi ∈ C∞ from the parameterization space defined from the embeddings as ηi = Π ◦ ϕi, i = 1, 2, while

deformable MVG studies the smooth inter-image warp η1,2 ∈ C∞. By construction we have η1,2 = η2◦η−1
1 =

Π ◦ϕ2 ◦ η−1
1 . We can thus construct a smooth embedding ϕ1,2 by using image 1 as a parameterization space

for image 2 as ϕ1,2
def
= ϕ2 ◦ η−1

1 . Therefore, one could use local-smoothness to define the warps and exploit

the proposed deformable SVG.

Extending our 1D framework to higher dimensions also forms an appealing idea. The extension to 2D is

particularly interesting, as it will allow one to handle the 2D images of surfaces taken by regular cameras.
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A Higher Dimensions

We give general points about extending our framework to higher dimensions. We then show that the 1D

invariants provide a partial set of invariants for the 2D setup using a virtual 1D setup.

A.1 General Points

Extending our 1D framework to higher dimensions present different types of difficulties, whether one extends

the dimension of the source or the target space. Note that extending the framework to handle 2D warps
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2D model, Ω′

2D embedding, 𝜑′

(pose and deformation)

2D projection, Π′

2D warp, 𝜂′

2D image

2D setup 3D deformed body

virtual 1D model, Ω 1D projection, Π

virtual
1D image

virtual 1D embedding, 𝜑
(pose and deformation)

1D embedding, 𝜅

virtual 1D warp, 𝜂

virtual 1D setup

Figure 6: The virtual 1D setup. We use this construction to show that the proposed invariants for the 1D
setup form a subset of the invariants for the 2D setup.

requires one to extend the dimension of both the source and target spaces. Extending the dimension

of the target space, for example to 2D in order to model the image of a deformable 3D curve, leads to

η> = [η1 η2] = 1
γ [α1 α2]. It is straightforward to see that this warp satisfies two invariants, Ia,a[η1] and

Ia,a[η2], for a polynomial embedding of degree a. However, these two invariants, according to proposition 1,

guarantee that ηi = αi
γi

for some αi, γi ∈ Pa, i = 1, 2, but they do not guarantee that γ1 = γ2, which is

a necessary condition for the SVG to be valid. It is quite likely that this requirement adds an invariant

that η must fulfill. Extending the dimension of the source space, for example to 2D in order to model a

deformable 3D surface, means that the partial derivatives will become tensor-valued functions. Though this

will require one to use a tensorial notation, such as Einstein’s, this will also allow one to follow the proposed

mathematical framework.

A.2 The Virtual 1D Setup

Our goal is to show that the 1D invariants form a subset of the 2D invariants. For that purpose we construct

a virtual 1D setup, as shown in figure 6. We start from the 2D setup, shown in figure 1, where the warp

η′ : Ω′ → R2, Ω′ ⊂ R2, is a 2D rational mapping. Therefore, both its source and target space dimensions

must be reduced by one in order to apply our 1D invariants. Importantly, these reductions must preserve

rationality. Our first step is to reduce the source space dimension. This is done by choosing a rational plane

curve parameterized by κ : Ω→ R2, a 1D rational embedding. Clearly, η′ ◦κ : Ω→ R2 is a rational function.

The domain Ω ⊂ R of κ stands for the virtual 1D body’s model. Our second step is to reduce the target
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space dimension. This is done by introducing a virtual 1D camera, represented by Π : P2 → R, in the 2D

image. Clearly, η = Π ◦ η′ ◦ κ : Ω → R is a rational function. Therefore, according to proposition 1, there

exist a, b ∈ N such that the invariant Ia,b[η] holds. The value of a, b is upper-bounded by a combination of

the degrees of κ and η′ and the parameters of Π. We can easily derive interesting cases out of this general

formulation. For instance, choosing the rational plane curve as a straight horizontal line in the 2D model,

we have κ(p) = [p y]>, where y ∈ R is a constant, and the degree of η′ ◦ κ is at most (a′, b′), the degree

of η′. Then, placing the virtual 1D camera at the origin with its principal axis along the vertical direction,

we have Π([q1 q2]>) = q1
q2

, and the degree of η becomes at most (a′, a′). The real example shown in the

experiments of §§6.1.3 and 6.2.2 represents a special case of this general principle.

We have shown that the 1D invariants can be applied to simple restrictions of the 2D warp, based on

choosing a simple rational curve in the 2D model and a simple 1D projection in the 2D image. This forms a

possible way to study the generalization of our 1D invariants to higher dimensions. A first step would be to

study how to form a minimal set of restrictions amongst the many possible ones to form a set of mutually

independent invariants. A second step would be to study if the so-obtained invariant set forms sufficient

conditions to characterize the set of 2D rational functions.

B Proof of Proposition 1

We prove proposition 1 in two parts. Part I is the forward implication and part II the reverse implication.

Part I requires the following three lemmas. It constructs the canonical invariant Ia,b[µ] by differentiating

the relationship γµ = α, called G[µ, α, γ] in lemma 1, at the orders Z ⊂ N, which we will show can be chosen

as Z = [a+ 1, a+ b+ 1] in lemma 2. It then combines the different orders in lemma 3 to eliminate all orders

of γ and α from the equations, resulting in the sought invariant, an equation depending on µ only.

Lemma 1. We have ∀µ ∈ C∞, a, b ∈ N, α ∈ P̄a, γ ∈ P̄b:

µ =
α

γ
⇒ {He,b[µ, γ] | e > a},

with:

He,b[µ, γ]
def⇔

(
b∑

k=0

(
e

k

)
γ(k)µ(e−k) = 0

)
. (10)

Proof. We have that µ = α
γ implies G[µ, α, γ], with:

G[µ, α, γ]
def⇔ (γµ = α) . (11)
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By taking the e-th derivative of G[µ, α, γ] using Leibniz’s rule we obtain:

DeG[µ, α, γ] ⇔

(
e∑

k=0

(
e

k

)
γ(k)µ(e−k) = α(e)

)
. (12)

Using equation (1), we have that α(e) = 0 for e > a and γ(e) = 0 for e > b. We can thus rewrite DeG[µ, α, γ]

as:

Ke,a,b[µ, α, γ]
def⇔

min(e,b)∑
k=0

(
e

k

)
γ(k)µ(e−k) = 1e≤aα

(e)

 ,

where 1 is the indicator function, with 1true = 1 and 1false = 0. For e > a we can simplify Ke,a,b[µ, α, γ] to

He,b[µ, γ], using the relationship min(e, b) ≤ b and
(
e
k

)
= 0 for k > e to set a fixed summation count.

Lemma 2. For α ∈ P̄a, γ ∈ P̄b constructing a differential invariant Ia,b[µ] requires one to differentiate

G[µ, α, γ] at the orders in Z ⊂ N with min(Z) > a and |Z| = b+ 1.

Proof. Recall that deriving a differential invariant Ia,b[µ] on µ from equations DeG[µ, α, γ] formed at several

orders e requires that α and γ be eliminated, as well as their derivatives at all orders. We start with the

elimination of α and its derivatives. By construction DeG[µ, α, γ] involves α(e) and no other orders of α, as

can be seen in equation (12). Therefore, the only way to cancel out all orders of α to form an invariant on µ is

by differentiation of G[µ, α, γ] at an order greater than a, the degree of α, thanks to equation (1). This proves

min(Z) > a. Importantly, once α has been cancelled, the equations DeG[µ, α, γ] become homogeneous, as

can trivially be seen from equation (12). We now turn to the elimination of γ and its derivatives. The

situation is different as each equation DeG[µ, α, γ] depends on {γ(0), . . . , γ(e)}. This means that we will

have to form a linear system in γ and its derivatives. Forcing this system to have a solution will then

allow us to eliminate γ and its derivatives, as will be shown in the proof of lemma 3. This also means that

differentiating DeG[µ, α, γ] to form De+1G[µ, α, γ] introduces a new order γ(e+1) of γ. Therefore the first

e orders in G[µ, α, γ] involve the first e orders of γ. This means that to eliminate all orders of γ to form

an invariant on µ one has to differentiate G[µ, α, γ] to an order greater than b, the degree of γ, thanks to

equation (1), and that the number of orders involved must be greater than b. This is equivalent to requiring

the size of Z to be greater than b. Each order beyond b then allows one to form a linear system, and thus

an invariant. Because we want to form one invariant only, this proves |Z| = b+ 1.

Lemma 3. Defining Ĥa,b[µ, γ]
def
= {He,b[µ, γ] | e ∈ [a+ 1, a+ b+ 1]}, we have:

∀µ, γ ∈ C∞, a, b ∈ N∗ Ĥa,b[µ, γ] ⇒ Ia,b[µ].
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Proof. We choose U ,V ⊂ N to contain respectively the orders of µ and γ involved in equation (10), namely

U = [max(a + 1 − b, 0), a + b + 1] and V = [0, b]. The relationship He,b[µ, γ] in equation (10) is bilinear in

µ(U) and γ(V) and we thus have ∀e ∈ N, a, b ∈ N,∃Ae,b ∈ N|U|×|V|:

He,b[µ, γ] ⇔
(
µ(U)>Ae,bγ

(V) = 0
)
.

Together with Ĥa,b[µ, γ] this shows that γ(V) is up to scale a non trivial element in the kernel of the matrix-

valued function βa,b[µ] ∈ C∞
(
R,R(b+1)×|V|) whose ‘rows’ are functions µ(U)>Ae,b ∈ C∞

(
R,R1×|V|) for

e ∈ [a+1, a+b+1]. Because |V| = b+1, we thus have ∀µ, γ ∈ C∞, a, b ∈ N,∃βa,b[µ] ∈ C∞
(
R,R(b+1)×(b+1)

)
:

Ĥa,b[µ, γ] ⇔
(
βa,b[µ]γ([0,b]) = 0

)
.

In order to form a non-trivial invariant on µ, we force the kernel of βa,b[µ] to be non-empty. This invariant

may thus be found by expanding det (βa,b[µ]) = 0. Inspecting He,b[µ, γ] in equation (10), we find that the

entry of matrix βa,b[µ] at (i, j) is given by:

βa,b;i,j [µ] =

(
a+ i

j − 1

)
µ(a+i−j+1). (13)

Using Leibniz’s formula we finally expand det (βa,b[µ]) = 0 to arrive at the canonical invariant (6).

Proof of proposition 1, part I. We want to show the forward implication, R̄a,b[µ] ⇒ Ia,b[µ]. We use the

definition (4) to obtain Ra,b[µ]⇒ ∃α ∈ P̄a, γ ∈ P̄b s.t. µ = α
γ . From lemma 1, we then have that this implies

{He,b[µ, γ] | e > a}. Lemma 2 shows that instantiating He,b at the orders in [a + 1, a + b + 1], which is

equivalent to Ĥa,b[µ, γ], is required to form the canonical invariant Ia,b[µ]. These orders lead to the canonical

invariant and any other orders respecting lemma 2 lead to a non-canonical invariant for the degree (a, b)

(see comment 1). Finally, applying lemma 3 proves the forward implication in equation (6).

Comment 1 (Non-canonical invariants and number of invariants). The way the invariants are constructed

depends on Z ⊂ N, which must satisfy the constraints from lemma 2. We have defined the canonical

invariant as the one obtained with Z = [a+ 1, a+ b+ 1]. However, for a given degree (a, b), there exist an

infinite number of Z subsets, each leading to a different invariant. There thus exist an infinite number of

invariants.

Part II of our proof of proposition 1 uses lemma 4 to show that given the invariant Ia,b[µ] there exists

a smooth vector-value function γ ∈ (C∞)b+1, γ>
def
= (γ1, . . . , γb+1) with γk ∈ C∞, k = 1, . . . , b + 1, so that

Ĥa,b[µ,γ] holds. The latter is defined as Ĥa,b[µ,γ]
def
= {He,b[µ,γ] | e ∈ [a+ 1, a+ b+ 1]}, where He,b[µ,γ]
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is an extension of He,b[µ, γ] where γ’s derivatives are replaced by the scalar-valued functions forming the

vector-valued function γ as:

He,c[µ,γ] ⇔

(
c∑

k=0

(
e

k

)
γk+1µ

(e−k) = 0

)
.

It then shows that this implies that at each point in Ω either µ or γ is a polynomial of some bounded degree.

In the former case µ is also a univariate rational function. In the latter case, this is because the entries of γ

correspond to the derivatives of a scalar-valued function γ. We can then show that there exist a polynomial

α such that µ = α
γ . More specifically, our proof requires the following three lemmas.

Lemma 4. We have ∀µ ∈ C∞, a, b ∈ N:

Ia,b[µ] ⇒
(
∃γ ∈ (C∞)b+1 s.t. Ĥa,b[µ,γ]

)
(14)

Ia,b[µ] ⇒
(
∃γ ∈ C∞ s.t. Ĥa,b[µ, γ

([0,b])]
)
. (15)

Proof. We first prove equation (14). The way the invariant Ia,b was derived in the proof of lemma 3

is by nullifying the determinant of a matrix-valued operator βa,b on µ. In other words, Ia,b[µ] implies

det(βa,b[µ]) = 0, and thus that βa,b[µ] has a non-empty null-space, which we represent by the vector-valued

function γ, defined such that βa,b[µ]γ = 0. The smoothness of γ is implied by the smoothness of µ and

βa,b[µ], and the fact that the null-space of a rank-deficient matrix is obtained as a multi-linear combination

of the matrix’ entries.

We now prove equation (15) by contradiction. Assume that ∀µ ∈ C∞ s.t. Ia,b[µ] we have @γ ∈ C∞ s.t.

Ĥa,b[µ, γ
([0,b])]. By using the contrapositive of lemma 1, this implies that @α ∈ Pa, γ ∈ Pb s.t. µ = α

γ . In

other words, this implies the falsity of Ra,b[µ]. However, the forward implication of proposition 1, which

is proved in part I of the proof, implies that the kernel of the canonical invariant comprises at least the

rational functions of the appropriate degree, which contradicts the falsity of Ra,b[µ].

Lemma 5. We have ∀µ, γ ∈ C∞, c, e ∈ N, e ≥ c:

(He,c[µ, γ] ∧He+1,c[µ, γ]) ⇒ γ(c+1)µ(e−c) = 0.
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Proof. We first differentiate He,c[µ, γ]:

DHe,c[µ, γ] ⇔

(
c∑

k=0

(
e

k

)
γ(k)µ(e−k+1)

+
c∑

k=0

(
e

k

)
γ(k+1)µ(e−k) = 0

)
.

We expand the first term as:

c∑
k=0

(
e

k

)
γ(k)µ(e−k+1)

=

(
e

0

)
γµ(e+1) +

c∑
k=1

(
e

k

)
γ(k)µ(e−k+1)

=

(
e+ 1

0

)
γµ(e+1) +

c∑
k=1

(
e

k

)
γ(k)µ(e−k+1),

where the last equality follows from
(
e
0

)
=
(
e+1

0

)
= 1 since e ≥ 0. We expand the second term as:

c∑
k=0

(
e

k

)
γ(k+1)µ(e−k)

=

c+1∑
k=1

(
e

k − 1

)
γ(k)µ(e−k+1)

=

c∑
k=1

(
e

k − 1

)
γ(k)µ(e−k+1) +

(
e

c

)
γ(c+1)µ(e−c).

Using the relation
(
e+1
k

)
=
(
e

k−1

)
+
(
e
k

)
we obtain:

DHe,c[µ, γ] ⇔

(
c∑

k=0

(
e+ 1

k

)
γ(k)µ(e−k+1)

+

(
e

c

)
γ(c+1)µ(e−c) = 0

)
.

Expanding DHe,c[µ, γ] − He+1,c[µ, γ] yields
(
e
c

)
γ(c+1)µ(e−c) = 0. Because e ≥ c,

(
e
c

)
> 0 and we arrive at

γ(c+1)µ(e−c) = 0.

Lemma 6. We have ∀µ ∈ C∞, c, e ∈ N, γ ∈ C∞, γ(c+1) = 0:

He,c[µ, γ] ⇒ (γµ)(e) = 0.

Proof. Let α = γµ. We thus have that G[µ, α, γ] from equation (11) holds. We then form DeG[µ, α, γ] from
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equation (12) and DeG[µ, α, γ]−He,c[µ, γ] as:

(
e∑

k=0

(
e

k

)
γ(k)µ(e−k) = α(e)

)

−

(
c∑

k=0

(
e

k

)
γ(k)µ(e−k) = 0

)
.

For e ≤ c we immediately obtain α(e) = 0 because the second summation goes only up to e since
(
e
k

)
vanishes

for k > e. For e > c the relationship is rewritten as:

(
e∑

k=c+1

(
e

k

)
γ(k)µ(e−k) = α(e)

)

Because γ(c+1) = 0 this also leads to α(e) = 0.

Proof of proposition 1, part II. We want to show the reverse implication, R̄a,b[µ] ⇐ Ia,b[µ]. We first prove

the case b > 0. We use lemma 4, equation (14), which is Ia,b[µ]⇒
(
∃γ ∈ (C∞)b+1 s.t. Ĥa,b[µ,γ]

)
. We first

show Ĥa,b[µ,γ] admits as solution (µ,γ) for which R̄a,b[µ] holds and γ = γ([0,b]). We then show this is the

only solution to Ĥa,b[µ,γ]. We have from lemma 4, equation (15), that Ĥa,b[µ, γ
([0,b])] is solvable. We have

that Ĥa,b[µ, γ
([0,b])] ⇔ Ĥa,b[µ, γ]. By definition, Ĥa,b[µ, γ] implies Ha+b,b[µ, γ] ∧ Ha+b+1,b[µ, γ] and we can

thus apply lemma 5 with c = b and e = a+ b, leading to:

Ĥa,b[µ, γ] ⇒ γ(b+1)µ(a) = 0.

This implies that there exists Λ ⊂ R such that (i) µ(a) = 0 on Λ and (ii) γ(b+1) on R\Λ. In case (i), because

µ is smooth from a premise of proposition 1, using equation (2) for µ in Λ implies µ ∈ Pn with n ≤ a, which

is equivalent to R̄a,0[µ]. In case (ii), because γ is smooth from lemma 4, using equation (2) for γ in R\Λ

implies γ ∈ Pn with n < b+ 1. We can use lemma 6 with c = b and e = a+ 1. Defining α = γµ we obtain

that α(a+1) = 0, which implies through equation (2) that α ∈ Pn with n < a. We can therefore write µ = α
γ

and thus R̄a,b[µ]. Combining cases (i) and (ii) we obtain that Ra,b[µ] holds since max(0, b) = b. We finally

prove the case b = 0 with a ≥ 0. Using equation (6) we have that Ia,0[µ] ⇔
(
a+1

1

)
µ(a+1) = 0. The factor(

a+1
1

)
= a+ 1 and because a+ 1 > 0 we arrive at µ(a+1) = 0 and thus R̄a,0 holds.

We now show that the above solution is the only one to Ĥa,b[µ,γ]. We use an induction on b. The

key observation to this proof is that for b > 0 the leading submatrix of βa,b[µ] is βa,b−1[µ]. We start with

b = 0. In that case βa,0[µ] =
(
a+1

0

)
µ(a+1) = µ(a+1) where the last equality follows from a + 1 > 0. Because

Ia,0[µ] ⇔ (µ(a+1) = 0), as can easily be found from equation (6), we directly have that µ ∈ P̄a which
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implies R̄a,0[µ]. We now examine b > 0. In that case βa,b[µ] ∈ C∞(R,R(b+1)×(b+1)), and by definition of

the invariant we have det(βa,b[µ]) = 0 and so rank(βa,b[µ]) ≤ b. We then face two cases. In the first case we

have rank(βa,b[µ]) < b. This means that any (b× b) minor of βa,b[µ] vanishes. In particular, deleting the last

row and column of βa,b[µ], we observe that the obtained submatrix is βa,b−1[µ]. This is easily understood

from equation (13), where we observe that the entries of βa,b[µ] do not depend on b (just its size depends on

b). Therefore, from the induction hypothesis, we have R̄a,b−1[µ] which implies R̄a,b[µ]. In the second case

we have rank(βa,b[µ]) = b. The equations βa,b[µ]γ = 0 from Ĥa,b[µ,γ] are homogeneous. Any two solutions

γ and γ ′ must thus be related by γ = τγ ′ for some τ ∈ C∞(R,R∗). Therefore, we have that γ = τγ([0,b]).

Because Ĥ[µ,γ] = Ĥ[µ, τγ([0,b])] = τĤ[µ, γ([0,b])] = τĤ[µ, γ], we conclude that all solutions to Ĥ[µ,γ] are

equivalent.


