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Abstract. Machine learning based methods achieves impressive results
in object classification and detection. Utilizing representative data of the
visual world during the training phase is crucial to achieve good perfor-
mance with such data driven approaches. However, it not always possible
to access bias-free datasets thus, robustness to biased data is a desirable
property for a learning system. Capsule Networks have been introduced
recently and their tolerance to biased data has received little attention.
This paper aims to fill this gap and proposes two experimental scenar-
ios to assess the tolerance to imbalanced training data and to determine
the generalization performance of a model with unfamiliar affine trans-
formations of the images. This paper assesses dynamic routing and EM
routing based Capsule Networks and proposes a comparison with Con-
volutional Neural Networks in the two tested scenarios. The presented
results provide new insights into the behaviour of capsule networks.
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1 Introduction

A robust classification system is expected to give the same prediction for every
image of the same class or for images representing the same element in differ-
ent poses. Machine learning methods, such as Convolutional Neural Networks
(CNN), have been used in many classification, detection and recognition tasks
[16,10,3]. However, in order to achieve good performance with data driven ap-
proaches, well representative data of the visual word are required [19,14,11].
While it is possible to mitigate some bias effects with de-biasing techniques [12]
or with data augmentation [23], it is important to use machine learning ap-
proaches with good generalization performance as it contributes to design more
robust applications to unseen or underrepresented imaging conditions. This pa-
per focuses on the latter topic and presents a comparison between Convolutional
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Neural Networks (CNNs) and Capsule Networks (CapsNets) [22,7]. The neurons
in a CapsNet are organized in groups denoted as Capsules [8]. In contrast to a
single neuron, a capsule can learn a specific image entity over a range of viewing
conditions such as viewpoint and rotation. With the use of a routing algorithm
to interconnect the capsules, a CapsNet model would be affine invariant and
spatially aware. While the behaviour of CNNs with biased data has been ex-
tensively investigated [11,14,15], how bias influences CapsNets’ performance has
received little attention so far.

This paper aims to fill this gap by proposing two experimental scenarios. The
first experiment set evaluates a model’s classification accuracy with unfamiliar
affine transformations. It introduces a capture bias [26] obtained with training
and test data having transformation intensities sampled from different distribu-
tions. The second test scenario is to assess the variation of a network’s perfor-
mance when trained with a dataset presenting several overrepresented classes
with respect to evenly distributed classes. The results are presented for five net-
work models: three dynamic routing-based CapsNet [22] with one, two and three
capsule layers respectively, an EM-Matrix routing CapsNet [7] and for a CNN,
which represents a comparison baseline.

The rest of this paper is organized as follows. Section 2 provides an overview
of related work; Section 3 gives an introduction on capsule networks; Section
4 describes the method and criteria used for the performance evaluation. The
results obtained are presented and discussed in Section 5. Finally, Section 6
draws conclusions and proposes possible extensions.

2 Related Work

The impact of bias on data driven methods have been extensively explored in
the literature. A review of various types of bias in machine learning datasets is
provided in [5]. The problem of bias in popular datasets dissected by cause is pre-
sented in [26] and further discussed in [25] where several de-biasing methods are
compared. The generalization performance of CNNs is assessed with unfamiliar
scale factor in [11] and with unfamiliar yaw pose and lighting conditions in [14],
utilizing face recognition tasks. The analysis of imbalanced data is addressed in
[19] and [2]. In [19] several imbalanced datasets are built from CIFAR-10 [15]
by means of class down and over-sampling and used to assess CNNs. In [2], the
importance of choosing the suitable performance evaluation metric in the pres-
ence of imbalanced classes is discussed. To the best of our knowledge, the only
work addressing the generalization problem for CapsNets is [6], which demon-
strates that dynamic routing based CapsNets generalize faster than CNNs when
training data is injected with a few examples of an unfamiliar class. Only a
few other works analyze this type of CapsNet but without considering bias or
generalization performance: [27] and [20] only test CapsNets with more complex
data than those utilized in the original paper [22]. Our paper aims to fill these
gaps by proposing an analysis of the generalization performance with unfamiliar
affine transformations and imbalanced training data for both the available ar-
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chitectures of CapsNets: dynamic routing [22] (denoted as Vector-CapsNet from
now on) and EM-Matrix routing based [7] (MatrixEM-CapsNet).

3 Capsule Networks

A capsule is a group of neurons whose activity is a tensor which can learn to
detect a specific entity over a domain of limited range of viewing conditions such
as viewpoint, rotation and lighting [8]. Two Capsule Networks (CapsNets) are
proposed in [22] and [7] which are characterized by the architecture outlined as
follows. 1) An input stage including one or more regular convolution layers; 2) a
single Primary Capsule Layer consisting of a convolutional stage whose neurons
are grouped into capsules; 3) one or more Capsule Layers, with the last one as
network output, and consists of a capsule per class. Every pair of capsule layers
(this includes the Primary layer) are fully connected by means of a routing stage.
Routing allows a CapsNet to learn relationships between entities by directing
the output of a capsule to the proper parent capsule located in the next level.
For example, a capsule that learned to recognize eyes, will be routed towards
the parent capsule for faces but not to a torso capsule.

CapsNets from [22] and [7] have significant differences in their capsule ar-
chitecture and routing algorithm. The architecture from [22] (Vector-CapsNet)
utilizes 1D vector capsules whose length is an hyperparameter. A capsule en-
codes an entity and its pose like a CNN, deeper capsules encoding higher level
entities. The routing stage fully connects two consecutive capsule layers (L and
L + 1), thus the total input of a capsule (j) in L + 1 depends on the output
of every capsule in L. Dynamic routing between capsules works as follows. The
output (ui) of a capsule is multiplied by a transformation matrix Wij to obtain
the prediction vector (ûi|j). If the prediction vector is similar to the output of the
parent capsule j, then the routing algorithm concludes that i and j are highly
related and assigns a high value to the related coupling coefficient (cij). As the
contribution to the total input of j provided by the capsule i is computed as
ûi|jcij , the coupling coefficient expresses how likely capsule i will activate cap-
sule j. Furthermore, the capability of learning relationship between entities that
characterize CapsNets is due to a transformation matrix W for each capsule pair
i ∈ L and j ∈  L + 1.

The capsules of the network proposed in [7] (MatrixEM-CapsNet) consist of a
scalar activation (a) and a 4×4 pose matrix (M). As in Vector-CapsNet, capsule
layers are fully connected. Thus, each capsule i in a layer L is connected to each
capsule j in the next layer L+1 by means of a 4×4 transformation matrix (Wij)
which is learned with an iterative routing algorithm based on EM (Expectation
Maximization) clustering and denoted as EM Routing. The prediction of the
parent capsule’s pose matrix Vij (vote) is computed as the product between
Mi and Wij and utilized along with ai by a routing algorithm to assign routes
between capsule i in layer L and capsule j in layer L+ 1 (∀i, j).

The main difference between CapsNet and CNN is how features are routed
between layers. CNN utilizes single neurons for representing image features and



4 B. Ferrarini et al.

pooling operations as routing mechanisms. Pooling ensures invariance to small
image changes (translation in particular) at the cost of information loss [17] and
makes nearly impossible for a CNN to learn relationship between image entities.

4 Experimental Setup

The proposed approach consists of two types of experiment to assess a network’s
performance with unseen affine transformations and with prominent class im-
balance.

4.1 Capture Bias Experiment

Training data and test data are built from the same dataset by applying affine
transformations whose intensity is sampled from different distributions. Hence, a
model becomes familiar with several image transformations which appear at dif-
ferent intensities in the training and test datasets. For example, if the considered
transformation is rotation, the training set would be augmented by a rotation
angle sampled in a range, such as [−20◦,+20◦], while the transformation mag-
nitude for testing would be sampled from a wider range such as [−90◦,+90◦].
The performance metric utilized for these experiments is classification accuracy,
which is the number of correct predictions from all predictions made. Hence,
more general models are those achieving higher accuracy on unseen magnitude
of a given affine transformation.

In order to provide more comprehensive insights about the influence of unseen
imaging conditions, two different criteria for sampling training data are used:
uniform and sparse sampling.

Uniform Sampling Let T be an affine transformation, Dr a training dataset,
De the relative test dataset, Rr and Re two magnitude ranges such that Rr ⊂ Re.
A network is trained with Dr whose every sample s, is augmented with T (s, tr)
where tr is the magnitude uniformly sampled from Rr: tr ∈ Rr. Our tests consist
of running the model along the complete axis of transformation range Re. Thus,
a set of magnitudes are sampled at fixed size steps starting from the lower bound
of Re until the end of the range. For each tei ∈ Re, the complete dataset De is
transformed with T (tei) and used to compute a network’s accuracy. This process
results in a curve showing the relationship between transformation magnitude
and a model’s accuracy.

Sparse Sampling Let T be an affine transformation, Dr a training dataset, De

the relative test dataset, Rr and Re two magnitude ranges such that Rr ⊂ Re.
A subset of n of values are chosen from Rr to form a set K = {tr1 , tr2 , . . . trn}.
A network is trained with Dr whose sample s is augmented with T (s, tr) where
tr is the magnitude uniformly sampled from K: tr ∈ Rr. Our test procedure is
the same as in the Uniform Sampling experiment.
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4.2 Imbalanced Data

A model trained with imbalanced classes presents a bias towards the overrepre-
sented ones, which results in more frequent prediction of such majority classes
[5]. The performance measure is the Matthew’s Correlation Coefficient (MCC)
for multiple classes [9] as it is proven to be more insensitive to imbalanced data
than accuracy [2]. MCC value can fall in [−1,+1], where +1 corresponds to a
perfect classification. A network is trained with both balanced and imbalanced
data and the resulting MCC values are compared. Better models are expected
to have a narrower gap between MCC scores of balanced and imbalanced data.

5 Results

Results are presented for several models as listed in Table 1: cnn-wp is a CNN
with three layers and max pooling, vcaps-s, vcaps-d and vcaps-t are Vector-
CapsNet with one, two and three layers of capsules respectively and caps-em
is a MatrixEM-CapsNet. All the networks are implemented with Tensorflow
[1]. In particular, vcaps-s, vcaps-d and vcaps-t are built on top of the source
code provided by the authors of Vector-CapsNet [21], while caps-em is derived
from the code shared at [28]. The cnn-wp model is implemented from scratch
and has similar architecture and hyperparameters as the comparison baseline
from [22] used to evaluate Vector-CapsNet on the MNIST dataset [18]. For the
notation in Table 1, the following convention is utilized. C(k, s, o) represents a
convolutional layer with kernel k, stride s and o filters; P(k, s) indicates a max
pool layer with kernel k and stride s; F(i, h, o) is a fully connected network
with a single hidden layer of h neurons; Pr(c, l, ri) indicates a Primary Capsule
Layer having c capsules with length l and utilizing r iterations for the routing
algorithm; Cps(c, l, r) represents a capsule layer and c, l and r have the same
meaning as for Pr(c, l, r). Except for an additional convolutional layer at the
start, caps-em has the same architecture as proposed in [7] but uses less capsules

Table 1: Models assessed: cnn-wp is a CNN similar to the comparison baseline
from [22], vcaps-s, vcaps-d and vcaps-t are Vector-CapsNet with single, double
and triple capsule layers respectively, caps-em is a MatrixEM-CapsNet.

Model Layers

cnn-wp C(5, 1, 256); P(3, 1); 2× [C(5, 1, 256); P(3, 2)]; F(328, 192, 10)
vcaps-s C(9, 1, 256); C(9, 2, 256); Pr(1152, 8, 3); Cps(10, 16)
vcaps-d C(9, 1, 64); C(9, 2, 64); Pr(288, 8, 3); Cps(20, 10); Cps(10, 16)
vcaps-t C(9, 1, 128); C(9, 2, 128); Pr(1152, 4, 3); 2× [Cps(32, 8)]; Cps(10, 16)
caps-em C(6, 2, 32); A:32; B:24; C:24; D:24; E:10; K:3;
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Fig. 1: Several MNIST images as they are transformed and padded for testing a
model accuracy.

per layer. While in [7] the hyperparameters A, B, C, D are all equal to 32, our
implementation reduces the complexity of the network by setting B, C and D
to 24. This compromise was necessary to run caps-em with at least 2 routing
iterations on our 8GB RAM graphics card. The models have been trained with
the Adam [13] optimizer with default parameters (β1 = 0.9 and β2 = 0.999)
and with an initial learning rate of 0.001 for Vector-CapsNet and cnn-wp, and
0.0005 for MatrixEM-CapsNet. The loss function to train vcaps-s, vcaps-d and
vcaps-t is Margin Loss [22] with parameters m+ = 0.9,m−, λ = 0.5. The Spread
Loss [7] has been used for caps-em with margin m increasing from 0.2 up to 0.95
in around 10 epochs. Regularization has been obtained with a reconstruction
stage consisting of a neural network with two hidden layers of 512 and 1024
units respectively.

5.1 Generalization Performance on Unfamiliar Affine
Transformations

Generalization performance with uniformly sampled affine transformations (Sec-
tion 4.1) has been assessed utilizing affMNIST [24] as training data and MNIST
[18] for tests. AffMNIST is a dataset obtained from MNIST by applying to each
image several uniformly sampled transformations, namely rotation in [−20◦, 20◦],
scale between 0.8 and 1.2, shear along the x axis in [−0.2, 0.2] and translation.
As compared to MNIST, which has 28 pixel images, affMNIST has 40 pixel
images in order to fit scaled up digits. Accuracy data is obtained for each trans-
formation using the MNIST test set with the following extended ranges: rota-
tion [−90◦, 90◦], scale factor [0.5, 2.0], horizontal shear [−0.8, 0.8] and horizontal
translation (x axis) [−13, 13]. As test required wider range of transformations
with respect to those available during training, the models have been fed with
56 pixel images obtained by zero-padding affMNIST images. Padding allowed us
to test the models with scale factors up to 2.0 and wider translations than those
present in affMNIST without any crop to MNIST digits. Figure 1 shows some
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samples from MNIST as they are transformed and padded for testing a model
accuracy.

The results for uniform sampling experiments are shown in Figure 2 where the
accuracy as a function of an affine transformation is plotted for each model. The

Fig. 2: Accuracy as a function of Rotation Angle (a), shear along the x axis
(b), scale factor (c) and horizontal Translation (d). The green area indicates the
affine transformation range available in training data (affMNIST).

most prominent difference among models occurs with unfamiliar scales where
vcaps-t outperforms both cnn-wp and the other capsule networks. A closer look
at the scale plot (Figure 2.c) allows us to infer a positive relationship between
the number of capsule layers in Vector-CapsNets and generalization performance
with unfamiliar scale factors. Indeed, vcaps-t achieves better accuracy at each
unfamiliar scale than vcaps-s and vcaps-d for scale factors larger than 1.2, which
is the largest scale present in affMNIST. On the contrary, for small test scale this
trend is inverted and it appears that Vector-CapsNet has the slowest decay in
accuracy among the considered models. Also with rotation, CapsNets generalize
better than other types of networks, keeping the accuracy above 90% in the
interval [−35◦, 35◦], which is 15◦ wider than the sample interval for the rotation
used to generate affMNIST.

The same four affine transformations have been considered in sparse sampling
experiments. Model training is carried out by augmenting MNIST samples with
a single transformation a time whose intensity is sampled in a finite set. Hence,
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Fig. 3: Effect of sparse sampling of affine transformations in the training data.
Accuracy is represented as a function of Rotation Angle (a), shear along the x
axis (b), scale factor (c) and horizontal Translation (d).

rotation is sampled in {−90◦, 0,+90◦} , scale in {0.5, 2.0}, horizontal shear in
{−0.5, 0.5} and horizontal translation in {−11, 11}.

The models do not present significant differences with respect to each other
for rotation and horizontal shear (Figure 3). In particular, the networks show a
very good generalization performance to unseen shear magnitudes. In fact, just
including two values for shear in the training set, yields an almost flat accuracy
plot along all shear test range. Generalization performance with sparse shear
sampling is coherent with the results obtained with uniform sampling. Indeed,
the models’ accuracy has a flat trend along the entire test interval {−0.8, 0.8}.
Similarly to the uniform sampling scenario, the scale results show that deeper
Vector-CapsNets generalize better than the other models with unfamiliar scale
factors.

The results from sparse translation experiments show that cnn-wp and the
three considered Vector-CapsNet have a prominent accuracy drop in the middle
of the test interval, while caps-em has stable accuracy on the entire test interval.
The reason for the performance gap between caps-em and Vector-CapsNet is
probably due to the routing algorithm, which is the main difference between
these two types of network (Section 3).

5.2 Performance Analysis with Imbalanced Data

The datasets utilized for these experiments have been generated from EMNIST-
Letters [4], which consists of 26 balanced classes of handwritten letters with 4800
samples each. The balanced dataset (BAL) is a subset of EMNIST including
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Fig. 4: Confusion matrices of the vcaps-t model for BAL and I-BAL. The over-
represented classes E, H and L are more often predicted by the model trained
with I-BAL thus, this results in misclassification increase.

10 of its classes (D to M) with 2400 samples each, while for the imbalanced
dataset (I-BAL) classes have been down-sampled to 600 images, except for E,
H and L which have the same 4800 samples from EMNIST-Letters. Figure 4
shows the confusion matrices of vcaps-t for BAL and I-BAL. As expected, the
three overrepresented classes, E, H and L, are predicted more often. This is
particularly evident for classes that are similar to each other such as L and I.
Indeed, the similarities between lowercase L letters and uppercase I letters result
in several misclassifications even with BAL datasets where I is predicted as L
in 30.3% cases and I is called L in 25% cases. In I-BAL, L is overrepresented
as compared to I, which is wrongly classified as L more than half of the time
(56.4%). MCC for all the models are summarized in Table 2. The least robust
model to imbalanced data is caps-em, with a gap between BAL and I-BAL of
0.1416. cnn-wp and vcaps-s have similar results while vcaps-t capture the best
performance with a gap of 0.0135, which is about one half of vcaps-s’ gap.

The number of capsule layers alone does not explain the better performance of
vcaps-t over vcaps-s. Indeed, vcaps-d outperforms the other networks with BAL
(MCC of 0.9306) but it also has the widest gap with unbalanced data among

Table 2: The models’ accuracy with MNIST and affMNIST and the models’
MCC with balanced (BAL) and imbalanced (I-BAL) datasets. GAP shows the
difference between BAL and I-BAL MCC values.

model MNIST affMNIST BAL I-BAL GAP

cnn-wp 0.9923 0.9926 0.9258 0.9021 -0.0237
caps-s 0.9958 0.9999 0.9202 0.8973 -0.0229
caps-d 0.9935 0.9981 0.9336 0.8929 -0.0407
caps-t 0.9933 0.9999 0.9139 0.9004 -0.0135
caps-em 0.9827 0.9961 0.8899 0.7483 -0.1416
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Vector-CapsNet: 0.0407. Several double layer architectures were examined other
than vcaps-d, but it was neither possible to find a better model nor to precisely
determine the factor that influences the performance the most. For example,
replacing the two capsule layers of vcaps-d (Table 1) with 2 × Cps(128, 4, 3)
increased the learnable parameters from 5M to 8.9M however, the performance
decreased sightly from 0.938 for BAL to 0.8938 for I-BAL (with a gap of 0.0442)
in our experiments.

6 Conclusions

The analysis of capsule networks has received little attention. This paper aimed
to provide novel insights into this new type of neural network and proposed
several experiments to assess the performance of a network with biased data.
Overall, CapsNet outperforms CNNs in most of the cases but not by a large
gap. Our results have allowed us to infer that the number of capsule layers
(depth) influences generalization performance, this is particularly evident in scale
plots (Figure 2.c) where the accuracy at unseen scales improves with a network
depth. Apart from this, the influence of a CapsNet’s hyperparameters is not
totally understood and would deserve a more detailed and specific analysis. On
imbalanced data vcaps-t outperforms all the other networks by a consistent
gap but the contribution of the triple capsule layer of vcaps-d remains unclear,
which is affected by imbalance data more than vcaps-s. Finally, the worst model
in any scenario is caps-em with the exception of sparse translation (Figure 3).
However, it is worth mentioning that the caps-em implementation it not from
its authors and includes less capsules than the model originally proposed in [7].
Indeed, our Tensorflow implementation is very demanding in terms of RAM
and caps-em is the most complex model that can fit in an 8GB Graphics card.
A natural extension of this work would include MatrixEM-CapsNet once an
official implementation is available. Furthermore, new insights would be provided
from a more specific analysis of the relationship between hyperparameters and
generalization performance such as the depth and the distribution of capsules
among a CapsNet’s layers.
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