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Abstract

Shape-from-Template (SfT) is the problem of using a shape template to infer the shape of a deformable object observed

in an image. The usual case of SfT is ‘Surface’ SfT, where the shape is a 2D surface embedded in 3D, and the image is a

2D perspective projection. We introduce ‘Curve’ SfT, comprising two new cases of SfT where the shape is a 1D curve. The

first new case is when the curve is embedded in 2D and the image a 1D perspective projection. The second new case is when

the curve is embedded in 3D and the image a 2D perspective projection. We present a thorough theoretical study of these new

cases for isometric deformations, which are a good approximation of ropes, cables and wires. Unlike Surface SfT, we show that

Curve SfT is only ever solvable up to discrete ambiguities. We present the necessary and sufficient conditions for solvability with

critical point analysis. We further show that unlike Surface SfT, Curve SfT cannot be solved locally using exact non-holonomic

Partial Differential Equations (PDE). Our main technical contributions are two-fold. First, we give a stable, global reconstruction

method that models the problem as a discrete Hidden Markov Model (HMM). This can generate all candidate solutions. Second,

we give a non-convex refinement method using a novel angle-based deformation parameterization. We present quantitative and

qualitative results showing that real curve shaped objects such as a necklace can be successfully reconstructed with Curve SfT.
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I. INTRODUCTION

A. Background

SfT aims to register and reconstruct the 3D shape of a deforming object from a single input image and a template of the

object. Registration and reconstruction are solved by finding the deformation transformation that embeds the template in 3D

camera coordinates. A template stores, at the very least, a manifold representing the shape of an object with its texture in

a known reference state. For example, the template can be generated from a Computer Aided Design (CAD) model of the

object, or reconstructed from data such as Structure-from-Motion (SfM), with a set of rigid views. Various different cases of

SfT exist and they can be distinguished by three main properties. These are as follows: (a) the dimension x of the template

manifold, (b) the dimension y of the Euclidean space Ry that embeds the template manifold in camera coordinates with

y ≥ x, and (c) the dimension z of the Euclidean camera image with z ≤ y. The primary goal of SfT is then to determine

the embedding function ϕ : Rx → Ry that embeds the shape template in Ry , from an image of dimension z. We denote

a particular SfT case with SfTx→y→z . Our notation follows the image formation procedure and first visualizes the template

since it is the most discriminative characteristic of the SfT problem. We then obtain that in SfTx→y→z the image where we

see the deformed curve is created from an x-D template which is deformed in y-D and then projected in a z-D image. Table I

summarizes the important cases. Nearly all SfT methods are named Surface SfT methods because they require a surface

template, i.e. a thin-shell model without volume. There also exist some Volume SfT methods [Parashar et al., 2015; Collins

and Bartoli, 2015]. They require to model the object with a volumetric deformable model, using either continuous models,

such as 3D splines [Parashar et al., 2015] or discrete models, such as tetrahedral meshes [Collins and Bartoli, 2015]. We

introduce the special case of Curve SfT and reveal its practical uses and hidden complexity.

a) Motivations: The development of SfT with curvilinear templates has not been reported in the literature. In other words,

there exist no theory and no reconstruction algorithms for such templates. Our goal is to understand which reconstruction

problems can be solved for curvilinear objects and which are the conditions for solvability. Importantly, such templates exist for

real physical objects: wires, cables, necklaces and roadlines to name but a few all fall in this case and cannot be reconstructed

by any existing method which assumes the object has a surface extent.

SfT case
Template

dimension

Unknown

embedding
Observational data Key references

Volume SfT SfT3→3→2 3D 3D → 3D 2D region in 2D image [Parashar et al., 2015; Collins et al., 2016]

Surface SfT SfT2→3→2 2D 2D → 3D 2D region in 2D image [Salzmann and Fua, 2009; Bartoli et al., 2015]

Curve SfT
SfT1→3→2 1D 1D → 3D 2D curve in 2D image Proposed

SfT1→2→2 1D 1D → 2D 2D curve in 2D image ×
SfT1→2→1 1D 1D → 2D 1D straight line in 1D image Proposed

TABLE I
TAXONOMY OF SFT CASES. SFTx→y→z DENOTES A CASE WITH A TEMPLATE MANIFOLD OF DIMENSION x, A EUCLIDEAN EMBEDDING SPACE WITH

DIMENSION y AND A PERSPECTIVE CAMERA WITH IMAGE DIMENSION z.

We propose a thorough theoretical study and practical solutions of Curve SfT. As with all SfT cases, Curve SfT requires

the use of deformation priors because of the loss of shape information from camera projection. For this, we use the isometry

prior. We consider here two main cases of Curve SfT. The first case is when the template is a curve embedded in the 3D
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space and observed by a regular 2D camera, referred as SfT1→3→2. A practical example is to reconstruct a thin necklace

around a person’s neck, given a template of the necklace, as shown at the bottom of figure 1. The second case is similar to

the first instance, but the camera is 1D, referred as SfT1→2→1. It may be created from an orthogonal view of the ground

plane, for instance, , as shown at the top of figure 1. At first glance, the use of 1D templates in Curve SfT may seem to make

SfT simpler compared with a 2D template in Surface SfT. However, we found that Curve SfT has fundamental theoretical

differences concerning degeneracies, well-posedness and solution uniqueness. These differences motivate us to propose new

theoretic and algorithmic solutions.

b) Theoretical contributions to Curve SfT: We use continuous differential geometry to analyze and derive local solutions,

problem well-posedness and ambiguities. We show that the two sub-cases of Curve SfT, which are two problems with different

dimensions, can both be written as the same first-order Ordinary Differential Equation (ODE) and solved through an Initial

Value Problem (IVP). However, the initial condition required to solve the IVP is a known depth at one point. At first glance,

this additional information is generally unavailable. We propose a strategy to solve the IVP by giving an initial condition

which is directly obtained from the ODE. This initial condition uses special points of the curve, called the super critical

points. Through the IVP with the super critical points, the mathematical formulation of Curve SfT gives several solutions

which we call candidate solutions. We prove the following results:

1) In Curve SfT, the depth of a point is uniquely recoverable if and only if it is a super critical point.

2) Curve SfT is solvable up to a finite number of solutions if and only if there exists at least one super critical point.

3) A section of template falling between two super critical points is recoverable up to a two-fold ambiguity.

4) A Curve SfT problem with Ns super critical points has 2Ns+1 discrete candidate solutions.

We also study the solvability of Curve SfT with a method using local non-holonomic solution to our PDE. We prove the

following results:

1) Unlike Surface SfT, Curve SfT cannot be solved exactly using local non-holonomic solution to our PDE.

2) By neglecting curvature, it is possible to solve Curve SfT using local non-holonomic solution to our PDE.

c) Technical contributions to Curve SfT: In the literature, there exist three categories of methods to solve Surface

and Volume SfT: (i) local analytical solutions, (ii) convex optimization and (iii) non-convex iterative optimization. We

give a computational solution for each category for solving Curve SfT. For the category (i) method, we first proceed to

a similar differential analysis as [Bartoli et al., 2015] and then consider non-holonomic solutions under the assumption of

infinitesimal linearity. For the category (ii) method, we adapt a convex formulation of Surface SfT, called Maximum Depth

Heuristic (MDH) [Perriollat et al., 2011; Salzmann and Fua, 2011]. It uses the inextensibility constraint, a relaxation of the

isometry constraint. For the category (iii) method, we propose a non-convex continuous formulation that can be optimized

efficiently using gradient-based minimization. We achieve this with a novel angle-based parameterization which implicitly

models isometric deformations. However, the categories of method (i) and (ii) only provide a single solution and the category

(iii) method works from an initial solution. As the theory shows that the Curve SfT problem has several solutions, we

introduce a new category (iv) of SfT method, which gives all candidate solutions and uses a discrete graphical model. Our

method models SfT with a discrete graphical model without any assumption on the geometry, without relaxing isometry and
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without requiring an initial estimate. This makes it very different to the three categories of method used previously for solving

Surface and Volume SfT. Importantly, our category (iv) method generates all candidate solutions and thus the true curve, as

figure 1 illustrates. We emphasize that all existing categories of method for solving Surface and Volume SfT with isometric

deformations and perspective cameras are only able to generate one solution, which is insufficient to solve Curve SfT because

of its inherent ambiguity.

  

INPUTS OUTPUTS

1D template

1D input image

Original image (not used by the methods)

2D input image

1D template

Multiple 2D solutions 2D ground-truth curve

3D refined solution 3D ground-truth curve

2D refined solution

...
...

...
...

Multiple 3D solutions

INPUTS OUTPUTS

Fig. 1. Top: an example of 2D curve reconstruction from a 1D input image and a 1D template using our refined solution of SfT1→2→1. It uses the paper
dataset. The yellow line in the original image corresponds to the 1D input image. Bottom: an example of 3D curve reconstruction from a 2D input image
and a 1D template using our refined solution of SfT1→3→2. It uses the necklace dataset. In order to give a better visualization of the necklace on the pillow,
we have brightened the region near the necklace by dimming the rest of the image. For our method, inputs are correspondences between the 1D template
and the input image: respectively the midpoint of the bars for the paper dataset and the center of gravity of the pearls for the necklace dataset. For both
datasets, we show several candidate solutions obtained by our category (iv) method and give the refined version of the best solution.

B. Context

Extension of [Gallardo et al., 2015]: This work is a considerable extension of our conference paper [Gallardo et al., 2015]

in four ways. The first way is to extend the solutions and the theoretical analysis to all sub-cases of Curve SfT; in [Gallardo

et al., 2015], only SfT1→2→1 was addressed. The second way is our discrete graphical method that can generate all candidate

solutions; in [Gallardo et al., 2015], only a single solution could be generated. The third way is an improved method to detect

critical points which has better stability than the method in [Gallardo et al., 2015]. The fourth way is a larger quantitative

evaluation on real and simulated datasets.
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Paper layout: The paper is organized as follows. In §II we give further background details on SfT methods and 3D curve

reconstruction from images in general. In §III, we model Curve SfT and develop its theoretical study. As SfT1→3→2 and

SfT1→2→1 are solved with the same IVP, we first study SfT1→3→2 and then specialize the study to SfT1→2→1. In §IV,

we discuss the degeneracies and number of solutions for special scenarios of Curve SfT. In §V, we give our multi-solution

reconstruction method based on HMM (category (iv) method). We also present the refinement (category (iii) method) and

the single-solution methods (category (i) and (ii) methods). In §VI, we validate our category (iv) method with and without

refinement on simulated and real datasets, for both instances of Curve SfT.

Notation guide: We use bold fonts for vectors and consider them by default as column vectors. The transpose of the vector x

is denoted x>. By default, we denote xi the ith component of vector x. We use hats for estimates. Homogeneous coordinates

are written with a bar, for instance q̄ =
(
q> 1

)>
. We use Greek letters for functions. The first and second derivatives of

a scalar function ϕ : Rn → R are written with primes (e.g. ϕ′) and double-primes (e.g. ϕ′′). For a vector-valued function

ϕ : Rn → Rm, we use the Jacobian matrix denoted Jϕ. For the special case where ϕ : R→ Rm, we use the Hessian matrix

denoted Hϕ.

II. STATE-OF-THE-ART

We first review the SfT state-of-the-art and complement it with some background details on the reconstruction problem of

3D curves from images.

A. Shape-from-Template

Various different cases of SfT exist, Curve SfT, Surface SfT and Volume SfT, but all share the same components. We

then discuss in detail the three main components shared by all SfT methods: the template specifications, the data constraints

extracted from the input image and the 3D shape inference process.

1) Template Components: The template is the cornerstone of SfT. It brings strong object-specific prior knowledge to the

problem. Several types of template exist, but all of them comprise three components: a shape model, an appearance model

and a deformation model.

a) Shape Model: The template’s shape model represents the object’s 3D shape in a fixed reference position. The shape

model can be acquired with various ways depending on the application, including SfM methods such as [Wu, 2011; Agisoft,

2014], or structured-light methods such as [David 3D Scanner, 2014], or from a 3D CAD model database such as [TurboSquid,

2016; Warehouse, 2016]. There are two main types of shape models. The first use surface templates [Salzmann and Fua, 2011;

Brunet et al., 2014; Collins and Bartoli, 2014; Bartoli et al., 2015; Ngo et al., 2016], where only the object’s surface is modeled.

The second are with volume templates [Parashar et al., 2015], where the object’s surface and interior volume are modeled.

Surface templates are the most common and give good approximations for thin or hollow surfaces made for example of paper,

cloth and plastic. Surface templates have varied in complexity. The earliest model used algebraic models such as smooth

B-splines [Brunet et al., 2014] or thin-plate splines [Chhatkuli et al., 2017; Bartoli et al., 2015]. Most recent models include

triangulated meshes, which are conceptually simple, can handle general topologies [Salzmann and Fua, 2009; Ngo et al.,

2015; Yu et al., 2015; Collins and Bartoli, 2015; Ngo et al., 2016], and work for surface and volume templates. An important

point of mesh models is the trade-off between the density of the model and the computational time for shape inference.
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b) Appearance Model: The appearance model is used to describe the photometric appearance of the object. In nearly all

cases of Surface and Volume SfT, this is done using a texture-map [Bartoli et al., 2015; Chhatkuli et al., 2017; Salzmann and

Fua, 2011; Ngo et al., 2016; Collins and Bartoli, 2015]. A texture-map models the intensity or color of each surface point up

to photometric transforms caused by illumination, shading variations, and other photometric factors. In most previous works,

the texture-map is generated from one or more images of the object in its reference position [Collins et al., 2014], but it can

also come from a CAD model [Collins and Bartoli, 2015].

c) Deformation Model: The deformation model is used to define the transformation of the template’s reference shape

and the space of possible deformations. Most methods constraint the solution to be in the space of smooth deformations thanks

to implicit and explicit smoothing and all methods use physical priors1 using mathematical models inspired by physical laws.

Implicit and explicit smoothings. Implicit smoothing include thin-plate splines and B-splines, and reduce dimensionality

of the deformation space by modeling deformation with a reduced set of control points. For mesh-based shape models,

deformation smoothness has been introduced through the mesh laplacian [Sorkine and Alexa, 2007]. In [Ngo et al., 2016],

this was used both for smoothing and dimensionality reduction. The idea was to identify the smooth deformation modes

(which correspond to eigenvectors with lowest eigenvalues) by performing a modal analysis on the mesh laplacian. For some

methods which solve the reconstruction problem by minimizing a cost function, smooth deformations are explicitly enforced

with a smoothing term based on an `2 norm [Brunet et al., 2014; Bartoli and Özgür, 2016]. This norm strongly penalizes

non-smooth deformations.

Physical prior: isometry. Isometry and quasi-isometry are the most commonly used priors [Salzmann and Fua, 2011;

Chhatkuli et al., 2017; Collins and Bartoli, 2014; Bartoli et al., 2015; Liu-Yin et al., 2016]. They enforce metric constraints

by preventing deformations that locally stretch or shrink the object. Isometry means that the geodesic distance between two

points on the surface is preserved by deformation. Isometry is also equivalent to saying that the surface’s first fundamental form

is preserved by deformation. Isometry can be imposed exactly, which means no stretching or shrinking is permitted. Isometry

can also be imposed inexactly, meaning that there is non-negligible stretching or shearing, and the model penalizes solutions

with increased stretching or shrinking using a penalty function. This is also called quasi-isometry in the literature. Isometry

and quasi-isometry have been used extensively because they dramatically restrict the solution space, and are applicable for

many object classes such as those made of thick rubber, tightly-woven fabrics, paper, cardboard and plastics. The isometric

prior is very powerful, and has been shown that if it is imposed exactly and if correspondences are dense, then the problem

can be solved uniquely [Bartoli et al., 2015]. The main difficulty with isometry is that it is a non-convex constraint.

Physical prior: inextensibility. This is a relaxation of the isometry prior. It prevents the Euclidean distance between two

neighboring surface points from exceeding their geodesic distance, defined on the template. The advantage of the inextensibility

constraint is that it is a convex constraint. However, it is too weak to reconstruct geometry accurately and must be combined

with additional constraints. This has been done previously using the so-called MDH [Perriollat et al., 2011; Salzmann and

Fua, 2009], where a depth maximization constraint is imposed to prevent the reconstructed surface from shrinking arbitrarily.

The MDH has been shown to produce very good reconstructions when the perspective effects of the camera are strong.

1which is different from statistics-based priors such as the morphable face models of [Blanz and Vetter, 1999]
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Other physical priors. Weaker physical priors have also been considered to handle objects that can stretch or shrink as they

deform. Examples include the conformal prior (angle preservation) [Malti and Bartoli, 2014; Bartoli et al., 2015] or priors

based on elasticity [Malti et al., 2013; Haouchine et al., 2014; Malti et al., 2015; Özgür and Bartoli, 2017]. The problem

with using these weaker physical priors is that the SfT problem becomes less well-conditioned. For instance, SfT with the

conformal prior is solvable up to a global scale factor and convex/concave ambiguities.

2) Data Constraints in SfT: Data constraints must be extracted from the input image in order to match the template’s shape

with the object’s true shape. By far the most common are motion constraints. Other constraints include contour and shading.

a) Motion Constraints: Motion constraint can be broken down in two types: correspondences constraints and direct

constraints.

Correspondences constraints. Correspondence constraints force 3D points on the template’s surface to project at their

corresponding 2D points in the input image [Bartoli et al., 2015; Salzmann and Fua, 2011; Brunet et al., 2014; Ngo et al.,

2016]. The points used by these constraints are usually obtained by matching features from the template’s texture-map and

the input image. These constraints have been exploited in various ways: through zeroth-order correspondences [Salzmann

and Fua, 2011; Brunet et al., 2014; Ngo et al., 2016], first-order correspondences [Bartoli et al., 2015] or second-order

correspondences [Bartoli and Özgür, 2016].

A zeroth-order correspondence is used to constrain the position of a point on the template in camera coordinates. Usually

this is implemented using the reprojection error of the correspondence. However, this is a non-convex constraint. It is possible

to construct a convex zeroth-order constraint by imposing it in camera coordinates. Zeroth-order correspondences are usually

computed using feature-based matching. First-order correspondences require knowing both the position of the correspondence

and the local affine transform about the correspondence. A first-order correspondence is used to constrain both the position of

a point on the template in camera coordinates, and also first-order properties of the deformation at that point. In practically

all cases, the first-order properties relate to isometric deformation which states that the first fundamental form is preserved.

We discuss this further in §II-A3. First-order correspondence can be computed in two ways. The first is with a differentiable

warp fitted between the template’s texture-map and the input image. First-order correspondence can then be computed at

any given point by differentiating the warp. The second way is by fitting a local first-order differentiable warp at each

correspondence [Collins and Bartoli, 2014]. The main difficulty with first-order correspondences is the need to compute

first-order warp derivatives, which is less numerically stable than computing zeroth-order correspondences. Second-order

correspondences have also been recently considered [Bartoli and Özgür, 2016] to handle non-isometric deformations.

Correspondence constraints have three main limitations. First, they work well only for densely-textured objects with

discriminative texture, which may be a limitation for some man-made objects and natural objects that usually have very weak

texture. Second, feature-based matching methods may fail to establish correspondences without errors. Third, the computational

time to extract features, compute descriptors and perform the matching can be long without high performance GPUs.

Direct constraints. Direct constraints work by maximizing the photometric agreement, i.e. brightness constancy, between

the deformed template and the input image [Malti et al., 2011; Yu et al., 2015; Ngo et al., 2015; Collins and Bartoli, 2015].

The main advantage of direct constraints is to provide denser motion constraints than feature correspondences. However, direct

constraints present three main limitations: they are highly non-convex, require a good initial estimate and are hard to use in
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presence of strong photometric changes (induced by complex deformations or complex illuminations) or occlusions.

b) Other Constraints: In SfT, two other constraints have been used: contour constraints [Salzmann et al., 2007; Vicente

and Agapito, 2013; Gallardo et al., 2016] and shading constraints [Malti and Bartoli, 2014; Liu-Yin et al., 2016; Gallardo

et al., 2016]. Contour constraints force the object’s occluding contours align to the corresponding contours in the input image.

These constraints do not depend on the template’s texture, but may be difficult to use in presence of background clutter or

strong template’s texture. Shading constraints ensure the respect of the photometric relationship between surface geometry,

surface reflectance, illumination, the camera response and pixel intensity. These constraints give dense constraints and work

on poorly-textured and textureless surfaces. However, they may be difficult to use in practice because they require good

photometric modeling and calibration. Both constraints are highly non-convex constraints and require a good initial estimate.

They are also only applicable for surface and volume templates.

3) Inference in SfT: Inference is performed by determining the deformation parameters that mutually satisfy the data

constraints and deformation priors. Three inference categories have emerged and we illustrate them in figure 2.

a) Category (i): local analytical solutions using non-holonomic solution to PDE: Category (i) methods impose the

constraints through a PDE system and solve using non-holonomic solutions. This approach has been used by [Bartoli et al.,

2015; Chhatkuli et al., 2017] with the isometric prior and first-order correspondence constraints. Correspondence constraints

were computed with a differentiable template-to-image warp which maps the template’s texture-map to the input image. With

the template-to-image warp, [Bartoli et al., 2015] constructs a first-order PDE system and solves it at each point assuming that

the depth and its gradient are independent. These solutions obtained are called non-holonomic solutions. [Bartoli et al., 2015]

only uses the depth solution, however, it suffers from instabilities when the projection geometry tends to affine. Figure 2 gives

a reconstruction performed by [Bartoli et al., 2015]. [Chhatkuli et al., 2017] solves this issue by improving the stability using

the non-holonomic solution of both depth and gradient, which is proven to be stable for both perspective and affine projections.

The main advantage of category (i) methods is that, as they give an analytical solution at each correspondence, they are fast

and they can be parallelized extremely well. The solutions can be used as initial estimate for non-convex refinement which

we describe below. The main disadvantage is the need for accurate first-order correspondences.

b) Category (ii): convex optimizations using inextensibility: Category (ii) methods work by approximating the inference

problem with a convex function. The main idea is to deal with a simpler constraint than isometry which is non-convex

in order to obtain quasi-isometry. One solution is to relax isometry to inextensibility, which leads to a convex constraint

easier to handle. However, inextensibility is insufficient since a trivial solution is given by putting all correspondences at the

camera origin. To prevent this solution, the depths of the correspondences are maximized while simultaneously satisfying

inextensibility and zeroth-order correspondence constraints. This technique, called MDH [Perriollat et al., 2011; Salzmann

and Fua, 2009; Brunet et al., 2014], shows that it can provide solutions that are often quasi-isometric. Figure 2 gives a

reconstruction performed by [Salzmann and Fua, 2009]. Two versions of MDH have been proposed and they differ from the

way they solve the problem. The first version uses a fast greedy technique [Perriollat et al., 2011]. The second version is

based on the remark that the MDH can be formulated as a Second-Order Cone Programming (SOCP) problem [Salzmann

and Fua, 2009; Brunet et al., 2014], and therefore solves globally using efficient methods such as interior point. Despite the

improvements of the original formulation [Salzmann and Fua, 2009; Brunet et al., 2014], category (ii) methods remain using
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Category (i)
Local analytical solutions using non-holonomic PDE

Template ReconstructionInput image 
with template-to-image warp

Category (ii)
Convex optimizations using inextensibility

Input image 
with reprojected mesh

Reconstruction

Shape-from-Template
Category (iii)

Non-convex refinements

Template
Input image 

with reprojected surface
Reconstruction

Fig. 2. Illustration of the different categories of SfT methods. Results are taken from the following works (from category (i) to category (iii)): [Bartoli et al.,
2015], [Salzmann and Fua, 2009] and [Brunet et al., 2014].

a relaxation of the isometry, which sacrifices accuracy for obtaining a global solution.

c) Category (iii): non-convex refinements: The third category works by combining the data and prior constraints into a

single optimizable non-convex cost function. In general, because of the physical priors, this cost function is non-convex and

thus is solved by gradient-based minimization such as Levenberg-Marquardt [Brunet et al., 2014; Liu-Yin et al., 2016] or

Gauss-Newton [Ngo et al., 2015; Collins and Bartoli, 2015]. The solutions are holonomic, i.e. deformation and deformation

derivatives are dependent, which ensures a better conditioning and stability. The advantages of this category are two-fold:

there is no relaxation of the physical priors and complex constraints such as shading can be integrated without difficulty.

However, category (iii) methods present two main challenges: they are non-convex, they may require more computational

time than categories (i) and (ii) methods. They also require to find good weights of the different constraints. To ensure good

convergence, they generally require a reasonably accurate initialization. This can be provided by a category (i) or (ii) method.

Also, they may require some optimization techniques to improve the convergence, such as coarse-to-fine optimization [Collins

and Bartoli, 2015]. Examples of category (iii) methods are [Malti et al., 2011; Malti and Bartoli, 2014; Brunet et al., 2014;

Collins and Bartoli, 2015; Ngo et al., 2015; Yu et al., 2015; Liu-Yin et al., 2016].

B. Reconstruction of 3D Curves from Images

The problem of 3D curve reconstruction has been addressed in the two last decades through several approaches [Faugeras

and Papadopoulo, 1993; Berthilsson et al., 2001; Mai and Hung, 2010; Martinsson et al., 2007]. These works all assume

the curves to be rigid and use multiple images. The images may come from a pair of images [Sbert and F. Sol, 2003],

an unorganized set [Berthilsson et al., 2001; Mai and Hung, 2010; Martinsson et al., 2007; Kahl and August, 2003] or a

monocular video sequence [Faugeras and Papadopoulo, 1993].
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[Sbert and F. Sol, 2003] formulates the problem of curve stereo-reconstruction using an energy functional and obtains using

the Euler-Lagrange equations a PDE which is solved using a level-set approach. One drawback is that it requires to know the

camera projections.

[Berthilsson et al., 2001] proposes an affine shape method for 3D curves, which optimizes a subspace constraint to align

the parameterizations of matched curves over a set of images. It also extends the method of bundle adjustment to 3D curves.

[Mai and Hung, 2010] proposes a point-based 3D curve reconstruction method from multiple images taken by uncalibrated

cameras. It selects one image as reference, selects a fixed number of 2D ‘representative’ points along the curve in the reference

image and finds their matches in the other images. Then, it minimizes the reprojection error of the ‘representative’ points

by adjusting alternatively the camera projection and the ‘representative’ points in 2D and 3D. In practice, it requires planar

surfaces, which restricts significantly the range of recoverable curves. [Martinsson et al., 2007] reconstructs the curve in 3D

for an object observed in a set of images using a CAD model of this object. It proposes a two-stage adaptive reconstruction

method which uses 3D NURBS to parameterize the curve. First, it optimizes the 3D NURBS curve with a fixed number of

control points by minimizing image contours and gradient intensity constraints. Second, it inserts new control points using the

same energy terms and a stop-criterion in order to capture high curvature without over-parameterizing the 3D curve. [Kahl

and August, 2003] solves simultaneously the matching and the reconstruction problems. For this, it proposes an optimization

problem for a generative model of space curves with two components: a smoothness prior of the curves and a formation model

of image curves. Initial 3D curves are estimated using an edge-based trinocular stereovision method [Robert and Faugeras,

1991] and considered as hypotheses regarding the generative model. All hypotheses are then independently refined using the

generative model and kept if they respect a set of image conditions. [Kahl and August, 2003] uses B-splines to parameterize

the curves and gradient descent for the optimization. One shortcoming is that the relative motion of the cameras is known in

order to generate from the 3D curve the 2D curve in each image.

[Faugeras and Papadopoulo, 1993] provides a thorough theoretical study of the structure and the motion of 3D curves: it

gives the assumptions under which they can be recovered from a sequence of calibrated images. As it relies on high order

spatio-temporal derivatives, the method suffers in practice from numerical problems.

Even if these methods reconstruct 3D curves, their assumptions significantly differ from the ones of Curve SfT, which

reconstructs a deformable curve from a single image and a curvilinear template.

III. PROBLEM MODELING AND THEORETICAL ANALYSIS

We now study the two main cases of the Curve SfT problem, referred as SfT1→3→2 and SfT1→2→1. SfT1→3→2 is when

the template is a curve embedded in the 3D space and observed by a regular 2D camera. SfT1→2→1 is similar to SfT1→3→2,

but the camera is 1D. We first specify both cases in two particular instances and then propose a theoretical analysis of both

instances. For sake of simplicity, we refer both instances respectively by SfT1→3→2 and SfT1→2→1.

A. SfT1→3→2 and SfT1→2→1: Two Instances of Curve SfT

We form here the two problem instances of SfT1→3→2 and SfT1→2→1 using eight problem components and giving

the reasons of each component specification. The reason to define these instances is to consider the important problem

configurations and to propose a formal and clear definition of the problems which we study.
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1) The SfT1→3→2 instance: (a) Models. In order to solve Curve SfT, two fundamental models are required: the template

and the camera projection model. We use a 1D general function for the template’s shape. We model the template’s appearance

with a known texture-map which is however unused because we consider motion to be given a priori, as we state in the

component (f). Deformation is modeled quasi-isometrically. The camera projection model determines how to reproject the

3D points used by the motion constraint, as explained in §II-A2a. We assume the perspective camera model [Hartley and

Zisserman, 2003], which handles well most real-world cameras. (b) Exploited visual cues. We use only motion visual cue

based on correspondences because it is the main visual cue used in SfT. (c) Number of required images. A single image is

required because we want to tackle the classical version of SfT. (d) Expected types of deformations. We assume quasi-isometric

and no tearing. (e) Scene geometry. We assume no self or external occlusions, which is a typical assumption in the SfT state-

of-the-art. There can be background clutter. (f) Requirement for correspondences. We assume to know a priori a set of 1D-2D

correspondences from the texture-map of the template to the input image. We assume that these are sufficiently dense along

the template. (g) Surface texture characteristics. We consider well-textured surfaces since it is an usual assumption in SfT.

(h) Known and unknown model parameters. A template of the surface, as defined in §II-A1, and the camera intrinsics are

known. The unknowns are the 3D points of the deformed template in 3D camera coordinates.

2) Specialization to SfT1→2→1: SfT1→2→1 differs from SfT1→3→2 in three components, (a), (f) and (h). For (a), SfT1→2→1

adapts the perspective camera model to a 2D projection. The input image is 1D. For (f), SfT1→2→1 assumes 1D-1D

correspondences between the texture-map and the input image. For (h), the unknowns of SfT1→2→1 are the 2D points

of the deformed template in 2D camera coordinates.

B. SfT1→3→2: Reconstructing a 3D Curve from a 2D Image and a 1D Template

1) Template and Camera Modeling: The known template is 1D and we write it as T ⊂ R. We assume the template is

deformed into a smooth unknown curve S ⊂ R3 embedded in 3D. We denote the embedding function that generates S by

ϕ = (ϕx ϕy ϕz)
> ∈ C∞(T ,R3). The 2D input image I ⊂ R2 is a perspective projection of S. We model projection by the

pinhole camera Π:

Π(Q) =
(x
z

y

z

)>
where Q = (x y z)

>
. (1)

The pinhole camera can be used for general perspective cameras when lens distortion has been corrected and the intrinsic

calibration matrix has been standardized to I3 [Hartley and Zisserman, 2003].

2) Inputs and Outputs: We now give our inputs. (i) one RGB input image I : R2 → {0, 255}3 showing a deforming

curve. (ii) a template of the curve, defined using §III-B1. (iii) the camera intrinsics of the perspective 3D projection function

Π. (iv) a set of N 1D-2D correspondences from the texture-map of the template to the input image. We denote the set by

Sc = {(uk,qk)} where uk denotes the correspondence position in T and qk denotes the correspondence position in the

input image I . Details for how correspondences are computed for our experimental datasets are given in §VI-B2. We define

η ∈ C∞(T ,R2) as the template-to-image warp. As S has no self-occlusions in I , so η is bijective. As the set of N 1D-2D

correspondence points are known between the template and the input image and as these are sufficiently dense, η can be

estimated through a smooth interpolation. In practice, we use B-splines to model η.
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Fig. 3. General modeling of SfT1→3→2.

Our solution to SfT1→3→2 outputs the 3D points of the deformed template in 3D camera coordinates.

3) Theoretical Analysis: We now express mathematically SfT1→3→2 and then propose a differential analysis of the problem.

Our geometric modeling is shown in figure 3. It is inspired from [Bartoli et al., 2015], for solving Surface SfT with continuous

differential geometry. We recall that we study SfT1→3→2 (and SfT1→2→1) under the assumption of known correspondences

between the template and the input image. This is a reasonable assumption and a mandatory move to understand the theory

behind this problem.

a) Problem formulation: SfT1→3→2 involves recovering ϕ, from the warp η and the projection Π. This is constrained

by the isometry prior and the reprojection constraints implied by η. The warp η ∈ C∞(T ,R2) maps the template to a 2D

input image. The reprojection constraint is therefore:

η = Π ◦ ϕ. (2)

The isometry constraint forces the geodesic distance to be preserved between T and S. It is a first order differential property

in ϕ:

J>ϕJϕ = 1. (3)

From the constraints (2) and (3), we define SfT1→3→2 as follows:

Find ϕ ∈ C∞(T ,R3) s.t.


η = Π ◦ ϕ (reprojection)

J>ϕJϕ = 1 (isometry).
(4)

b) ODE formulation: We show that equation (4) is equivalent to finding the solution of a first-order non-linear ODE.

Using equation (1), we first transform the reprojection constraint into:

ϕ = ϕz η̄, (5)
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where ϕz is the depth component of ϕ and η̄ is the warp in homogeneous coordinates. We differentiate equation (5) once,

giving:

Jϕ = ϕzJη̄ + ϕ′z η̄. (6)

We then substitute equation (6) into the isometry constraint from equation (4) and obtain a first-order non-linear ODE with

ϕz as the unknown variable:

ϕ′2z ‖η̄‖2 + 2ϕzϕ
′
z η̄
>Jη̄ + ϕ2

zJ
>
η̄ Jη̄ = 1. (7)

Using the identities η̄>Jη̄ = η>Jη and J>η̄ Jη̄ = J>η Jη , we arrive at:

ϕ′2z ‖η̄‖2 + 2ϕzϕ
′
zη
>Jη + ϕ2

zJ
>
η Jη = 1. (8)

Equation (8) is a first-order ODE. Given a solution to equation (8), the problem is solved and ϕ can be found as ϕ = ϕz η̄.

We now propose a change of variable that greatly simplifies equation (8) and the study of its solutions.

c) Change of variable: We define the function ε = ‖η̄‖, where ε′ = 1
εη
>Jη . We now define a new scalar function θ

with:

θ = ϕzε. (9)

θ can be interpreted as the distance of the curve point to the center of projection. Equation (8) can now be rewritten in terms

of θ and θ′:

θ′2 + ξθ2 = 1 with ξ =
1

‖η̄‖2

(
J>η Jη −

1

‖η̄‖2
J>η ηη

>Jη

)
. (10)

We use equation (10) to study the local solvability and the solution space of SfT1→3→2. This leads to two important results:

(i) SfT1→3→2 is not locally solvable exactly and (ii) there exist necessary and sufficient conditions for solving SfT1→3→2 up

a discrete number of ambiguities.

d) Local exact solutions: We explore whether local solutions of equation (10) exist using non-holonomic solution analysis.

Non-holonomic solutions are based on the creation of new equations by differentiation and a relaxation of the differential

dependencies. In our case, this means treating θ and θ′ as independent variables. The results are called non-holonomic

solutions [Eliashberg and Mishachev, 2002]. The uniqueness of non-holonomic solutions to PDE implies the uniqueness

of solutions to the original ODE. Our main motivation is historical as non-holonomic solutions were used successfully

in Surface SfT [Bartoli et al., 2015] to prove well-posedness and to give analytic solutions. We prove the following proposition:

Proposition 1 (Impossibility of non-holonomic solutions). The non-holonomic solution for ϕz in equation (8) is under-

constrained for any order of differentiation.

Proof. Equation (10) gives a single constraint for the two unknowns, θ and θ′. Differentiating equation (10) creates extra

equations. Differentiating k − 1 times yields k equations, however, each differentiation introduces one new unknown. For

order k, we have a total of k+ 1 unknowns: θ, θ′, . . . , θ(k). As a consequence we have k equations and k+ 1 unknowns, and

the problem is under-constrained for any order k > 0.

This proposition is important because it proves that local non-holonomic solutions to the ODE (10) do not exist.
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e) Solution space: We now study the global solutions to SfT1→3→2. In general, a single ODE such as equation (10) has

an infinite number of solutions. The true curve is one of these solutions. We construct an IVP by adding an initial condition

θ(u0) = θ0 to the ODE (10). Our IVP writes as:
θ′(u) = Ψ(u, θ(u)) =

√
1− ξ(u)θ2(u)

θ(u0) = θ0.

(11)

The value θ0 ∈ R∗ at u0 is called the anchor point. We now use the following two properties.

Proposition 2 (Number of solutions to IVP (11)). For the given IVP (11),

• when θ′(u0) 6= 0, the IVP (11) has two solutions in a local interval of u0

• when θ′(u0) = 0, the IVP (11) has at most two solutions in a local interval of u0.

Proof. When θ′(u0) 6= 0, we apply the Picard-Lindelöf theorem and obtain that the IVP (11) has two solutions in a local

interval of u0. This theorem is applicable to the IVP (11) because this IVP respects the Picard-Lindelöf conditions: the function

Ψ is uniformly Lipschitz continuous in θ and continuous in u.

When θ′(u0) = 0, the number of solution is given by [Casillas-Perez and Pizarro, 2017]: there are at most two solutions in

a local interval of u0. The solution space is thus bounded if the anchor point is available. Here, we use the theorem given and

proved in [Casillas-Perez and Pizarro, 2017] instead of the Picard-Lindelöf theorem which cannot be applied in this case. This

is because, when θ′(u0) = 0, the function Ψ is not Lipschitz continuous in θ. To solve this, [Casillas-Perez and Pizarro, 2017]

shows that at most two analytical solutions can be constructed in a local interval of u0 such that their first-order derivative is

not null at u0, which allows one to apply the Picard-Lindelöf theorem.

However, in practice we do not have an anchor point to form the IVP (11), making this approach impractical. We propose

a strategy to find solutions of the ODE (10), which obtains very good candidates for the true curve without explicitly needing

anchor points. Our strategy is based on finding the so-called critical points. Critical points have special geometric properties,

especially a unique solution to depth and normal direction, that we exploit to find the true curve.

f) Critical points: We now give the formal definition of critical points and their properties.

Definition 1 (Critical point definition in θ). Given a solution θ̂ of equation (10), uc ∈ T is a critical point of θ̂ if and only

if θ̂′(uc) = 0. Equivalently, from equation (10), uc ∈ T is a critical point of θ̂ if and only if θ̂2(uc)ξ(uc) = 1.

Proposition 3 (Critical point definition in ϕ). Given a solution ϕ̂ to equation (4), uc ∈ T is a critical point if and only if

ϕ̂>(uc) Jϕ̂(uc) = 0. An intuitive interpretation is that a critical point is the point on the curve where the tangent and the

optical ray are orthogonal.

Proposition 3 is proved in appendix A. It gives a geometric interpretation of the critical points: they represent the points of

the curve S where the tangent and the optical ray are mutually orthogonal. In addition, and directly from definition 1, we

have that for a critical point uc:

θ̂(uc) =
1√
ξ(uc)

. (12)
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g) Computing super critical points from the ODE: A critical point cannot be determined prior to reconstruction. For

instance, from definition 1, one has to know ϕ̂, and thus the function θ̂, in order to compute the critical points. For this, we

propose to compute a superset of the critical points as this set contains all the critical points of ϕ̂. To find this superset, we

use equation (10) and define the super curve, denoted by ϕs, as follows.

Definition 2 (Super curve). The super curve ϕs ∈ C∞(T ,R3) of the ODE (10) is defined as ϕs = 1
ε
√
ξ
η̄.

The super curve is obtained by setting θ′ = 0 in equation (10) and solving the resulting algebraic equation for θ:

ξθ2
s = 1 ⇒ θs =

1√
ξ
. (13)

The super curve is not a solution of the ODE (10) except for those points where θ′s = 0, which form the set of super critical

points.

Proposition 4 (The set of super critical points). The set of all critical points contained in any solution of the ODE (10)

belongs to the set of critical points of its super curve ϕs. We name this set the super critical point set.

Proposition 4 is proved in appendix B. We now give a way to characterize the super critical points. Precisely, we give three

equivalent characterizations. We use them to investigate different methods of super critical point detection.

Proposition 5 (Super critical point identities). The following are necessary and sufficient conditions for us being a super

critical point:

(ξ′(us) = 0)⇔(
‖η̄(us)‖4J>η (us)Hη(us)− η>(us)Jη(us)

(
‖η̄(us)‖2η>(us)Hη(us)+

2‖η̄(us)‖2J>η (us)Jη(us)− 2J>η (us)η(us)η
>(us)Jη(us)

)
= 0
)

⇔
(
ϕs
>(us)Jϕs(us) = 0

)
,

where ϕs is the super curve constructed from equation (8).

Proposition 5 is proven in appendix C.

h) Properties of the solutions of the IVP at a super critical point: Suppose we have one super critical point us obtained

from the super curve. We restate the IVP (11) using the critical point as the initial condition:
θ′2 + ξθ2 = 1

θ(us) = θs(us).

(14)

According to [Casillas-Perez and Pizarro, 2017], this problem has two analytical solutions in an open domain ]us− ε;us + ε[

sufficiently close to the super critical point with ε > 0. One solution is θ′ =
√

1− ξθ2 corresponding to the case where θ′ is

positive. The second solution is θ′ = −
√

1− ξθ2, where θ′ is negative. If we combine all pairs of branches on either side of

the super critical points we obtain four candidate solutions in the local vicinity of us, which are C1 functions [Casillas-Perez

and Pizarro, 2017].



17

i) Candidate solutions: Suppose that us1 , · · ·usNs is the set of Ns super critical points. We define a candidate solution

as the solution of the following MIVP: 

θ′2 + ξθ2 = 1

θ(us1) = θs(us1)

...

θ(usNs ) = θs(usNs ).

(15)

We extend the theorem proposed in [Casillas-Perez and Pizarro, 2017] to the case where there are more than one super

critical point. We define the interval I = [us1 ;us2 ], with us1 and us2 two consecutive super critical points.

Proposition 6 (Constant sign between two consecutive super critical points). Given two consecutive super critical points us1 ,

us2 and given a solution θ̂ of equation (15), the sign of θ̂′ remains constant in the interval I = [us1 ;us2 ].

Proof. θ̂ has continuous derivatives, θ̂′(us1) = 0 and θ̂′(us2) = 0 by definition 1. Therefore the function θ̂′ cannot change its

sign in the interval I without passing through a super critical point, which contradicts the fact that there are no super critical

points in I.

Using proposition 6, we obtain the following.

Proposition 7 (Number of candidate solutions between two consecutive super critical points). Given the interval I = [us1 ;us2 ]

between two consecutive super critical points, there exist two candidate solutions, given by the solutions of equation (15) in

I.

Proof. We use the super critical point us1 to construct an IVP and then apply the theorem from [Casillas-Perez and Pizarro,

2017] on I. This shows the existence of two solutions in I. Because us2 is also a super critical point, both solutions, which

intersect at us1 , also pass through us2 . This is respected regardless of using us1 or us2 as initial condition. Thus, the two

solutions of both IVPs are the same.

From proposition 7 we can derive the following bound on the number of solutions of the MIVP (15), given the number

of super critical points.

Theorem 1 (Number of candidate solutions). For Ns super critical points in T , there are 2Ns+1 candidate solutions to

equation (15).

Proof. Proposition 7 tells us that there are two candidate solutions between two consecutive super critical points. Therefore,

the solutions to the MIVP (15) are composed of pieces of curves that connect at the super critical points and correspond to

all the possible combinations. For Ns super critical points, we thus have 2Ns+1 possible combinations.

j) Specialization to closed curvilinear templates: All theoretical aspects previously mentioned apply to the case of

closed curvilinear templates. However, for this special case, a specific theoretical result can be obtained regarding the lower

bound on the number of candidate solutions.
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Proposition 8 (Lower bound on the number of candidate solutions for a closed curvilinear template). If T is a closed

curvilinear template and if T is deformed smoothly in R3 by ϕ ∈ C∞(T ,R3), then there are at least 2 critical points, and

so at least 4 candidate solutions to equation (15), and the number of solutions is thus always finite.

Proof. A closed curvilinear template T implies that function θ is bounded. As the function θ is continuous in T , we can

apply the extreme value theorem and obtain that function θ has at least a maximum and a minimum. Therefore, there exist

at least two points (u1, u2) ∈ T 2 such that θ′(u1) = 0 and θ′(u2) = 0, which gives from definition 1 that u1 and u2 are two

critical points of ϕ. From proposition 4, u1 and u2 are two super critical points of ϕ. Thus, from theorem 1, there are at least

4 candidate solutions to equation (15) and thus a finite number of solutions.

k) Conclusions on the theoretical analysis of SfT1→3→2: We have proved for the SfT1→3→2 problem all properties which

we presented in §I-A. The two main outcomes of this analysis are the non-solvability of SfT1→3→2 using local non-holonomic

PDE and the finding of the critical points in the data itself, which sufficiently constrain the problem so it can be solved up

to a finite set of candidate solutions.

C. SfT1→2→1: Reconstructing a 2D Curve from a 1D Image and a 1D Template

The SfT1→2→1 problem is a straightforward specialization of the SfT1→3→2 problem. This specialization does not imply

that any extra constraint or information are imposed. We illustrate the specialization in figure 4.

Fig. 4. General modeling of SfT1→2→1.

1) Template and Camera Modeling: Both problems share the same dimension for the known template, T ⊂ R. However,

the main difference is that the image of the functions, ϕ, η and Π has a dimension smaller. The template is deformed into an

unknown smooth curve S ⊂ R2 embedded in 2D. We parameterize the embedding function by ϕ = (ϕx ϕy)
> ∈ C∞(T ,R2).
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The 1D input image I ⊂ R is modeled as the perspective projection of S that we denote with a canonical 1D projection

function Π:

Π(Q) =
x

y
where Q = (x y)

>
. (16)

2) Inputs and Outputs: We now give the inputs and the outputs of SfT1→2→1. (i) one 1D input image I : R→ {0, 255}3

showing a deforming curve. (ii) a template of the curve, defined using §III-B1. (iii) the camera intrinsics of the perspective

2D projection function Π. (iv) a set of N 1D-1D correspondences from the texture-map of the template to the input image.

We denote the set by Sc = {(uk, qk)} where uk denotes the correspondence position in T and qk denotes the correspondence

position in the input image I . Details for how correspondences are computed for our experimental datasets are given in §VI-A2.

Our solution to SfT1→2→1 outputs the 2D points of the deformed template in 2D camera coordinates.

3) Theoretical Analysis: We show that SfT1→2→1 can be formulated as SfT1→3→2 in problem (4). More specifically, it

follows the same ODE, which allows us to use all properties given in §III-B3. This leads to the same conclusions as for

SfT1→3→2: (i) SfT1→2→1 is not locally solvable exactly and (ii), if Ns ≥ 1, SfT1→2→1 has 2Ns+1 candidate solutions and

an infinite number of solutions otherwise. The differences with SfT1→3→2 are two-fold: the formula of the ODE coefficients

ξ and the critical points definition in ϕ. We now give these differences.

a) Problem formulation: Similarly to SfT1→3→2, SfT1→2→1 involves recovering ϕ, from the warp η and the projection

Π using the isometry prior and the reprojection constraints implied by η. The warp η ∈ C∞(T ,R1) maps the template to a

1D input image. The reprojection constraint is therefore:

η = Π ◦ ϕ. (17)

The isometry constraint is a first order differential property in ϕ:

‖ϕ′‖22 = 1. (18)

From the constraints (17) and (18) we define SfT1→2→1 as follows:

Find ϕ ∈ C∞(T ,R2) s.t.


η = Π ◦ ϕ (reprojection)

‖ϕ′‖22 = 1 (isometry).
(19)

b) ODE formulation: We obtain the ODE of SfT1→2→1 in a similar way as in §III-B3. We first transform the reprojection

constraint (17) into:

ϕyη = ϕx, (20)

where ϕy is the depth component of ϕ. We differentiate once, giving:

η′ϕy + ηϕ′y = ϕ′x. (21)

By substituting ϕ′x from equation (21) in the isometry constraint (18) and expanding, we arrive at:

ϕ′2y η
2 + 2ϕyϕ

′
yηη
′ + ϕ2

yη
′2 + ϕ′2y = 1. (22)



20

This is the same as ODE (10). We then perform the change of variable given in §III-B3c in order to study the ODE solutions.

c) Change of variable: We first define ε = ‖η̄‖ and thus, ε′ = 1
εηη
′. Introducing ε and ε′ in equation (22) we have:

(
ϕ′yε+ ϕyε

′)2 − ϕ2
yε
′2 + ϕ2

yη
′2 = 1. (23)

We then define the change of variable:

θ = ϕyε, (24)

which allows us to transform equation (23) into one depending on θ and θ′:

θ′2 + ξθ2 = 1 with ξ =
η′2

ε4
. (25)

Finally, two explicit ODEs can be derived from equation (25):

θ′ = ±
√

1− ξθ2. (26)

Given a solution to equation (25), we recover a solution of the original ODE (22) by simply inverting the change of variable

of equation (24).

d) Critical points: We give two propositions regarding the critical points, which differ from SfT1→3→2. The reason is

that the expression of ξ is different in SfT1→2→1.

Proposition 9 (Critical point definition in ϕ). Given a solution ϕ̂ to equation (19), uc is a critical point if and only if

ϕ̂>(uc) ϕ̂
′(uc) = 0. An intuitive interpretation is that a critical point is the point on the curve where the tangent and the

optical ray are orthogonal.

Proposition 9 is proven in appendix D.

Similarly to definition 2 and proposition 4, we now introduce the notion of super curve and the set of super critical points.

We also give three equivalent ways to characterize the super critical points.

Proposition 10 (Super critical point identities). A point us is a super critical point of equation (19) if and only if it is a

solution of one of the following equations:

(ξ′(us) = 0)⇔
(
2η(us)η

′2(us)−
(
1 + η2(us)

)
η′′(us) = 0

)
⇔
(
ϕs
>(us) ϕ

′
s(us) = 0

)
,

with ϕs the super curve of equation (25).

Proposition 10 is proven in appendix E.

IV. THE NUMBER OF SOLUTIONS

We have shown that these are very under-constrained problems, described with a single ODE which has an infinite number of

solutions. Adding anchor points from the true curve makes the corresponding IVP well-constrained, but it remains impractical.

The main contribution of this paper is a method, the HMM-based solution, for finding good candidates of the true curve using

only the ODE coefficients. Our method implies finding the so-called super critical points and solving efficiently an MIVP
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which limits the true curve to belong to a discrete number of candidate solutions. Our HMM method reconstructs each

candidate solution and then the true curve, without knowing which reconstructed candidate solution is the true curve. In our

experiments, we can note however that the reconstructed true curve does not fit perfectly with the true curve, but is very

close to it. Discrepancies may be explained by noisy data, data fitting errors and computational issues. Intuitively our strategy

forces the candidate solutions to be smooth as it forces the first derivatives of the depth variable to be small at the super

critical points. This also pushes the candidate solutions away from the camera center as our ODE are sum-of-squares of the

depth and its first derivatives. In addition, we empirically observed that candidate solutions that do not pass through many of

the super critical points tend to be very non-smooth and tend to come very close to the camera center.

In Curve SfT, we face two fundamental cases. In the first case, the true curve does not have any critical point. It is

then not recoverable. Mathematically, the ODE (10) has an infinite number of solutions and cannot be upgraded into an

IVP. In the second case, the true curve has at least one critical point. It is then recoverable up to a finite number of

ambiguities. Mathematically, the ODE (10) has an infinite number of solutions, but can be upgraded into the MIVP (15).

In order to guarantee that the true curve belongs to the recovered set of curves, we thus have to enumerate all possible

subsets of super critical points. These subsets give the extended set of candidate solutions, which we formally define as follows:

Definition 3 (Extended set of candidate solutions). Given Ns super critical points in T , the extended set of candidate solutions

is the set of all candidate solutions of the ODE (10) which pass through a combination of the Ns super critical points.

From theorem (1), we compute the size of the extended set of candidate solutions as follows.

Proposition 11 (Size of the extended set of candidate solutions). Given Ns super critical points in T , the size of the extended

set of candidate solutions is Mext = 2
(
3Ns
)
− 2.

Proof. For each subset of i super critical points selected from the set of super critical points, the number of combinations

is given by the binomial coefficient
(
Ns
i

)
. From theorem (1), we know that, for each subset of i super critical points, we

have 2i+1 candidate solutions of the MIVP (15). Then, the number of candidate solutions considering all possible subsets is

Mext =
∑Ns
i=1

(
Ns
i

)
2i+1 = Ns2

2+...+Ns2
Ns+2Ns+1. This can be simplified using the combinatorial binomial theorem which

gives that for n ≥ 0 and (x, y) ∈ R2, (x + y)n =
∑n
i=0

(
n
i

)
xiyn−i. We then obtain Mext = 2

(∑Ns
i=0

(
Ns
i

)
2i −

(
Ns
0

)
20
)

=

2
(

(2 + 1)Ns − 1
)

= 2
(
3Ns
)
− 2.

Considering all possible subsets of super critical points, we now give a condition of the recoverability of the true curve

and the set of candidate solutions in which the true curve is contained.

Theorem 2 (Recoverability of the true curve). Given the ODE (10) and Ns ∈ N super critical points in T ,

• if the true curve does not pass through any critical point, it is not recoverable

• if the true curve passes through 1 ≤ nc ≤ Ns critical points, the true curve is recoverable up to a finite number of

ambiguities and is contained in the extended set of candidate solutions.
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Proof. We start with the case where the true curve does not pass through any critical point. As setting an anchor point as

the initial condition of the IVP (11) requires additional information, we do not have any way to set an initial condition. Then

we cannot recover the true curve from the ODE (10). We now consider the case where the ODE (10) has Ns ≥ 1 super

critical points and the true curve passes through 1 ≤ nc ≤ Ns critical points. We can form the MIVP (15) with nc initial

conditions. The true curve is then recoverable and, from definition (3), the true curve is contained in the extended set of

candidate solutions.

From proposition 11, we have that the extended set of candidate solutions is much larger than the set of candidate solutions

given by theorem 1. Figure 5 compares how the number of both sets grows as a function of the number of super critical

points. We note that the extended set of candidate solutions grows faster with the number of super critical points, as compared

to the set of candidate solutions. Therefore, considering the extended set of candidate solutions for the implementation may

massively increase the computational burden. This is why we consider in §V the set of candidate solutions.

(b)(a)

Fig. 5. Size of the extended and normal set of candidate solutions as function of the number of super critical points. (a) bar-plots of the set sizes as functions
of the number of super critical points, (b) associated values of the set sizes.

V. COMPUTATIONAL SOLUTIONS

As mentioned in §II-A3, three categories of method have been proposed to solve SfT. We propose here a method for the

three categories and a four method from a new category which uses a graphical model. For each category of method, we first

describe in detail the method for SfT1→3→2 and then give the specialization to SfT1→2→1.

In the theoretical analysis, we use a general function for the template’s shape model. However, such model cannot be used

for these four categories. We propose then to adapt the template’s shape model for each category. We follow here the same

notation of SfT inference categories given in §II-A3. We now give the specific shape model of the template for each category:

a differentiable function for category (i), a point set for category (ii) and an angle-based parameterization (presented in §V-C1)

for category (iii). For the new category (iv) based on graphical model, the shape is modeled by a chain.
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A. Single-Solution Methods (Categories (i) and (ii))

The following methods are fast and simple solutions to Curve SfT, however they have limited practical use because they

compute only a single candidate solution, which may be the wrong one. We describe them for completeness as they follow

directly from existing category (i) and (ii) methods for Surface SfT.

1) A Category (i) Method: SfT1→3→2 Case. We consider non-holonomic solutions and assume that the deformed curve S is

infinitesimally linear. This is equivalent to S being a succession of infinitesimal lines, i.e. to consider Hϕ(u) = 03×1,∀u ∈ T .

By differentiating equation (6) and substituting, we obtain:

2ϕ′zJη̄ + ϕzHη̄ = 03×1 ⇒ ϕ′z = −1

2
ϕzJ

−1
η̄
>
Hη̄ ϕz. (27)

By substituting ϕ′z from equation (8) in equation (27), we obtain two solutions for ϕz:

ϕz = ± 1√
J>η̄ Jη̄ − η̄>Hη̄ + 1

4 ||η̄||2
(
J−1
η̄
>
Hη̄

)2
. (28)

The infinitesimal linearity assumption can be generalized to higher orders assuming ϕ(k)(u) = 03×1,∀u ∈ T . This makes ϕ

locally polynomial of finite order. However, unlike for infinitesimal linearity, for k > 2, analytical solutions are difficult, but

not impossible, to find.

Specialization to SfT1→2→1. Similarly to SfT1→3→2, we obtain the analytical solution by differentiating equation (21) and

assuming infinitesimal planarity, i.e. ϕ′′(u) = 02×1. This produces the solutions:

ϕy = ± 2η′√
(−η′′η + 2η′2)

2
+ (−η′′)2

. (29)

For both cases, we discard the negative solution because it is behind the camera.

2) A Category (ii) Method: SfT1→3→2 Case. We model the problem as an SOCP optimization. This is a direct adaptation

of the so-called MDH [Perriollat et al., 2011; Salzmann and Fua, 2009], which we presented in §II-A3b. We discretize the

template into a chain of N nodes and place the nodes at the correspondence points. We set the positions of each node in the

input image at the 2D image correspondences, denoted by qi, i ∈ [1, N ]. The unknowns are then the set of depths di ∈ R+

at each node. Any pair of nodes is constrained by the following inextensibility constraint:

∀(i, j) ∈ [1, N ]2 with i 6= j,
∥∥∥di(q>i 1)

> − dj(q>j 1)
>
∥∥∥ ≤ lij , (30)

where lij ∈ R+ denotes the geodesic distance between nodes i and j, known from the template. The problem is then cast as

an SOCP by searching for the maximal depth of each node such that equation (30) is satisfied.

Specialization to SfT1→2→1. The extension of the MDH to SfT1→2→1 is trivial and follows the formulation (30) for

SfT1→2→1 where, for each i ∈ [1, N ], qi is now a 1D point.

B. A Multi-Solution Method with HMM (Category (iv))

1) Overview: We model the problem as a discrete HMM. This overcomes the limitations of category (i) and (ii) methods

because all candidate solutions are reconstructed. Note that from now we restrict our search to the set of candidate solutions
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given in theorem 1 and not the extended set of candidate solutions, presented in §IV. This is motivated by two reasons:

computing the extended set of candidate solutions increases massively the computational time of the category (iv) method

and, in practice, we found most of the time that the set of candidate solutions contains a solution very close to the ground-truth.

Our multi-solution method is based on two main remarks:

• Super critical points separate the curve S (and then the 1D template) into contiguous pieces

• Proposition 7 tells us that each piece is recoverable up to a two-fold ambiguity.

Our method is illustrated by figure 6. From the estimated warp η, we detect the Ns super critical points using a method

described in §V-B2. We use usj ∈ R to denote the position of the jth super critical point in the template. We use dsj to denote its

corresponding depth. From proposition 6 we know that between two consecutive super critical points the sign of θ′ is constant.

We then reconstruct the full template by specifying a sign combination vector s = {si}i∈[1,Ns+1] ∈ [−1,+1]Ns+1, where

si denotes a selection for either the positive solution θ′ =
√

1− ξθ2 or the negative solution θ′ = −
√

1− ξθ2. Therefore,

each sign combination vector characterizes uniquely each candidate solution, which gives to this category (iv) method the

capability to reconstruct all possible candidate solutions. When Ns is small, it is feasible to generate all candidate solutions

using every possible s. This is the case with our experimental data where Ns is typically lower than 12. When this is not the

case, the template can be generated on demand with a specific s. A pseudo-code of this method is given in algorithm 1 in

appendix F.

2) Super Critical Point Detection: All equivalent characterizations of a super critical point given by proposition 5 can be

used for detection. They only require one to know the warp η. We have found the method using the roots of ξ′ to be the

most accurate and the most stable.

3) Graphical Modeling: We setup the HMM as follows. We generate its nodes by discretizing the template into M+Ns 1D

points: U = {u1, u2, . . . , uM+Ns}. These are made by combining the Ns super critical point positions usj with M uniformly

sampled template points spanning the whole template. We order these such that ui+1 ≥ ui. The position of each node in the

input image is denoted by Q = {q1,q2, . . . ,qM+Ns} ∈ RM+Ns . These are computed using the warp η.

The state of each node holds its unknown depth di ∈ R. We draw di from a discrete set of D depth samples, denoted by

D ∈ R+. We discuss how D is created in §V-B5.

The graph’s edges are constructed between consecutive nodes, producing M +Ns − 1 edges. We use the set Ei to denote

the neighbors of node i. We define the graph’s energy using first and second-order potentials. This has the following form:

E({di}; s,U ,Q) = Eiso({di};U ,Q) + λcpEcp({di};Q) + Esign({di}; s,U ,Q), (31)

The energy term Eiso denotes the isometric energy, and is a second-order energy between consecutive nodes that enforces

the isometry prior. The energy term Ecp denotes the critical point energy, and is a second-order energy between super critical

point nodes and their neighboring nodes. This energy forces the tangent at each super critical point node to be orthogonal

its line-of-sight (proposition 3). The last energy term Esign is a first-order energy and forces the gradient signs of the super

critical point nodes to agree with a particular sign combination vector s.
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Fig. 6. Reconstruction pipeline of our proposed category (iv) method. Top: proposed category (iv) method for solving SfT1→2→1 and so 4 candidate
solutions. We illustrate the pipeline with an example where there is Ns = 1 super critical point. Bottom: we give the other candidate solutions, which are
obtained by selecting different sign combinations s.

4) Energy Definitions: The energy term Eiso is defined as follows:

Eiso({di};U ,Q) =

M+Ns∑
i=1

∑
j∈Ei

(∥∥∥di (q>i 1
)> − dj (q>j 1

)>∥∥∥− li.j)2

, (32)

where li,j = |ui − uj | denotes the distance in the template domain between two neighboring nodes. This prevents the curve

from stretching or compressing.

The energy term Ecp acts only at super critical point nodes. Suppose node i is a super critical point node. Its critical point
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energy is as follows:

Eicp =
∑
j∈Ei

∣∣∣∣∣∣∣
 di

(
q>i 1

)> − dj (q>j 1
)>∥∥∥di (q>i 1

)> − dj (q>j 1
)>∥∥∥

> di
(
q>i 1

)>∥∥∥di(q>i 1
)>∥∥∥

∣∣∣∣∣∣∣ . (33)

This term models the curve gradient using a finite difference and computes the dot product between the super critical point

node gradient and the line-of-sight at the super critical point. We compute Ecp as the sum of equation (33) over all super

critical point nodes.

The energy term Esign also only acts at super critical point nodes and forces the reconstruction of the candidate solution

uniquely characterized by the sign selection. Suppose node i is a super critical point node with sign selection si. The sign

energy forces the sign of the gradient of θ′i for node i to agree with the sign selection si. For this, it uses equation (9) and

the sign selection si. For instance, we know that θ′i < 0, i.e. si = −1, implies that di
∥∥∥(q>i 1

)>∥∥∥ > di+1

∥∥∥(q>i+1 1
)>∥∥∥. Then

the sign energy is as follows:

Eisign =
∑
j∈Ei

∞
∣∣∣sign (ui − uj) sign

(
d̂i
∥∥(q>i 1

)∥∥− d̂j ∥∥(q>j 1
)∥∥)− si∣∣∣. (34)

5) Depth Discretization: We define the lower and upper bounds on depth and uniformly sample the bounds using D = 500

intervals. The upper bound dmax is generated using the category (ii) method. We define dmax = max({di}), with {di} the

depth of all correspondences estimated by the category (ii) method. We set the lower bound to dmin = f , with f the camera

focal length. For this, we assume that the curve is beyond the focal length, which is a reasonable assumption in practice.

6) Inference: Because our graph is a chain, global inference can be performed with the Viterbi algorithm [Rabiner, 1989].

Thus, we obtain a candidate solution whose θ′ function follows the sign combination s, as figure 6 illustrates.

7) Specialization to SfT1→2→1: The adaption of the full reconstruction pipeline based on HMM is straightforward. As we

formulate the reconstruction problem using only depths as unknowns, the HMM energies can be trivially extended to the

reconstruction of 2D curves. All other components of the method are kept similar. In figure 6, we present reconstructions in

the case of SfT1→2→1 for a simpler understanding of the output from the category (iv) method. Figure 6 (bottom) also shows

the other candidate solutions with respect to each possible sign combination.

C. Solution Refinement (Category (iii))

We propose a non-convex cost function that models Curve SfT, by balancing the reprojection error with a smoothing prior.

Isometry is enforced implicitly using a novel angle-based parameterization. This tends to generate the most accurate results

but requires suitable initialization. We provide this with the HMM solution. Figure 7 gives an overview of the method.
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Fig. 7. Proposed refinement method for solving SfT1→3→2.

1) Angle-Based Parameterization: The exact enforcement of isometry has two advantages. First, we do not need to balance

it with reprojection and smoothing terms in the cost function, because isometry is always enforced. Second, it reduces the

number of optimization variables. However, this parameterization presents one limitation: it cannot model quasi-isometry. We

define the parameterization using a spherical parameterization with two angle functions β : T → R and γ : T → R:

∀ui ∈ T , ϕ(ui;b,g, tx, ty, tz) =

i∑
j=2

lj−1,j


sinβ(uj−1;b) cos γ(uj−1;g)

sinβ(uj−1;b) sin γ(uj−1;g)

cosβ(uj−1;b)

+


tx

ty

tz

 , (35)

with lj−1,j the length in the template between the (j − 1)th and jth correspondences. Figure 8 illustrates the angle-based

parameterization. We construct the angle functions β and γ using respectively a degree Nβ polynomial and a degree Nγ

polynomial:

∀uj ∈ T , β(uj ;b) =

Nβ∑
k=0

ukj bk and γ(uj ;g) =

Nγ∑
k=0

ukj gk, (36)

with b = {bk}k∈[0,Nβ ] the set of polar angle coefficients and g = {gk}k∈[0,Nγ ] the set of azimuthal angle coefficients.

ϕ is defined by Nβ + Nγ + 5 parameters: the polar angle coefficients b = {bk}k∈[0,Nβ ], the azimuthal angle coefficients

g = {gk}k∈[0,Nγ ] and the 3D translation parameters tx, ty and tz .

We now explain how to compute b, g, tx, ty and tz from the Ni initial 1D-3D correspondences which can be obtained from

categories (i), (ii) and (iv) methods. The value of Ni may differ with respect to the method used to initialize: for instance, for

our methods from categories (i) and (ii) Ni = N , and for our method from category (iv) Ni = M+Ns as explained in §V-B3.

We first set the translation vector to the first 3D point of the curve. For the angle coefficients, we compute analytically the

polar angle and the azimuthal angle between two 3D points using the trigonometric functions. Then, we fit the sought degree

Nβ and degree Nγ polynomials to the estimated polar and azimuthal angles respectively.
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Fig. 8. The angle-based parameterization for 3D curve. Left: a 3D curve parameterized by the angle-based parameterization (35). Right: a zoom on the
angle-based parameterization. β refers to the polar angle and γ to the azimuthal angle.

2) Refinement: SfT1→3→2 Case. The refinement is performed by non-linear least-squares optimization of a cost function

containing a reprojection and a smoothing constraints:

C(b,g, tx, ty, tz) = Creproj(b,g, tx, ty, tz) + λsmoothCsmooth(b,g), (37)

with Creproj(b,g, tx, ty, tz) =
1

N

N∑
i=1

∥∥∥Π ◦ ϕ(ui;b,g, tx, ty, tz)− qi

∥∥∥2

,

and Csmooth(b,g) =
1

N − 1

(
N∑
i=2

(
β(ui;b)− β(ui−1;b)

)2

+
(
γ(ui;g)− γ(ui−1;g)

)2
)
,

where λsmooth ≥ 0 is the smoothing weight. This is solved using Levenberg-Marquardt.

Specialization to SfT1→2→1. The specialization simplifies the angle-based parameterization and the cost function. For the

angle-based parameterization, we define ϕ using only one angle function α : T → R:

∀ui ∈ T , ϕ(ui;a, tx, ty) =
i∑

j=2

lj−1,j

cosα(uj−1;a)

sinα(uj−1;a)

+

tx
ty

 (38)

where lj−1,j is the length in the template between the (j − 1)th and jth correspondences, a = {ak}k∈[0,Nα] the set of angle

coefficients and α(uj−1;a) =
∑Nα
k=0 u

k
j−1ak, a degree Nα polynomial. ϕ is then defined by Nα + 3 parameters: the angle

coefficients a = {ak}k∈[0,Nα] and the 2D translation parameters tx and ty . The cost function includes a smoothing which

penalizes non-smooth variations:

C(a, tx, ty) = Creproj(a, tx, ty) + λsmoothCsmooth(a), (39)

with Creproj(a, tx, ty) =
1

N

N∑
i=1

∥∥∥Π ◦ ϕ(ui;a, tx, ty)− qi
∥∥∥2

,

and Csmooth(a) =
1

N − 1

N∑
i=2

(
α(ui;a)− α(ui−1;a)

)2

.
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VI. EXPERIMENTAL VALIDATION

A. SfT1→2→1 Experiments

1) Methods: We evaluate thoroughly the category (iv) method with and without refinement. As categories (i) and (ii)

methods are single-solution methods, we give only some results for the category (ii) method, showing that we can rule it

out. The category (iv) method is denoted 2DHMM and the category (iv) method followed by iterative refinement is denoted

2DHMM+REF. The category (ii) method, without and with refinement, is denoted respectively 2DMDH and 2DMDH+REF.

All methods are implemented in an unoptimized Matlab code and ran on a standard Intel i7 desktop workstation. We

use YALMIP [Löfberg, 2004] and SeDuMi [Sturm, 1999] to implement the category (ii) method. We use [Schmidt, 2007] to

construct and solve the HMMs (category (iv)). We perform the non-linear refinement (category (iii)) using the Matlab function

lsqnonlin. We use the curve fitting toolbox of Matlab to detect the critical points as explained in §V-B2.

We compute the template-to-image warp η using an interpolation function and a set of N 1D correspondence points

between the template and the input image. We construct η using a spline which is obtained by the Matlab function spaps

and the curve fitting toolbox. To fix Nα, we fitted the ground-truth 2D curves of the all datasets used in SfT1→2→1 using

the angle-based parameterization with different polynomial orders for the angle α. We used 9 different values of Nα in the

range of [4, 20] and selected the polynomial order which was large enough to model accurately most 2D curves, is not too

high to avoid over-fitting and increasing the computational burden in the refinement step. Table V in appendix G gives the

hyperparameters for each method for the sake of reproducibility. We remind that a pseudo-code of the HMM-based method

is given in algorithm 1 in appendix F.

2) Datasets:

a) Simulated datasets: We evaluated performance with two simulated datasets: the convex-to-concave dataset and the

free-form dataset. The convex-to-concave dataset consists of 14 input images that were generated by fixing the middle point

of the template at a same depth and in front of the camera center and by decreasing the curvature of the embedded curve

in 14 increments, going from convex to concave. Input images n◦1 to 7 show convex examples and 8 to 14 show concave

examples. The free-form dataset consists of 20 input images generated by isometrically deforming the template using a degree

5 polynomial. For the convex-to-concave and the free-form datasets, the apparent size of the curve in the input images is

respectively on average 55% and 47%. For both datasets, we used a 1D template with unit length and added gaussian noise

to the correspondences with a standard deviation equal to 1.0 px a for 1D input image of 1920 px. We show some curves of

both datasets in figure 11. Critical points are computed by finding where the first derivative of the ground-truth function θ is

equal to zero (definition 1). We show in figure 9 the simulated 2D curves for both datasets.
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convex-to-concave dataset

free-form dataset

Input image n°1 2 3 4 5

Input image n°6 7 8 9 10

Input image n°11 12 13 14

Input image n°1 2 3 4 5

Input image n°6 7 8 9 10

Input image n°11 12 13 14 15

Input image n°16 17 18 19 20

Fig. 9. Visualization of the ground-truth 2D curves for the two simulated datasets.
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b) Real datasets: We tested our methods on two real datasets: the paper and the cable datasets. The idea behind these

real datasets is to test our methods on 2D curves which have a physical meaning. For these two real datasets, the 2D curves

which we want to reconstruct are images along a plane of 3D deformations of a paper and a cable. This is illustrated by the

figure 17, where we see that the reconstructed 2D curves are images of the 3D deformations visible in the 2D images.

The paper dataset was built from a 3D reconstruction of a bent paper (figure 17) generated by Agisoft Photoscan [Agisoft,

2014]. From this reconstruction, 1D input images could be drawn by using black sampling lines on the paper. We used the

central line illustrated in yellow. To generate the 1D input image, the camera’s y-axis was aligned to the central line. The

middle row of the image was thus used as the 1D input image. The cable dataset was built using two cameras looking at a

cable over a table. One camera took images by aligning its y-axis with the table. The second camera had an over-head view.

Its relative pose to the first camera was computed through stereo calibration, and was used to compute the cable’s ground-truth

shape.

Template construction. In practice, we model the shape of the curvilinear template as a discrete representation of the object

as a straight line. The discrete points represent features of the curvilinear object. The features of the template are matched

with the input image and the obtained correspondences represent the location of the same physical point in the template and

the input image. For the paper dataset, the features are the center of the black sampling lines and, for the cable dataset, the

features are the boundaries of each black markers. Therefore, to construct the template for the paper dataset, we measure

the distance between the center of each black sampling line and, for the cable dataset, we measure the distance between the

boundaries of each black marker.

Input images. We used 5 deformations for the paper dataset and 10 for the cable dataset. For both datasets, the images had a

width of 4800 px. We selected manually 30 correspondences for the paper dataset and 40 for the cable dataset. Note that, in our

instantiation of Curve SfT, we assume that there is no mismatches in the correspondences and no self or external occlusions.

However, in the other instantiations where the number of correspondences can differ with the input images due to self or

external occlusions or where mismatches exist, one can think computing robustly the template-to-image warp η using some

feature-based matching methods and discretize the template and the input image. For such practical challenges, some methods

were proposed to handle large number of mismatches [Lowe, 2004] and discontinuities occurring from self-occlusions [Pizarro

and Bartoli, 2012].

3) Evaluation Metrics: We measure accuracy through four metrics: 2D mean point error, normal error, super critical point

precision and super critical point accuracy. We emphasize that, as Curve SfT cannot be solved uniquely, we only evaluate

the best candidate solution (with lowest 2D mean point error). We measure the super critical point precision and accuracy

only for the simulated datasets. This is because the computation of the ground-truth super critical points is more reliable on

simulated datasets, where the first derivative of the ground-truth function θ is less noisy.

a) 2D mean point error (MPE): We construct an evaluation grid by uniformly sampling the template in G = 30 points

and denote it by G = {uj}. We compute the 2D mean point error (in %) between the reconstructed curve ϕ̂ and the ground-truth

shape ϕ∗ on G as:

MPE(ϕ̂, ϕ∗,G) =
1

G

G∑
j=1

‖ϕ̂(uj)− ϕ∗(uj)‖
‖ϕ∗(uj)‖

. (40)
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b) 2D normal error (NE): We denote the 2D normal of ϕ̂ at a template point u by n̂(u) and the 2D normal of ϕ∗ by

n∗(u). In practice, we fit a spline to compute the normals and select the normals with negative y-component. We compute

then the 2D normal error (in degrees) between the reconstructed curve ϕ̂ and the ground-truth shape ϕ∗ at G by:

NE(ϕ̂, ϕ∗,G) =
1

G

G∑
j=1

cos−1
(
n̂>(uj) n

∗(uj)
)
. (41)

We now give details on the normal computation. We first fit a spline over the correspondence points between the template

and the input image. For this, we use the Matlab function spaps with smoothing parameter of 1e−5 for the convex-to-

concave, free-form and paper datasets, and 1e−7 for the cable dataset. Second, we use the curve fitting toolbox of Matlab to

differentiate ϕ and to obtain their 2D tangents.

c) Super critical point precision: We compute the super critical point precision as the fraction of the number of true

super critical points over the number of detected super critical points. We define a true super critical point as a super critical

point which is close to a ground-truth super critical point up to T % of the template length. We set T = 5%.

d) Super critical point accuracy (SCPA): We denote by {us∗j } ∈ RN∗
s the set of ground-truth super critical points with

us∗j ∈ T . We denote the closest detected super critical point to each ground-truth super critical point by {ûsj}. The super

critical point accuracy is given by:

SCPA({ûsj}, {us∗j }) =
1

N∗s

N∗
s∑

j=1

|usj − us∗j |
L

, (42)

where L is the template length.

4) Results on Simulated Datasets: We emphasize that all reconstructions obtained with 2DHMM and 2DHMM+REF and

shown in §VI-A4 and §VI-A5 were selected by searching the candidate solution with the lowest 2D mean point error given

in §VI-A3. The reason is that the problem is intrinsically ambiguous and there is then no algorithm which finds the true curve

among the candidate solutions given by the category (iv) method without any additional information different from the input

data.

a) Reconstruction accuracy: Figure 10 shows the reconstruction accuracy on the two simulated datasets. Both 2DHMM

and 2DHMM+REF provide convincing reconstructions, in terms of depth and normals, which we can observe visually in

figure 11. 2DHMM+REF is clearly more accurate. This is explained by two reasons. The main one is that the accuracy

of 2DHMM depends on the accuracy of the super critical point locations. If they are badly localized, 2DHMM cannot be

expected to provide a very accurate solution. By contrast, 2DHMM+REF is free to optimize the curve without being limited

to the accuracy of the super critical point locations. Secondly, there is a smoothing term in 2DHMM+REF that is not present

in 2DHMM, which penalizes non-smooth curve solutions. The benefit is indicated in the empirical results, which show that

the normal error is generally strongly reduced with 2DHMM+REF. For the free-form dataset, we can make two remarks.

First, we observe three large 2D mean point errors (input images n◦4, 9 and 10). For these configurations, the normal errors

are quite similar to the other configurations. One reason is the coupled effect of the noise in the correspondences and the

complexity of the scene, due to e.g. strong perspective and/or high change of curvature, which figure 9 illustrates. Second, for

the input images n◦1, 4, 9, 10 and 17 of the free-form dataset, we observe that the 2D mean point errors for 2DHMM+REF

is higher than the one for 2DHMM. At first sight, inaccurate localization of the super critical points may be the source of
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such behavior because it leads 2DHMM+REF to a local minimum. However, this contradicts the super critical point accuracy

for the input images n◦4, 9, 10 and 17 shown in figure 14. Their super critical point accuracy is lower than the median value

of all super critical point accuracies, which is 1.77%. This tells us that the closest detected super critical point is significantly

close to the ground-truth super critical point. One strong possible reason is the curve modeling used in our category (iii)

method. In general, our modeling improves the reconstruction, however some errors may occur, which are acceptable since

they are not too important and not systematic. We also note that, even if the curve location is not accurate in all input images,

the global curvature is well recovered in general. This can be explained by the hard constraint on the tangent at super critical

points imposed through Esign. In figure 12, we illustrate the inherent limitation of the category (ii) method, 2DMDH and

2DMDH+REF, which can only generate a single solution. We see that the initial solution from 2DMDH is wrong, and that

the refinement from 2DMDH+REF is trapped in an incorrect minimum.

convex-to-concave dataset free-form dataset

2DHMM+REF2DHMM

Fig. 10. Reconstruction accuracy of 2DHMM and 2DHMM+REF, for the two simulated datasets.

We then tested the influence of (a) correspondence density and (b) correspondence noise on reconstruction accuracy. For

(a), we added gaussian noise with a standard deviation of 1.0 px to between 10 and 100 random correspondences. To do this,

for each input image of the two simulated datasets, we generated the correspondences by uniformly sampling N points along

the template with 10 ≤ N ≤ 100. For (b), we set the number of correspondences at 30 and run our algorithm with 9 different

noise levels with a standard deviation between 0 px and 4.0 px. Figure 13 shows the results for both experiments. For both

datasets, we note that 2DHMM is not sensitive to the number of correspondences. This can be explained by the use of a

fixed number of nodes in the HMM construction given in §V-B3. The reconstructions with 2DHMM+REF are slightly better

and this is because the refinement uses the real 1D correspondences, as discussed in §V-C. The variation of the 2DHMM

reconstruction accuracy for the free-form dataset may be explained by the shape of the 2D curves which are more complex

than the ones of the convex-to-concave dataset. However, for both datasets, we note that the refined solution 2DHMM+REF

is improved with higher numbers of correspondences, which makes sense as we have more data constraints. Regarding the

noise level, we also note the high robustness of 2DHMM for the convex-to-concave dataset, which is due to the fact that its

dataset has very simple curves. The free-form dataset is more informative: we observe that the increase in noise level degrades

the performance of 2DHMM and 2DHMM+REF. Globally, we note that in all experiments the refinement improves the

reconstruction significantly.
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Fig. 11. Visual results of 2DHMM and 2DHMM+REF, for the two simulated datasets. We show the 2D reconstructed curves and their ground-truth
solutions. As the 2D reconstructed curves are very close to the ground-truth solution, see the digital version of the document for better visualization.
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Fig. 12. Visual results and reconstruction accuracy of 2DMDH and 2DMDH+REF on a subset of input images used in figure 11. We verify that the category
(ii) method does not always give the correct solution because it is a single-solution method.
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convex-to-concave dataset free-form dataset
Influence of number of correspondences

Influence of noise

Influence of number of correspondences

Influence of noise

2DHMM 2DHMM+REF

Fig. 13. Experimental analysis of 2DHMM and 2DHMM+REF, using the two simulated datasets. We ran both methods with varying numbers of
correspondences (with fixed noise level) and for several noise levels (with fixed number of correspondences). We recall that, to compute these errors,
we only use the best solution among the multiple ones given by 2DHMM.

b) Super critical point detection: Figure 14 shows the super critical point precision for the simulated datasets. Our

detection method has perfect precision for the convex-to-concave dataset and slightly over-detects the super critical points

for the free-form dataset. Regarding the super critical point accuracy, we can observe a significant difference of the accuracy

magnitude between the two simulated datasets: the worst accuracy reaches 0.19% for the convex-to-concave dataset and

37.42% for the free-form dataset. This can be explained by the very good results of the convex-to-concave dataset which are

due to the fact that this dataset is smooth, so the interpolation of the warp with the correspondences is very accurate. The

order of magnitude of the super critical point accuracy which we met with the other datasets is close to the obtained one with

the free-form dataset.

convex-to-concave dataset free-form dataset

Fig. 14. Super critical point precision and accuracy. We use the two simulated datasets.
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convex-to-concave dataset free-form dataset

2DHMM 2DHMM+REF

Fig. 15. Reconstruction accuracy as function of the perturbation on the super critical point location along the template. We use the two simulated datasets.

c) Influence of super critical point uncertainty on reconstruction accuracy: Our final test consisted in evaluating how

sensitive the reconstructions are to incorrectly-located super critical points. Figure 15 shows the reconstruction accuracy for

different perturbation levels of the ground-truth super critical point locations. A perturbation level of X% means that all super

critical points were translated by X% of the template length along the template. We use the median value of the 2D mean

point error and of the 2D normal error to measure the reconstruction accuracy, as we show in the second row of figure 15. We

note first that the global minimum is very close to the perturbation level of 0%. We can explain this discrepancy by numerical

issues since the ground-truth super critical points are not directly observed, but detected by a process which involves fitting and

differentiation of ground-truth data. We then observe that the local minima are strongly symmetric for the convex-to-concave

dataset. This is because the curves are symmetric around the super critical point, which is located near the midpoint of the

curve, i.e. the point around which we change the shape of the curve. Super critical point uncertainty does not have a significant

impact on the reconstruction accuracy: they degrade the reconstructions by less then 3% 2D mean point error and by less than

3.5 degrees normal error for the convex-to-concave dataset, and by less than 1% 2D mean point error and by less than 1.5

degrees normal error for the free-form dataset. 2DHMM and 2DHMM+REF are more robust on the free-form dataset, even

if it is a more challenging dataset than the convex-to-concave dataset. There is a relationship between the curve’s shape and

the sensitivity to super critical point localization and this is demonstrated by the difference in performance between the two

datasets. It is out of scope to analyze this relationship, but it may be possible with perturbation theory. Our method 2DHMM

and 2DHMM+REF are able to generate reasonable candidate solutions despite a relatively large error in super critical point

locations (until ±10% of the template length).

d) Influence of the number of critical points on reconstruction accuracy: In parallel to the super critical points, we

observed that a number of critical points higher than 1 likely means that the curve is complex, i.e. strong perspective and/or

high curvature. We also observed that the presence of a single critical point likely implies that the curve is simple, i.e.

constant curvature. From the experiments, we noted that complex curves are more difficult to reconstruct. This is visible while

comparing the reconstruction accuracy of the convex-to-concave and free form datasets, given in figure 9.

A first conclusion would be that a high number of critical points makes the reconstruction more prone to errors. This is

not a trivial conclusion because more critical points also implies more “anchor” points and thus better reconstruction. In other

words, the more critical points a curve has, the more constrained our HMM-based reconstruction algorithm is, but also the
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more complex the curve is, the less accurate its reconstruction is. Figure 16 shows the reconstruction accuracy as a function

of the number of critical points for some of our datasets. We see that in general the lower reconstruction accuracy is obtained

when the true curves have a single critical point, which confirms our first conclusion. We note that the 2D mean point error

obtained for the cable dataset is lower for the input image with the highest number of critical points, however it is reasonable

to not take this result into account because it corresponds to a single input image and the associated normal error is the

highest.

  

paper datasetfree-form dataset

3D cord datasetcable dataset

Fig. 16. Reconstruction accuracy as a function of the number of critical points for the free-form, the paper, the cable and the 3D cord datasets. We do not
use the convex-to-concave dataset because, for every input image, there is a single critical point. We do not use the road dataset because the true curve does
not pass through any critical point. We do not use the necklace dataset because there is only one input image.

5) Results on Real Datasets: In figure 17, we observe that our methods produce convincing reconstructions. This is coherent

with the reconstruction accuracy presented in figure 18. We see that the refinement method 2DHMM+REF produces the most

accurate results: the refinement globally improves the normals orientation. There is no significant difference in 2D mean point

error for the paper dataset between 2DHMM and 2DHMM+REF. However, the small difference can be explained in the

same way as we explained the differences of 2D mean point error for the free-form dataset in §VI-A4. In figure 19, we show

the reconstruction results with the category (ii) method with and without refinement, 2DMDH and 2DMDH+REF. Note again

that it is not capable to provide the correct solution in all cases.
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Fig. 17. Visual results of 2DHMM and 2DHMM+REF, for the two real datasets. We show 2D reconstructed curves and their ground-truth solutions. For
each dataset, the original images correspond to the images from which we get the 1D input images. For the cable dataset, we show a top view of the
deformed cable for each input image. As the 2D reconstructed curves are very close to the ground-truth solution, we refer readers to the digital version of
the document for better visualization.
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paper dataset cable dataset

2DHMM 2DHMM+REF

Fig. 18. Reconstruction accuracy of 2DHMM and 2DHMM+REF, for the two real datasets.
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Fig. 19. Visual results and reconstruction accuracy of the category (ii) methods, 2DMDH and 2DMDH+REF, on a subset of input images used in figure 17.

6) Comparison with a Surface SfT method using the paper dataset: We propose to compare the performance of 2DHMM

and 2DHMM+REF with the one of a state-of-the-art Surface SfT method. We used the analytical solution from [Chhatkuli

et al., 2017] and refined it using [Brunet et al., 2014]. We denote 3DAnRe this Surface SfT method. For this, we formed from

the paper dataset the full paper dataset which consists of a surface template shown in figure 20 and the five 2D images from

which we extracted the 1D input images of the paper dataset. The image size is 4800× 3200 px. We computed with [Collins

et al., 2014] the 2D-2D correspondences between the 2D texture-map of the surface template and each input image. We

added to each set of correspondences the 30 correspondences used in the paper dataset, as described in §VI-A2. From input

image n◦1 to input image n◦5, we then obtained 894, 354, 766, 889 and 787 correspondences. Figure 20 shows the 3D

reconstructions for the same input images used in figure 17 . The reconstruction is evaluated on two different domains. The

first domain is a grid of 20× 20 points obtained from the interpolation of the 2D-2D correspondences using a B-spline. The

second is the 30 correspondences used in the paper dataset. The first domain allows us to evaluate the global performance

of the Surface SfT method and the second allows us to compare the performance of our Curve SfT methods to the Surface

SfT method. We observe that globally 3DAnRe reconstructs very well the deformations. The wrong deformations visible at

the boundary of the paper can be explained by the fact that the regions at the boundary are less constrained. This is because
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3DAnRe, as most SfT methods, only uses correspondence constraints which are sparse. We also note that the reconstructions

at the 30 correspondences used in the paper dataset are accurate. These observations are confirmed by the reconstruction

accuracy given in figure 21. The evaluation metrics are direct extensions of the ones presented in §VI-A3. We can see that,

for the 30 correspondences used in the paper dataset, 3DAnRe gives globally better reconstructions than our Curve SfT

methods, 2DHMM and 2DHMM+REF. This is most noticeable in terms of normals. This was expected for two reasons.

First, a Surface SfT method uses a surface template, which is a prior much stronger than a curvilinear template. Second, the

reconstruction of the 30 correspondences used in the paper dataset is more constrained in 3DAnRe because 3DAnRe uses

data over the whole surface with a factor of 10 to 30 on the number of correspondences.
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Fig. 20. Visual results of the Surface SfT method 3DAnRe for the full paper dataset. We show the 3D reconstructions for the whole surface and for the
correspondences used in the paper dataset. We also show their ground-truth solutions. As the 3D reconstructed curves are very close to the ground-truth
solution, we refer readers to the digital version of the document for better visualization.



41
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3DAnRe

full paper dataset

Fig. 21. Reconstruction accuracy of 3DAnRe for the full paper dataset.

7) Timing Information: Table II gives the average processing times for 2DMDH, 2DHMM and the 2D non-convex

refinement. We refer to §VI-A1 for the implementation details. We computed them by running each method on the 14 input

images of the convex-to-concave dataset. Note that 2DHMM comprises two steps: a preprocessing, referred as 2DHMM-1,

and the construction and the inference of a single HMM, referred as 2DHMM-2. The step 2DHMM-1 includes common

processings to all HMMs, i.e. the super critical point detection given in §V-B2, and the depth discretization given in §V-B5.

The step 2DHMM-2 constructs and solves a single HMM, as explained in §V-B6, §V-B4 and §V-B3. The step 2DHMM-2 is

performed 2Ns+1 times with Ns the number of super critical points detected in step 2DHMM-1. We then give the timing for

both steps. We emphasize that the fourth row gives the processing time required in average to construct and solve a single

HMM. Then, the time required to perform 2DHMM and 2DHMM+REF is respectively t2DHMM = t2DHMM-1 +t2DHMM-2 2Ns+1

and t2DHMM+REF = t2DHMM +t2DREF 2Ns+1. For the convex-to-concave dataset, a single super critical point Ns = 1 is detected,

which leads to a total processing time per input image of t2DHMM = 189.80 sec and t2DHMM+REF = 189.88 sec. This processing

time can be drastically reduced by performing the second step “2DHMM - constructing and solving one HMM” in parallel

for each candidate solution.

Method
Average processing time

(seconds) per input image

of the convex-to-concave dataset

2DMDH 2.13

2D non-convex refinement (t2DREF) 0.02

2DHMM - preprocessing (t2DHMM-1) 2.06

2DHMM - constructing and solving one HMM (t2DHMM-2) 46.93

TABLE II
AVERAGE PROCESSING TIME FOR 2DMDH, THE 2D NON-CONVEX REFINEMENT AND 2DHMM. FOR THIS, WE USED THE convex-to-concave DATASET

WHICH CONTAINS 14 INPUT IMAGES WITH 30 CORRESPONDENCES AND FOR WHICH A SINGLE SUPER CRITICAL POINT Ns = 1 IS DETECTED.
THEREFORE, THE PROCESSING TIME WAS AVERAGED USING 14 RUNS FOR 2DMDH, 14 + 14(2Ns+1) = 70 RUNS FOR THE 2D NON-CONVEX

REFINEMENT, 14 RUNS FOR “2DHMM - PREPROCESSING” AND 14(2Ns+1) = 56 RUNS FOR “2DHMM - CONSTRUCTING AND SOLVING ONE HMM”.

B. SfT1→3→2 Experiments
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1) Methods: Similarly to §VI-A, we only evaluate the HMM method, with and without refinement. Because the outputs

of our methods are 3D curves, we name the methods respectively as 3DHMM and 3DHMM+REF. We show results of the

category (ii) method, without and with refinement, denoted respectively as 3DMDH and 3DMDH+REF. We refer to §VI-A

for the implementations details. To fix Nβ and Nγ , we fitted the ground-truth 3D curves of the 3D cord dataset using the

angle-based parameterization with different polynomial orders for the polar angle β and the azimuthal angle γ. We used 16

different values of Nβ and Nγ in the range of [8, 38] and selected the polynomial orders Nβ and Nγ using the same criteria

as for the 2D angle-based parameterization. Table VI in appendix G gives the hyperparameters for each method for the sake

of reproducibility.

2) Datasets:

a) Simulated dataset: We evaluated with a simulated dataset: the 3D cord dataset. We built it using the software

Blender [Blender, 2017]. We simulated a set of 40 spheres linked together by a Bézier curve. Moving the Bézier curve allows

us to move the set of spheres to behave as points on a near-isometric curve. We simulated 15 curve deformations, rendered

them on images of 960× 540 px. The curves are placed on average at 200 mm of the camera center and the focal length is

set to 35 mm. We created the 1D template by using the distance between the sphere centers along the Bézier curve. In each

input image, we used the projection of the sphere centers as data points and match them with the 1D template. We added

to the 2D image correspondences a gaussian noise of σ = 2.0 px. We show in figure 22 the simulated 2D curves for both

datasets. Some examples of input images are shown in figure 22.

b) Real datasets: We tested our methods on two real scenes: the necklace and the road datasets. The first dataset is

composed of one input image of a necklace laid over a pillow. Its 1D template is defined by the distance between the center

of mass of the pearls, as shown in figure 27. We selected manually 28 correspondences between the 1D template and the 2D

input image. The 2D input image is of size 3600× 2800 px. The software Agisoft Lens [Agisoft, 2013] is used to calibrate

the cameras and Agisoft Photoscan [Agisoft, 2014] is used to reconstruct the 3D scene for quantitative evaluation. The second

dataset is composed of one input image of a road with a varying curvature, as figure 23 shows. Its 1D template is defined

by the distance between each transition of road signs, which is standard (0.5 m). We selected manually 63 correspondences

between the 1D template and the 2D input image by selecting the left corners of the road signs shown in the 2D input image,

shown in figure 23. The 2D input image is of size 4608 × 3072 px. We acquired the ground-truth using an SfM method

based on one essential matrix, triangulation and bundle adjustment [Hartley and Zisserman, 2003] from two views, shown in

figure 23. One important feature of this dataset is that its true curve does not pass through any critical point, which means

from theorem 2 that its true curve is not recoverable. We use the road dataset to illustrate two particular points: how do

candidate solutions look like when the true curve is not recoverable and can the true curve be recovered if an initial condition

is added in the category (iv) method.



43

  

3D cord dataset

3D
 g

ro
un

d-
tr

ut
h

In
pu

t i
m

ag
es

3D
 g

ro
un

d-
tr

ut
h

In
pu

t i
m

ag
es

3D
 g

ro
un

d-
tr

ut
h

In
pu

t i
m

ag
es

Fig. 22. Visualization of the ground-truth 3D curves for the simulated dataset, 3D cord. We give the associated 2D input images.
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(not used by the methods)

Image used to acquire the ground-truthZoom on the 2D input image

Fig. 23. Visual results of 3DHMM and 3DHMM+REF, for the real dataset, road. In the first row, we give the 1D template and an illustration of the line
of road signs. In the second row, we show the 2D input image and a different viewpoint of the same scene. The correspondences in the 2D input image are
shown with orange crosses. In the third row, we show a zoom on the 2D input image in order to see clearly the correspondences and the image used to
estimate the ground-truth. For a better understanding of the scene, we indicate the first correspondence with the orange arrows.

3) Evaluation Metrics:

a) 3D mean point error (MPE): This error is the trivial extension of the 2D mean point relative error.

b) 3D tangent error (TE): We use 3D tangent error to evaluate the shape accuracy on the 3D curves because of the

ambiguity on the normals of 3D curves (the normal of ϕ ∈ C∞(T ,R3) is defined up to a rotation about the curve’s tangent

vector). We denote the 3D tangent of ϕ̂ at a template point u by t̂(u) and the 3D tangent of ϕ∗ by t∗(u). Similarly to §VI-A3b,

we fit a spline to compute the tangents with a smoothing parameter of 1e1 for all datasets. We then compute the 3D tangent

error (in degrees) between the reconstructed curve ϕ̂ and the ground-truth shape ϕ∗ at G:

TE(ϕ̂, ϕ∗,G) =
1

G

G∑
j=1

cos−1
(
t̂>(uj) t

∗(uj)
)
. (43)
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4) Results on Simulated Datasets: We remind that, for the same reason developed in §VI-A, all reconstructions obtained

with 3DHMM and 3DHMM+REF and shown in §VI-B4 and §VI-B5 were selected by searching the candidate solution with

the lowest 3D mean point error given in §VI-B3.

In figure 24, we show the reconstruction errors for our methods, 3DHMM and 3DHMM+REF. They perform globally well,

but we can note that 3DHMM+REF performs less well than 2DHMM+REF, which may be explained by the complexity

of the angle-based parameterization of 3D curves compared than the one of 2D curves. In figure 25, we display some 3D

reconstructions computed by our methods. We can see the results from different viewpoints and observe that 3DHMM and

3DHMM+REF provide shapes which are quite close to the ground-truth shapes. As for SfT1→2→1, we note in figure 26 the

limitation of the category (ii) method regarding the non-uniqueness of the problem. We show in figure 26 some failure cases

of 3DMDH and 3DMDH+REF.

3DHMM+REF3DHMM

3D cord dataset

Fig. 24. Reconstruction accuracy of 3DHMM and 3DHMM+REF, for the simulated dataset, 3D cord.
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3D cord dataset

Input image n°4

1D template

Input image n°7

Input image n°12

Input image n°14

3D reconstruction from 3DHMM 3D reconstruction from 3DHMM+REF

3D reconstruction from 3DHMM 3D reconstruction from 3DHMM+REF

3D reconstruction from 3DHMM

3D reconstruction from 3DHMM

3D reconstruction from 3DHMM+REF

3D reconstruction from 3DHMM+REF

Ground-truth 3DHMM 3DHMM+REF

Fig. 25. Visual results of 3DHMM and 3DHMM+REF, for the simulated dataset, 3D cord. We show the 3D reconstructed curves and the ground-truth
solutions. Each row corresponds to one input image with the reconstructions given 3DHMM and 3DHMM+REF. For each reconstruction, we give three
different viewpoints. As the 3D reconstructed curves are very close to the ground-truth solution, we refer the readers to the digital version of the document
for better visualization.
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MPE = 31.42%/ TE = 66.04°MPE = 30.02%/ TE = 65.95°

MPE: 3D Mean Point Error/ TE: 3D Tangent Error

Ground-truth 3DMDH 3DMDH+REF

3D reconstruction from 3DMDH 3D reconstruction from 3DMDH+REF

MPE = 5.92%/ TE = 20.94°MPE = 5.2 %/ TE = 21.60°

Fig. 26. Visual results and reconstruction accuracy of 3DMDH and 3DMDH+REF on the simulated dataset, 3D cord. Each row corresponds to one input
image with the reconstructions given by 3DMDH and 3DMDH+REF. The input images are shown in figure 25. For each reconstruction, we give three
different viewpoints.

5) Results on Real Datasets:

a) Necklace dataset: We give the reconstructions of the necklace dataset in figure 27, for the categories (ii) and (iv)

methods with and without refinement. We see that 3DMDH does not give the correct solution: the curvature at the left end of

the curve is wrong. The refinement 3DMDH+REF cannot change the curvature, which may indicate it is a local minimum.

However, we observe that 3DHMM provides the correct solution, i.e. the correct curvature along the curve, which is supported

by very good reconstruction accuracy, shown on the bottom of each reconstruction in figure 27.
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necklace dataset

2D input image

1D template

Different viewpoint
(not used by the methods)

MPE: 3D Mean Point Error/ TE: 3D Tangent Error
3DHMM+REF3DHMM 3DMDH 3DMDH+REFGround-truth

3D reconstruction from 3DMDH 3D reconstruction from 3DMDH+REF
MPE = 2.96%/ TE = 11.27°MPE = 4.74%/ TE = 14.37°

3D reconstruction from 3DHMM 3D reconstruction from 3DHMM+REF
MPE = 1.37%/ TE = 5.10°MPE = 1.34%/ TE = 5.95°

Fig. 27. Visual results and reconstruction accuracy of all methods, 3DHMM, 3DHMM+REF, 3DMDH and 3DMDH+REF, for the real dataset, necklace.
In the first row, we show its 1D template and a picture of the necklace used to construct the dataset. In the second row, we show the 2D input image
and a different viewpoint of the same scene. The 3D curve to reconstruct corresponds to center of mass of the pearls visible in the 2D input image with
orange crosses. In the third row, we give the visual and reconstruction accuracy of 3DHMM and 3DHMM+REF. In the fourth row, we give the visual and
reconstruction accuracy of 3DMDH and 3DMDH+REF. For each reconstruction, we give three different viewpoints.
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b) Road dataset: Figure 28 gives the reconstruction of several candidate solutions generated by 3DHMM. Note that

Ns = 4 super critical points were detected, while there is no critical point. This over-detection may be explained by the strong

perspective of the scene. The reconstruction in the fourth column is the closest curve to the true one among all candidate

solutions, however its 3D position error is significantly high. This result illustrates how difficult is to recover the true curve

in case where the true curve does not pass through any critical point.

In addition, we explored whether our HMM-based method could solve the road dataset correctly using additional boundary

conditions. Specifically we introduce anchor points, which are points on the curve for which depth is provided a priori. In

practice, these may be automatically determined with geometric scene understanding, but this is out of the paper’s scope. We

implemented this with an additional energy term added to equation (31). We used an energy encoding (i.e. a soft constraint)

for two important reasons. First, depth is quantized by the model, so it is not possible to force real-valued anchor constraints

exactly. Second, there may be noise in the anchor depths, so exactly satisfying the anchor depth is not desirable. Currently

we assume that each anchor corresponds with a node in the graph, which leads to a unary anchor energy term. In practice,

this works when either the curve is densely sampled by graph nodes, or when the anchor is introduced as a graph node at the

time of graph construction. Note that for sparser graphs, it may be possible to encode anchor constraints by interpolating the

anchor’s adjacent nodes, which would then lead to a second-order energy term. Here, we only considered the unary approach.

Suppose node i is an anchor point. We define its anchor energy is as follows: Ea(di; d
∗
i ) = (di − d∗i )

2, with d∗i denoting

the provided node’s depth. We denote the category (iv) method which uses HMM with anchor energies by 3DHMM’, while

3DHMM refers to the category (iv) method which uses HMM without anchor energies.

We also add anchor constraints to the refinement of the cost function (37). This is defined as Ca, which acts like Ea and

is defined as Ca(b,g, tx, ty, tz;ui,Q
∗
i ) = (ϕ(ui;b,g, tx, ty, tz) −Q∗i )

2, with Q∗i denoting the depth of node i. We denote

3DHMM’+REF’ as the process of solving the HMM with anchor terms and refining the solution with anchor terms.

We evaluated performance on the road dataset by placing one anchor at three different positions along the curve (first, middle

and end nodes). Figure 29 shows the reconstructions and the reconstruction accuracy with an anchor positioned at the first

node. The reconstructions from 3DHMM’ and 3DHMM’+REF’ are very accurate, as the reconstruction accuracy underlines.

We observe a similar outcome with the anchor placed at the middle and the end node. By comparing the reconstruction

accuracy of the best reconstruction without anchor point in figure 28 and the one of the reconstructions with anchor point

in table III, we observe that the reconstruction errors obtained using each anchor point are significantly lower than without

anchor point. We obtain an average error reduction of 95.04% in MPE and 81.53% in TE between the best reconstruction

without anchor point from 3DHMM and the reconstructions with anchor point from 3DHMM’. These results demonstrate

that ill-posed configurations of Curve SfT, i.e. when the true curve does not present any critical point, can be resolved using

anchor points, leading also to very accurate reconstructions. However, an interesting future work would be to extend our

theory to the well-posedness of Curve SfT in the case of true curves without any critical point, by considering the position

and the number of anchor points along the curve.
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road dataset

3DHMM

Candidate solution n°1
MPE = 108.81%/ TE = 26.52°

Candidate solution n°13
MPE =  75.81%/ TE = 17.76°

Candidate solution n°25
MPE = 34.02%/ TE = 11.55°

Candidate solution n°32
MPE = 20.41%/ TE = 4.15°

MPE: 3D Mean Point Error/ TE: 3D Tangent Error

Fig. 28. Visual results and reconstruction accuracy of several candidate solutions given by 3DHMM for the road dataset. The input image of this dataset is
given in figure 23. We remind that the true curve for the input image does not pass through any critical point. The number of detected super critical points is
Ns = 4, which leads to a total of 32 candidate solutions. For a better visualization of the road curvature, we selected a viewpoint far off from the viewpoint
of the input image shown in figure 23.

  

road dataset

MPE = 0.57%/ TE = 0.65° MPE =  0.15%/ TE = 0.46°

3DHMM’ 3DHMM’+REF’

3D reconstruction from 3DHMM’+REF’
with a ground-truth anchor point at the first node

3D reconstruction from 3DHMM’
with a ground-truth anchor point at the first node

MPE: 3D Mean Point Error/ TE: 3D Tangent Error

Fig. 29. Visual results and reconstruction accuracy of 3DHMM’ and 3DHMM’+REF’ with the ground-truth anchor point, for the real dataset, road. We
show the reconstructions obtained when the anchor point is placed the first point of the curve. We give, for both reconstruction methods, three different
viewpoints. As the 3D reconstructed curves are very close to the ground-truth solution, we refer the readers to the digital version of the document for better
visualization. For a better understanding of the scene, we indicate the first node with an orange arrow.
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Location of the anchor point

along the curve

3DHMM’
MPE/ TE

3DHMM’+REF’
MPE/ TE

First node 0.57%/ 0.65◦ 0.15%/ 0.46◦

Middle node 1.31%/ 0.83◦ 0.19%/ 0.44◦

End node 1.16%/ 0.82◦ 0.15%/ 0.46◦

TABLE III
RECONSTRUCTION ACCURACY OF 3DHMM’ AND 3DHMM’+REF’ AS A FUNCTION OF THE LOCATION OF THE ANCHOR POINT, FOR THE road

DATASET.

6) Timing Information: Table IV gives the average processing times for 3DMDH, 3DHMM and the 3D non-convex

refinement. We refer to §VI-B1 for the implementation details. We computed them by running each method on the 15 input

images of the 3D cord dataset. Note again that the fourth row gives the computational time required on average to construct

and solve a single HMM. We observe that the processing times for the proposed SfT1→3→2 methods are higher than the

ones for the proposed SfT1→2→1 methods, however the order of magnitude is similar. We explain the differences mainly by

the fact that SfT1→3→2 has one more dimension in the input data and the reconstruct data, which increases the number of

equations for the category (ii) method, the number of unknowns to optimize for the category (iii) method and the number of

computations for the category (iv) method.

Method
Average processing time

(seconds) per input image

of the 3D cord dataset

3DMDH 3.12

3D non-convex refinement 0.07

3DHMM - preprocessing 2.65

3DHMM - constructing and solving one HMM 73.73

TABLE IV
AVERAGE PROCESSING TIME FOR 3DMDH, THE 3D NON-CONVEX REFINEMENT AND 3DHMM. FOR THIS, WE USED THE 3D cord DATASET WHICH

CONTAINS 15 INPUT IMAGES WITH 40 CORRESPONDENCES AND FOR WHICH THE NUMBER OF DETECTED SUPER CRITICAL POINT VARY BETWEEN 2 TO
8. THEREFORE, THE PROCESSING TIME WAS AVERAGED USING 15 RUNS FOR 3DMDH, 15 + 992 = 1007 RUNS FOR THE 3D NON-CONVEX

REFINEMENT, 15 RUNS FOR “3DHMM - PREPROCESSING” AND 992 RUNS FOR “3DHMM - CONSTRUCTING AND SOLVING ONE HMM”.

C. Limitations and Failure Modes

We discuss here the main limitations and the failure modes of our solutions to Curve SfT. One limitation is that the parameters

of our methods are manually set and they may vary for some datasets. However, as the number of tuned parameters is relatively

small, this is not a critical issue. Another limitation is that our methods work only for isometric deformations. This assumption

is essential since it allows us to prove our theoretical results and construct our computational solutions (category (i) to category

(iv)). An important limitation is our assumption on the correspondences between the template and the input image, which

we give in §III-A1. The correspondences should be sufficiently dense so that the warp can be estimated through a smooth

interpolation. When this assumption is not met in practice, we face the main failure modes of our computational solutions.

For methods of all categories, the failure mode is that there is not enough motion information to infer the whole curvature.
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For the HMM solution, the failure mode is that the detection of super critical points and thus the reconstruction accuracy can

be significantly impacted.

VII. CONCLUSION

We have presented a theoretical study of the isometric Curve SfT problem and its implementation to recover respectively

2D and 3D curves using a 1D template. We have revealed the complexity of both problems, SfT1→2→1 and SfT1→3→2, thanks

to a differential analysis. We have arrived at a deep understanding of Curve SfT using the very informative super critical

points which can be detected directly from the input data. The main theoretical outcome is that, when Curve SfT has Ns super

critical points, there exist 2Ns+1 candidate solutions. We note that usual method categories to solve SfT cannot handle such

ambiguities. Methods from categories (i) and (ii) only estimate one solution among all and methods from category (iii) only

refines a given solution. We have then proposed a new category (iv) of methods which is based on discrete HMM. It estimates

all candidate solutions by taking advantage of our theory and more precisely by using the super critical points. Critical points

are very informative and have allowed us to constrain specifically each candidate solution of the problem. We have also given

several methods to detect the super critical points from the warp function. We have provided an evaluation of the category (iv)

method, with and without the refinement solution (iii), thanks to simulated and real datasets and have studied the influence of

the super critical point detection on the reconstruction accuracy. We have presented satisfying reconstruction accuracy of the

category (iv) method and its refined version and have illustrated the inherent limitation of the convex optimization method

(category (ii)), showing inaccurate reconstruction results. These results encourage us to see if such super critical points can

be found in other 3D reconstruction problems and how graph-based approaches, such as HMM, can be employed to solve

other 3D reconstruction problems. An interesting future work would be to study the different interpolation functions for the

warp function and the angle functions.
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APPENDIX A

SFT1→3→2: PROOF OF PROPOSITION 3 - CRITICAL POINT DEFINITION IN ϕ

Proof. We start by writing Jη̄ as a function of ϕ̂ from equation (4):

Jη̄ =
ϕ̂zJϕ̂ − ϕ̂′zϕ̂

ϕ̂2
z

. (44)

We substitute equation (44) in equation (10), then express ξ as a function of ϕ̂ and Jϕ̂:

ξ =
1

‖η̄‖2

(
1

ϕ̂4
z

(ϕ̂zJϕ̂ − ϕ̂′zϕ̂)
2 − 1

‖η̄‖2
1

ϕ̂6
z

(
ϕ̂zJ

>
ϕ̂ ϕ̂− ϕ̂′zϕ̂>ϕ̂

) (
ϕ̂zϕ̂

>Jϕ̂ − ϕ̂′zϕ̂>ϕ̂
))

=
1

‖η̄‖2
1

ϕ̂4
z

(
(ϕ̂zJϕ̂ − ϕ̂′zϕ̂)

2 − 1

‖ϕ̂‖2
(
ϕ̂zJ

>
ϕ̂ ϕ̂− ϕ̂′zϕ̂>ϕ̂

) (
ϕ̂zϕ̂

>Jϕ̂ − ϕ̂′zϕ̂>ϕ̂
))

. (45)
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We expand equation (45) and simplify:

ξ =
1

‖η̄‖2
1

ϕ̂4
z

(
ϕ̂2
zJ
>
ϕ̂Jϕ̂ −

ϕ̂2
z

‖ϕ̂‖2
J>ϕ̂ ϕ̂ϕ̂

>Jϕ̂

)
=

1

‖η̄‖2
1

ϕ̂2
z

1

‖ϕ̂‖2
(
ϕ̂>ϕ̂J>ϕ̂Jϕ̂ − J>ϕ̂ ϕ̂ϕ̂

>Jϕ̂
)
. (46)

We use definition 1 which gives θ̂2(uc)ξ(uc) = 1 if and only if uc is a critical point. For this, we express θ̂2ξ as a function

of ϕ̂ and Jϕ̂:

θ̂2ξ = ϕ̂2
z ‖η̄‖2

1

‖η̄‖2
1

ϕ̂2
z

1

‖ϕ̂‖2
(
ϕ̂>ϕ̂J>ϕ̂Jϕ̂ − J>ϕ̂ ϕ̂ϕ̂

>Jϕ̂
)

=
1

‖ϕ̂‖2
(
ϕ̂>ϕ̂J>ϕ̂Jϕ̂ − J>ϕ̂ ϕ̂ϕ̂

>Jϕ̂
)
. (47)

We now replace ϕ̂ by its three components ϕ̂x, ϕ̂y and ϕ̂z:

θ̂2ξ =
1

‖ϕ̂‖2
((
ϕ̂2
x + ϕ̂2

y + ϕ̂2
z

) (
ϕ̂′2x + ϕ̂′2y + ϕ̂′2z

)
−
(
ϕ̂xϕ̂x + ϕ̂yϕ̂

′
y + ϕ̂zϕ̂

′
z

)2)
. (48)

By expanding equation (48) and simplifying, we obtain:

θ̂2ξ =
1

‖ϕ̂‖2
((
ϕ̂xϕ̂

′
y + ϕ̂′xϕ̂y

)2
+ (ϕ̂xϕ̂

′
z + ϕ̂′xϕ̂z)

2
+
(
ϕ̂yϕ̂

′
z + ϕ̂′yϕ̂z

)2)
=
‖ϕ̂× Jϕ̂‖2

‖ϕ̂‖2
. (49)

We now reintroduce uc to use definition 1:

(uc is a critical point)⇔

(
θ̂2(uc)ξ(uc) =

‖ϕ̂(uc)× Jϕ̂(uc)‖2

‖ϕ̂(uc)‖2
= 1

)
⇔
(
ϕ̂>(uc) Jϕ̂(uc) = 0

)
. (50)

APPENDIX B

SFT1→3→2: PROOF OF PROPOSITION 4 - THE SET OF SUPER CRITICAL POINTS

Proof. We first demonstrate that given a solution ϕ̂ and a critical point uc, then uc is also a critical point of ϕs. From

definition 1, we have θ̂′(uc) = 0, which gives:

θ̂(uc) =
1√
ξ(uc)

. (51)

From equations (51) and (13), we have θ̂(uc) = θs(uc). Therefore the two curves meet at uc. To demonstrate that uc is also

a critical point of ϕs, we first differentiate equation (10) to obtain the following second-order ODE:

2θ′θ′′ + ξ′θ2 + 2ξθθ′ = 0. (52)

Because θ̂ is a solution to the ODE (10), at uc we have by substituting equation (52):

ξ′(uc)θ̂(uc)
2 = 0. (53)
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We then differentiate equation (13) to obtain the following constraint on ϕs at uc:

ξ(uc)θs(uc)θ
′
s(uc) + ξ′(uc)θs(uc)

2 = 0. (54)

We substitute equation (53) into equation (54) and use θ̂(uc) = θs(uc) to obtain:

ξ(uc)θs(uc)θ
′
s(uc) = 0. (55)

Because ϕ̂ is a solution of the ODE (10) and uc a critical point, we have ξ(uc)θ̂(uc)2 = 1, so ξ(uc) and θs(uc) cannot be

null. We then have θ′s(uc) = 0 and thus uc is also a critical point of ϕs.

APPENDIX C

SFT1→3→2: PROOF OF PROPOSITION 5 - SUPER CRITICAL POINT IDENTITIES

Proof. Derivation of the first identity. We derive a necessary and sufficient condition on η that is valid at super critical points.

We assume ϕ̂ is a solution to equation (4) with us being a super critical point. We first differentiate equation (10) to form

the following ODE:

2θ′θ′′ + ξ′θ2 + 2ξθθ′ = 0. (56)

We know that θ̂ = εϕ̂y is a solution to equation (56), and θ̂′(us) = 0 from definition 1. We substitute θ̂ in equation (56) and

evaluate the result at us, obtaining the following:

ξ′(us)θ̂
2(us) = 0. (57)

Derivation of the second identity. We know θ̂2(us) 6= 0, otherwise ϕ̂ would pass through the camera’s origin at us. We also

have that ξ′(us) = 0 from the first super critical point identity. The second identity is found by differentiating ξ as defined

in equation (10). To express ξ′ as a function of η and its derivatives, we first define two intermediate terms, Aη and Bη , and

express ξ′ using Aη , Bη and their first derivatives:

Aη = J>η Jη −
1

ε2
Bη and Bη = J>η ηη

>Jη, (58)

A′η = H>η Jη + J>η Hη −
1

ε4

(
ε2B′η − 2ε′εBη

)
, (59)

B′η = H>η ηη
>Jη + J>η Jηη

>Jη + J>η ηJ
>
η Jη + J>η ηη

>Hη. (60)

Because η, Jη and Hη are R2-vector, H>η ηη
>Jη = J>η ηη

>Hη and J>η Jηη
>Jη = J>η ηJ

>
η Jη , which simplifies B′η:

B′η = 2J>η ηη
>Hη + 2J>η ηJ

>
η Jη. (61)
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From equations (58), (59) and (61), we have:

ξ′ =
1

ε4

(
ε2A′η − 2ε′εAη

)
=

1

ε4

(
2ε2J>η Hη −B′η + 2

ε′

ε
Bη − 2ε′εJ>η Jη + 2

ε′

ε
Bη

)
=

1

ε4

(
2ε2J>η Hη − 2J>η ηη

>Hη − 2J>η ηJ
>
η Jη +

4

ε2
η>JηJ

>
η ηη

>Jη − 2η>JηJ
>
η Jη

)
. (62)

Using η>Jη = J>η η, we obtain:

ξ′ =
2

ε6

(
ε4J>η Hη − η>Jη

(
ε2η>Hη + 2ε2J>η Jη − 2J>η ηη

>Jη
))
, (63)

from which we have that ξ′(us) = 0 is equivalent to:

ε4(us)J
>
η (us)Hη(us)− ε2(us)η

>(us)Jη(us)η
>(us)Hη(us)

− 2η>(us)Jη(us)
(
ε2(us)J

>
η (us)Jη(us)− J>η (us)η(us)η

>(us)Jη(us)
)

= 0. (64)

By substituting ε and ε′ in terms of η and removing factors in equation (64), we obtain the following:

‖η̄(us)‖4J>η (us)Hη(us)− ‖η̄(us)‖2η>(us)Jη(us)η
>(us)Hη(us)

− 2η>(us)Jη(us)
(
‖η̄(us)‖2J>η (us)Jη(us)− J>η (us)η(us)η

>(us)Jη(us)
)

= 0. (65)

This only depends on η and its derivatives.

Derivation of the third identity. We use the fact that, at any super critical point us, ϕ̂(us) = ϕs(us) (definition 2). We then

use proposition 3 which says that the critical points of the super curve ϕs are the points where the tangent of ϕs and the

line-of-sight are orthogonal.

APPENDIX D

SFT1→2→1: PROOF OF PROPOSITION 9 - CRITICAL POINT DEFINITION IN ϕ

Proof. We start by writing η′ in function of ϕ̂ from equation (17):

η′ =
ϕ̂′xϕ̂y − ϕ̂xϕ̂′y

(ϕ̂y)2
. (66)

We substitute equation (66) in equation (25) and equation (24) to express ξ and θ̂:

ξ =

(
ϕ̂′xϕ̂y − ϕ̂xϕ̂′y

)2(
ϕ̂2
x + ϕ̂2

y

)2 (67)

θ̂ =
√
ϕ̂2
x + ϕ̂2

y. (68)

We use definition 1 which gives θ̂2(uc)ξ(uc) = 1 if and only if uc is a critical point. For this, we express θ̂2ξ as a function

of ϕ̂ and ϕ̂′:
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θ̂2ξ =

(
ϕ̂′xϕ̂y − ϕ̂xϕ̂′y)

)2
ϕ̂2
x + ϕ̂2

y

=
‖ϕ̂× ϕ̂′‖2

‖ϕ̂‖2
. (69)

We now reintroduce uc to use definition 1:

(uc is a critical point)⇔

(
θ̂2(uc)ξ(uc) =

‖ϕ̂(uc)× ϕ̂′(uc)‖2

‖ϕ̂(uc)‖2
= 1

)
⇔
(
ϕ̂>(uc) ϕ̂

′(uc) = 0
)
. (70)

APPENDIX E

SFT1→2→1: PROOF OF PROPOSITION 10 - SUPER CRITICAL POINT IDENTITES

Proof. We follow the same steps as the proof of proposition 5 and obtain that ξ′(us) = 0, which is the first characterization.

A second one can be found by differentiating the analytical expression of ξ given in equation (25):

ξ′ =
2ε4η′η′′ − 4ε3ε′η′2

ε8
, (71)

from which we have that ξ′(us) = 0 is equivalent to:

ε3

η′
(ε(us)η

′′(us)− 2ε′(us)η
′(us)) = 0. (72)

By substitution of ε and ε′ in terms of η and removing factors in equation (72) we have the second identity:

2η(us)η
′2(us)− (1 + η2(us))η

′′(us) = 0, (73)

which only depends on η and its derivatives.

For the third characterization, we use the fact that, at any super critical point us, ϕ̂(us) = ϕs(us) (definition 2). We then

use proposition 9 and obtain that the critical points of the super curve ϕs are the points where the tangent of ϕs and the

line-of-sight are orthogonal.

APPENDIX F

RECONSTRUCTION ALGORITHM OF PROPOSED CATEGORY (iv) METHOD FOR THE SFT1→3→2 PROBLEM

We give here a pseudo-code of our proposed category (iv) method for the SfT1→3→2 problem, which we present in §V-B.

The pseudo-code for the SfT1→2→1 problem differs from only one notation, the 2D correspondence in the input image qk

which becomes a scalar qk as it is a 1D correspondence.
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Algorithm 1 Reconstruction algorithm of our proposed category (iv) method for the SfT1→3→2 problem.
Inputs:
the template: T
the set of N 1D-2D correspondences: Sc = {(uk,qk)}
the smoothing parameter for the template-to-image warp: ση
the smoothing parameter for the function ξ: σξ
the number of graph nodes: M
the number of depth samples: D
Output:
all candidate solutions: {Qj}
Index convention:
k ∈ [1, N ], where N is the number of 1D-2D correspondences
j ∈ [1, Ns], where Ns is the number of detected super critical points
i ∈ [1,M +Ns], where M +Ns is the number of nodes
Notation convention:
Sf,n is the nth-order spline function of the function f
usj is the position of the jth detected super critical point in the template
sj is the jth sign combination vector with sj ∈ [−1,+1]

Ns+1

{dMDH
i } is the set of depths estimated using the category (ii) method

Step 1: HMM Preprocessing
B Estimate the template-to-image warp:

1: Sη,0 ← spaps(Sc, ση)

B Detect super critical points (using the roots of ξ′, as explained in §V-B2):
B Estimate the the first-derivative of the ξ function

2: Sη,1 ← fnder(Sη,0, 1)

3: {ξk} ← computeXi(Sη,0,Sη,1, {uk}) B using equation (10)
4: Sξ,0 ← spaps({(uk, ξk)}, σξ)
5: Sξ,1 ← fnder(Sξ,0, 1)

B Computing roots of ξ′

6: {usj} ← fnzeros(Sξ,1, T )

B Generate nodes of the HMM (as explained in §V-B3):
7: {ul}l∈[1,M ] ← sampleTemplate(T ,M) B as described in §V-B3
8: U ← addSuperCriticalPoints({ul}, {usj})
9: Q ← fnval(Sη,0,U)

B Define the intervals of state, D:
10: {dMDH

i } ← MDH(U ,Q) B using category (ii) method described in §V-A2
11: D ← discretizeDepths({dMDH

i }, D)

B Define all sign combination vectors:
12: {sj}j∈[1,2Ns+1] ← computeAllSignCombinationVectors(Ns)

B Initialize graph nodes, {diniti }:
13: dmean ← mean({dMDH

i })
14: for i ∈ 1 to M +Ns do
15: diniti ← dmean

16: end for
Step 2: Construct and Solve all HMMs
17: for j ← 1 to 2Ns+1 do
18: M← computeEnergyMatrix(D, sj ,U ,Q) B using the energies defined in §V-B4
19: {dji} ← decodeEnergyMatrix(M, {diniti }) B as explained in §V-B6
20: for i← 1 to M +Ns do
21: Qj

i ← dji q̄i

22: end for
23: end for
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APPENDIX G

HYPERPARAMETERS FOR SFT1→2→1 AND SFT1→3→2 EXPERIMENTS

Category (iv) method §V-B Category (iii) method §V-C

Datasets
Smoothing

parameter for η

Smoothing

parameter for ξ

Number of

nodes M

Polynomial order

Nα

Smoothing

weight λsmooth

Sf
T
1
→

2
→

1

convex-to-concave 9e−6 1e−7 30 12 3e−4

free-form 9e−8 1e−7 30 12 3e−4

paper 3e−5 6e−13 30 12 3e−4

cable 9e−4 6e−13 30 12 3e−4

TABLE V
HYPERPARAMETER VALUES FOR DIFFERENT CATEGORY METHODS TO SOLVE SFT1→2→1 FOR ALL DATASETS.

Category (iv) method §V-B Category (iii) method §V-C

Datasets
Smoothing

parameter for η

Smoothing

parameter for ξ

Number of

nodes M

Polynomial order

Nβ and Nγ

Smoothing

weight λsmooth

Sf
T
1
→

3
→

2 3D cord 9e−6 1e−7 30 12, 12 3e−4

necklace 9e−4 3e−13 30 12, 12 0.03

road 3e−5 6e−13 30 12, 12 3e−4

TABLE VI
HYPERPARAMETER VALUES FOR DIFFERENT CATEGORY METHODS TO SOLVE SFT1→3→2 FOR ALL DATASETS.
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