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Abstract11

Augmented Reality (AR) in monocular liver laparoscopy requires one to register a12

preoperative 3D liver model to a laparoscopy image. This is a difficult problem because13

the preoperative shape may significantly differ from the unknown intraoperative shape14

and the liver is only partially visible in the laparoscopy image. Previous approaches are15

either manual, using a rigid model, or automatic, using visual cues and a biomechanical16

model. We propose a new approach called the hybrid approach combining the best of17

both worlds. The visual cues allow us to capture the machine perception while user18

interaction allows us to take advantage of the surgeon’s prior knowledge and spatial un-19

derstanding of the patient anatomy. The registration accuracy and repeatability were20

evaluated on phantom, animal ex-vivo and patient data respectively. The proposed21

registration outperforms the state of the art methods both in terms of accuracy and22

repeatability. An average registration error below the 1 cm oncologic margin advised23

in the literature for tumour resection in laparoscopy hepatectomy was obtained.24

keywords: Laparoscopy, liver, registration, 3D-2D, augmented reality25
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1 Introduction26

One of the main current limitations of laparoscopy is the difficulty to accurately localize the27

target organ’s internal anatomy, owing to the absence of tactile feedback. This is a partic-28

ularly important issue for the liver, which may contain malignant tumours to be precisely29

resected with an oncologic margin. Augmented Reality (AR) is a promising approach to30

overcome this limitation. The key idea is to overlay information extracted from a preoper-31

ative CT volume onto the laparoscopy images. These information may be the tumours and32

their oncologic margin but also the vascular structure. During the initial exploration phase33

of a surgery, AR allows the surgeon to perform resection planning. An example of augmented34

laparoscopic image is shown in Figure 1. The laparoscopic image is overlaid with the pro-35

jection onto the liver surface of the tumour’s boundary which is invisible to the laparoscope,36

along with a planned resection path following the oncologic margin. Compared to classical37

mental mapping approaches used in laparoscopy such as [1], AR systems like the proposed38

one cope with the deformation undergone by the liver from the preoperative to the intra-39

operative stages. Also, by directly overlaying the laparoscopic images with the registered40

preoperative model of the intraparenchymal structures, rather than mentally mapping them41

from a separate screen to the laparoscopic image, surgeons can be more confident regarding42

the real location of these structures.43

A typical AR-based guidance system for laparoscopy is composed of two stages: (i) an44

initial registration stage during which the preoperative 3D model is aligned, or registered,45

to intraoperative laparoscopic images; (ii) an update stage during which the model is auto-46

matically registered to a new laparoscopic image by tracking visual cues. Current systems47

handle limited smooth changes at best, such as those induced by breathing, heart beating48

and manipulations with surgical instruments, but fail with irregular changes such as cutting49

or tearing. In this work we focus on the initial smooth deformable registration stage (i) which50

is a very challenging and currently highly researched problem. Its principle is illustrated in51

Figure 2.52

The difficulty of the registration problem is two-fold. First, the liver is only partially53
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Figure 1: Example of AR used to overlay a laparoscopic image with the projection of a

tumour’s boundary (in red) with its oncologic margin (in green) onto the liver’s surface, as

produced by our system. The subsurface tumour (in yellow) and major vessels (in blue)

are also made visible. The planned resection path is marked in blue. Red dots are placed

at every centimeter from the liver surface to the tumour. The resection mark follows the 1

centimeter oncologic margin advised in the literature for the treatment of colorectal cancer

liver metastasis (CRLM) and hepatocellular carcinoma (HCC).

visible in the laparoscopy image due to its large size and proximity to the laparoscope.54

Second, the liver deforms substantially between the preoperative volume and the laparo-55

scopy image due to the pneumoperitoneum (the intraoperative CO2 gas insufflation) and its56

manipulation by the surgical instruments. We focus on regular laparoscopy, which in terms57

of computer vision is a single monocular pin-hole camera, and forms the standard in oper-58

ating theatres. It is obvious that any system designed for monocular laparoscopy extends to59

stereo-laparoscopy.60

Currently, the most promising registration approaches share two main features. First,61

they solve the registration from the image contents only, without resorting to external hard-62

ware. Second, they use a preoperative 3D model consisting of the liver, tumours and vessels63
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Figure 2: Registration of a preoperative 3D liver model with a laparoscopic image. The

preoperative 3D model is extracted from CT and the camera represents the laparoscope.

The preoperative 3D model comprises the liver volume whose external surface is in gray and

parts of its inner anatomy, namely a subsurface tumour in yellow and vein in blue.

surface reconstructed by segmenting the preoperative volume. From these, the state-of-the-64

art registration methods are either manual [17] or automatic [2, 3, 9]. In [17], the preoper-65

ative 3D model is rigidly registered to the laparoscopy image by means of user interaction.66

In [2, 3, 9], the preoperative model is deformed following a biomechanical model via an It-67

erative Closest Point (ICP)-like procedure to fit visual cues extracted from the laparoscopy68

image. These visual cues are anatomical landmarks including the falciform ligament and69

the inferior ridge, and the silhouette. The current manual and automatic approaches both70

present important shortcomings, illustrated in Figure 3. In [17], the rigidity assumption is71
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Figure 3: Registration results delivered by the state-of-the-art methods and the proposed one.

(top left) The input laparoscopic image. (top right) Results from the automatic method [3]

based on visual cues (with liver parenchyma overlaying in gray, and contour constraints in

yellow, blue and red). (bottom left) Results of the manual rigid registration method [17].

(bottom right) Results of the proposed hybrid method, combining visual cues with a bio-

mechanical model through cage-based tactile interaction. The cage’s control points (red dots)

are used to edit the registration simultaneously with an automatic optimization procedure

exploiting the visual cues.

far too restrictive to accurately model the liver deformation. In [2, 3, 9], the visual cues72

are sparse and do not convey enough information to unambiguously constrain registration.73

Though the reasons are different, this results in both cases in misregistration, impairing the74
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reliability of AR.75

We propose an hybrid registration approach. The key idea is that the manual and auto-76

matic approaches are highly complementary. Our hybrid approach extends and draws on77

the strengths of both by combining user interaction with visual cues and a biomechanical78

model. In other words, the rational is that both the machine and the user perception are79

valuable and should be taken into account via the visual cues and interaction respectively.80

In the presence of both user interaction and visual cues, our hybrid approach bundles all81

constraints in a single registration. In the absence of user interaction, it behaves similarly82

to the existing automatic approaches. In the absence of visual cues, it allows the user to83

edit the registration under guidance of the biomechanical model. This is a significant im-84

provement compared to the existing manual approach as it allows the user to fully express85

their expertise in anatomy, prior experience and spatial understanding of the case at hand86

to the system. We have implemented this idea following the cage-based paradigm from the87

field of shape editing. The cage is a set of handle points enclosing the organ. Dragging these88

handle points interactively deforms the model. Shape editing is a widely studied problem.89

The cage-based paradigm is well-adapted to registration owing to its flexibility.90

Concretely, we implemented our hybrid method with a Qt Graphical User Interface91

(GUI). Our system is entirely controllable by tactile interaction and may be used in a fast92

and intuitive manner. We compared our method named hybrid biomechanical (HB) quant-93

itatively in fours ways against two previous methods [17], named manual rigid (MR) and94

[3], named automatic biomechanical (AB). The first evaluation uses a silicon liver phantom95

faithfully reproducing the shape of a patient’s liver obtained from CT reconstruction. The96

phantom was deformed and we used Structure-from-Motion to reconstruct its ground-truth97

3D shape. The registration was then tested for 20 views from 4 different deformation datasets98

of 5 views each. The registration error is defined as the average distance between vertices of99

the preoperative and ground-truth models. The registration error was evaluated for the vis-100

ible and hidden parts. The second evaluation was performed over 7 images from 7 patients.101

The registrations were performed for every patient by 5 surgeons. Their manual interactions102
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included the visual cues marking for AB and HB. The obtained registration results were used103

to evaluate and compare the inter-user registration variability, along with the 2D reprojec-104

tion errors in the original view used for registration and a control view acquired from the105

laparoscope inserted in another optical trocar. The registration variability, defined as the106

root mean square of the standard deviation of the vertex positions, was evaluated over all the107

vertices and over the visible ones on the registered 3D model. The third evaluation consisted108

in measuring 2D reprojection errors measured between the set of occluding contour frag-109

ments of the liver visible in the laparoscopy image and the boundaries of the registered 3D110

model’s silhouette in both the original and control views. The fourth evaluation consisted111

in measuring registration errors on an ex-vivo sheep liver. Three inner artificial tumours112

were injected into the liver. CT scans of the liver’s initial and deformed states were made113

to obtain the preoperative and groundtruth 3D models respectively. The registration error114

was evaluated for two laparoscopic views for MR, AB and HB for the three tumours.115

1.1 Related Work116

We review related work on biomechanical registration of a preoperative 3D liver model with117

laparoscopic images and on 3D shape editing.118

1.1.1 Liver Preoperative Model Registration119

This review is split in methods using the image contents only in monocular laparoscopy and120

methods using other modalities.121

Monocular laparoscopy. Methods [2, 3, 9] process a single laparoscopy image with manu-122

ally marked contour constraints representing the visual cues. More specifically, [2, 3] rely on123

contours, namely the falciform ligament and inferior ridge, and the silhouette, whereas [9]124

relies solely on the silhouette. Method [3] also uses a shading cue while [2] exploits envir-125

onment priors modeling the effect of the pneumoperitoneum and gravity. Exploiting these126

environment priors remains difficult in vivo because of the unknown boundary conditions127
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involving the viscera. These methods are highly desirable as being compatible with standard128

laparoscopy. One of their main limitations is that occluded parts are still poorly registered129

which has a direct impact on the location of registered tumours and vessels.130

Non-monocular laparoscopy. Methods [10, 11, 12] use a stereo-laparoscope to recon-131

struct the visible surface of the intraoperative liver shape. In [10], the liver’s 3D contour132

boundaries are automatically detected on the visible surface and used to constrain regis-133

tration. Method [11] extracts 3D features on the preoperative and intraoperative surface134

meshes and robustly finds correspondences using the feature descriptors and locations. The135

two shapes are then aligned through a rigid registration. Method [12] reconstructs surface136

patches of the intraoperative liver shape. The stereo-laparoscope is tracked using an optical137

tracking system. This allows one to localize the patches in world coordinates and use them138

to constrain registration. Method [13] uses a tracked stylus to let the user enter landmarks139

on the liver surface. Because the pose of the landmarks is known, they directly serve as140

registration constraints. Method [18] uses intraoperative CT scans to constrain registra-141

tion. Finally, method [14] registers an intraoperative CT scan to the laparoscope by imaging142

the laparoscope’s distal end itself within the CT volume and combining this with shading.143

These methods share a dependency on non standard laparoscopy or special hardware to144

solve registration. Nonetheless, with the exception of [18], they do not address the problem145

of registering the liver’s hidden parts, strongly limiting their usage for AR.146

1.1.2 Interactive Shape Editing147

Shape editing refers to the change of a model’s surface through a set of handles either148

part of or connected to it. Existing approaches can be divided in four main categories,149

depending on how such handles are distributed: point-based [5], curve-based [6], surface-150

based [7] and cage-based deformations [8]. In a point-based approach, the user provides a151

set of point displacements, each comprising a point along with its intended motion and region152

of influence. The way points are distributed does not depend on the shape of the model,153
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but more on the user’s preference. When these points are moved, the object is then warped154

to match the displacement constraints [5]. In curve-based approaches, the deformations are155

controlled by one or more curves. The control points are distributed to form a line that the156

user curves. The deforming object is distorted to map from the source to the destination157

curves [6]. The surface-based approaches consist in deforming the object when a surface158

patch is modified by translating a set of control points. The control points are directly159

located on the surface of the model. One of the main difficulties is to find a way to attach160

sample points on the object to the deforming patch [7]. The cage-based approaches use a161

cage that encloses the object. This cage can have a fixed shape such as a cuboid [8], or162

can be adapted to the shape of the object to be deformed [15]. The shape of this cage is163

altered by repositioning control points. The resulting cage distortion is then transferred to164

the object.165

2 Materials and Methods166

2.1 Hybrid Registration167

We first describe the principle and pipeline of our method. We then describe our implement-168

ation of the biomechanical model and the visual cues constraints. We finally show how these169

integrate with cage-based user interaction.170

2.1.1 Principle and Pipeline171

Our hybrid registration method takes as input a preoperative 3D model and a single lap-172

aroscopic image. Its principle is to combine a biomechanical model and the manual and173

automatic registration approaches. These respectively use user interaction and visual cues174

extracted from the image to solve for registration. Our method thus rests on three sets of175

constraints. The first two are borrowed from [3]. These are a biomechanical model based on176

the Neo-Hookean elastic model and the use of the falciform ligament and inferior ridge as177

curve correspondences, and the silhouette. The third set of constraints are the cage-based178
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constraints to model user interactions. Concretely, the preoperative 3D model is represented179

by a tetrahedral mesh and optimization follows the principle of position-based dynamics [16].180

The pipeline of our method is illustrated in Figure 4. It has 7 main steps. The first181

two steps are similar to [3]: in step (1), the user marks the falciform ligament, inferior ridge182

and silhouette on the laparoscopy image and in step (2), the user marks the corresponding183

contours on the preoperative 3D model. In step (3), the system generates a cage enclosing184

the preoperative 3D model, to be used for user interaction at step (6). In step (4), the185

cage’s control points and the preoperative 3D model are co-tetrahedrised in order to obtain186

a single tetrahedral model. In step (5), an initial registration is computed using only the187

visual cues, following an automatic method [3]. This initial registration is required to initiate188

interactive registration. In step (6), the user interactively edits the registration by moving189

the cage’s control points. The registration is updated in real-time to provide the user with190

live feedback. Importantly at this step, both the cage’s control points and the visual cues191

are used to update the registration. Finally, once the user is satisfied with the registration,192

step (7) augments the laparoscopic image with hidden anatomical elements transferred from193

the preoperative 3D model.194

2.1.2 Biomechanical Model and Visual Cues Constraints195

The biomechanical model is created by augmenting the preoperative 3D model with the196

isotropic Neo-Hookean elastic model [16]. This non-linear hyperelastic model works well for197

registration in laparoscopy, which involves moderate deformations, under the following three198

conditions: after the liver is freed from the falciform and round ligaments (which is always199

done at the start of surgery for accessibility purposes), when there is no strong external200

forces from the tools, and before any resection takes place. The associated mechanical201

parameters are set to generic values measured for the liver, namely the Young’s modulus202

to E = 60, 000Pa and Poisson’s ratio to v = 0.49 [2]. The contour constraints rely on203

anatomical landmarks which are the ridge, the falciform ligament, and the silhouette contours204

to constrain the deformation. The ridge contour is located at the bottom of the liver, it is205
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Figure 4: Pipeline of the proposed hybrid 3D to 2D deformable liver registration method.

The liver surface mesh is overlaid in gray, its subsurface tumour in yellow and vein in blue.

The contours associated to the silhouette, the falciform ligament and the ridge are marked in

yellow, blue and red, respectively. The cage is rendered in blue wireframe and its associated

control points with red dots.

almost always visible and it has a very distinctive profile. The falciform ligament attaches206

the liver to the abdominal wall. It is located in the separation zone between the left and207
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right lobes. It is cut in the early stage of surgery to let the liver move freely. Its location is208

then made clearly visible on the liver external surface. These two sets of contour fragments209

are stationary. Their correspondence with vertices in the preoperative 3D model remains210

fixed for the entire registration procedure. The last set of contour is the liver silhouette,211

imposing the liver model to not deform beyond those boundaries. Unlike for the ridge and212

the falciform ligament contours, the silhouette contours are not stationary and the associated213

set of constraints must be updated during the registration procedure. Because a silhouette214

contour corresponds to the upper convex diaphragmatic surface of the liver, which is a very215

smooth region, the silhouette curve can slide on the surface as the optimization progresses. In216

contrast, because of the very well defined curvature profile of the ridge, and the narrowness217

of the falciform ligament landmark, we can make use of the same set of vertices in the218

3D preoperative model as correspondences for their 2D counterparts, and thus prevent the219

model to freely ‘slide’ on the surface during optimisation. All these contour constraints220

are introduced in the optimization algorithm using an ICP technique. We do not explicitly221

model physical factors like diaphragm pressure, pneumoperitoneum or pre-stretching of the222

liver as boundary constraints for the registration process, as these are not measurable, both223

preoperatively and intraoperatively. Instead, these effects are handled by the interactions of224

the surgeon with the preoperative 3D models through the surrounding cage.225

2.1.3 Cage-based User Interaction226

An intuitive and easy-to-use interface allowing the user to edit the liver’s shape in a way227

that respects its properties and the visual constraints must be proposed. This is achieved228

through the use of a cage. This has a good trade-off between editing flexibility, namely229

the possibility to edit at an appropriate spatial frequency, and user friendliness. The cage230

is represented by a mesh composed of a very limited number of control points. These are231

obtained following the cage initialization procedure defined in [15] so that the cage encloses232

the input preoperative 3D model. Once the cage is generated, it is linked to the preoperative233

3D model through a Delaunay tetrahedralization applied on all the vertices, namely the cage,234
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the liver and its inner structures vertices. During the registration, they are all optimized235

using the same material model. An example of a generated cage is shown in Figure 3.236

Making the constraints derived from the cage movable during the optimization proced-237

ure is not trivial. We propose to embed once and for all the cage’s control points into the238

volumetric model of tetrahedral topology built from the preoperative 3D liver model. An-239

other possible solution would consist in creating a cage according to the model deformation240

at every iteration, which would however significantly harm the software usability. When a241

cage’s control point is moved during the optimization, all the vertices belonging to the liver242

model adjacent to it are moved accordingly. This allows the user to handle a set of vertices243

simultaneously over a model region. These deformations are compensated by the constraints244

described in section 2.1.2 at the same time. During optimization, a single iteration of the245

contour-based optimization is run for every change in position of the cage vertices in order246

to increase the responsiveness of the deformation.247

2.2 Tactile Graphical User Interface248

The proposed GUI is shown in Figure 5. It is divided in four sections. First, the visualization249

area in which the laparoscopic image and the preoperative 3D model are shown. The user250

can position the preoperative 3D model and mark the contours using tactile gestures or the251

keyboard and mouse. Second, the left toolbar, which is used to either import or export the252

laparoscopic image and the preoperative 3D model. Third, the right toolbar, which is used253

to modify the appearance of the preoperative 3D model, to mark the visual cues and to254

launch registration. Fourth, the bottom toolbar, which controls the size of the visualization255

area, lets the user activate the cage-based editing mode, and implements miscellaneous other256

functionalities.257

Registration begins with a user click on to set the laparoscope parameters obtained258

from a prior calibration procedure. The button is then used to load the laparoscopic image259

and the button to load the preoperative 3D model. The visual cues are marked both in260

the laparoscopic image and the preoperative 3D model with the help of the controls located261
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Figure 5: Proposed tactile Graphical User Interface for our hybrid method.

in the right toolbar. A rigid registration is done automatically so that the preoperative262

model fits the liver approximately in the laparoscopic image. The nested cage is generated263

by clicking on . The user then proceeds to match the contours by clicking on . The264

preoperative 3D model can then be translated and rotated so that they approximately fit265

the image. Automatic contour-based deformation is then launched by clicking on . Once266

it completes, the user can proceed to edit the registration using the cage by clicking on the267

button . The vertices of the cage may be dragged while the system displays the registration268

combining the visual cues and the cage in real-time.269

Our AR software is setup on a PC computer running Linux. In the OR, this computer is270

connected via a capture card to the laparoscopy column in order to capture the laparoscopic271

video stream. The computer is located close to the other screens so that the surgeon has a272

direct view of the augmentation (see Figure 6). It is equipped with a tactile screen, which273

can be directly used by the surgeon.274
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Figure 6: Usage of our AR guidance system (left computer) in the operating room to perform

a laparoscopic tumour resection.

3 Results275

This section is divided in three parts. In the first part, results of an accuracy evaluation276

of the registration on a liver phantom are reported. In the second part, the registration277

variability and the reprojection errors in control views are evaluated on in-vivo liver data278

from the hepatobiliary and pancreatic surgery department of the CHU Estaing hospital in279

Clermont-Ferrand, France. In the third part, the registration accuracy is evaluated with280

respect to inner artificial tumours injected into an ex-vivo sheep liver. We compared our281

method HB quantitatively in two ways against two previous methods, MR [17] and AB [3].282

We recall that for pathologies such as colorectal cancer liver metastasis (CRLM) and283

hepatocellular carcinoma (HCC), a resection margin of 1 cm should be considered if possible284

[20, 21]. Thus, we consider a registration error nearby the tumour of a centimeter or lower285

as successful.286
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(a) (b) (c)

Figure 7: (a) Segmentation of the liver in a patient CT image. (b) Preoperative 3D liver

model obtained from the segmentation and used to 3D print a model for (c) the liver phantom

used for the proposed accuracy evaluation of the registration methods.

3.1 Accuracy Evaluation on a Liver Phantom287

The accuracy of the proposed registration method is evaluated using a 3D printed liver288

phantom made of silicon (Figure 7(a)) aiming to simulate the bio-mechanical properties of a289

real liver. The liver phantom was built as follows. The preoperative 3D model was segmented290

from CT data of a real patient. A mold of this 3D liver was generated and 3D-printed. The291

mold was finally filled with silicon (Figure 7). We used an Ecoflex 00-20 silicon material292

made by Smooth-On Inc. which has a Young elastic modulus of 60kPA [22], very close to293

the 50 - 60kPa of a human liver.294

The principle of this experiment is as follows. The liver phantom is deformed and its295

shape reconstructed using the Structure-from-Motion software Agisoft Photoscan [19], as296

shown in Figure 9. Then, we take N views out of those used to reconstruct the phantom’s297

shape as input images for the registration procedure. The CAD model from which the298

phantom has been printed is used as the input preoperative 3D model and is registered299

following the proposed registration method (Figure 8).300

This experiment is performed for M = 4 phantom deformations, shown in Figure 9, and301

N = 5 different views per deformation. The registration error, defined as the average distance302

between vertices of the registered preoperative and ground-truth models, is reported in Table303

1. As we compared the distances between all the vertices and not only the ones involved304
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before deformation after deformation

Figure 8: Registration of preoperative 3D model on phantom data with HB method.

in the registration, it can be considered a measurement of a target registration error (TRE)305

[23]. We report the errors for two sets of vertices: those associated to the entire registered306

model and those restricted to its visible part, namely the anterior part, corresponding to a307

usual laparoscopy image.308

HB shows the lowest registration error. The error of MR is noticeably higher as the309

method does not deal with the phantom deformations. The registration error of AB is overall310

lower than MR’s. It shows that the visual cues in AB well constrain the biomechanical model.311

HB shows lower errors than AB as misaligned parts can be corrected while preserving the312

visual cues and biomechanical constraints. The standard deviations are the lowest for HB313

which shows that the method also provides the most stable results. In some cases, such as314

for example the registrations AB performed on dataset 1 or HB on dataset 4, the average315

error over the entire liver is lower than the error over its visible part, which reveals lower316

registration errors on hidden parts. To better illustrate this, error distributions over the317

entire liver’s vertices are shown in Figure 10.318

The registration accuracy is also evaluated with varying visibility of the liver phantom.319

A decreasing Field of View (FoV) was simulated by adding a circular black border to the320
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Figure 9: The deformations applied to the 3D printed phantom used in our first set of

experiments. Top: deformed phantom. Bottom: 3D model, reconstructed with the Agisoft

Photoscan software, used as ground-truth in our experiments.

(a) (b) (c)

Figure 10: Error distribution over the registered phantom models using (a) MR, (b) AB and

(c) HB. The colors range from blue which corresponds to the lowest registration errors to

red which corresponds to the highest ones. Distances are in millimeters. The visible parts

correspond to the areas limited by the purple curve. Top: cases associated to a registration

error higher on the visible parts than on the hidden parts. Bottom: cases associated to a

registration error higher on the hidden parts than on the visible parts.
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Registration error for whole liver (mm)

Dataset ↓ MR AB HB

1 09.00± 2.82 05.35± 1.26 04.10± 0.39

2 06.19± 2.26 08.65± 5.04 05.05± 0.9

3 12.23± 1.84 10.32± 2.17 08.46± 1.26

4 08.60± 1.9 06.78± 0.8 05.70± 0.42

Average 09.01± 2.2 07.75± 2.31 05.82± 0.74

Registration error for visible part (mm)

Dataset ↓ MR AB HB

1 11.09± 4.66 07.96± 5.3 04.62± 1.02

2 06.77± 4.43 07.78± 4.9 04.11± 1.36

3 12.67± 5.26 09.43± 3.32 05.60± 1.66

4 10.46± 7.47 06.67± 1.03 07.80± 1.63

Average 10.24± 5.45 07.96± 3.63 05.53± 1.41

Table 1: Registration errors with respect to ground truth for the phantom experiment.

The errors are expressed in millimetres and correspond to the average distance between the

registered model’s vertices. Best results are in bold, second best are underlined.

images. The registration were performed for a FoV of 100%, 70% and 50%. One image per321

dataset were used to perform MR, AB and HB registrations. The results are reported in322

Table 2. Some registration results are illustrated in Figure 11.323

FoV → 100% 70% 50% Avg

MR 07.68 12.47 15.51 11.89

AB 06.75 07.15 07.59 07.16

HB 05.88 06.47 06.60 06.32

Table 2: Registration errors (in mm) for decreasing FoV using MR, AB and HB methods.

The best results are in bold and the second best underlined.

The registration accuracy is also assessed for AB with a varying number of tetrahedrons324
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(a) (b) (c)

Figure 11: Registration results for 3 different FoV on the first dataset: a FoV of (a) 100%,

(b) 70% and (c) 50%. The top images correspond to registrations using MR, the middle

images to registrations using AB, and the bottom images to registrations using HB. The

circles represent the FoV applied in each case.

composing the biomechanical model. Three preoperative 3D models were created, com-325

prising tetrahedrons obtained by the triangulation applied on 8000, 4000 and 2000 vertices326

respectively. AB was run on one image per dataset. The registration error is reported in327

Table 3.328

Dataset → 1 2 3 4 Avg

2000 vertices 06.22 05.46 07.43 07.62 06.68

4000 vertices 04.28 03.88 11.46 07.39 06.75

8000 vertices 07.06 04.59 11.55 06.71 07.47

Table 3: Registration errors for the AB method using preoperative 3D models with varying

number of vertices. The errors are expressed in millimetres and correspond to the average

distance between the registered model’s vertices.
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3.2 Variability and Control View on in vivo Liver Data329

A high variability of the registration results obtained from different operators is a sign of330

unreliability of the registration solutions. High reprojection errors in control views reveal a331

bad registration. We propose to assess both registration variability and reprojection errors332

in control views on real patient’s data (Figure 12).333

3.2.1 Variability for MR, AB and HB registrations334

We asked 5 surgeons to perform MR, AB and HB registrations on 7 different patient data-335

sets. Before performing registration, the surgeons were also provided with short videos336

acquired during the surgery’s exploratory stage. The laparoscope was inserted in different337

trocars to let the surgeons have a wider scene perception. Table 4 reports the average of the338

vertex-to-vertex root-mean-square deviation (RMSD) over the surgeons for MR, AB, and339

HB registrations. For a patient, the RMSD measures how different the registered shapes340

are between surgeons. It differs from the standard deviations reported in Table 1 which341

correspond to the deviations of the registration errors computed from ground truths.342

Model Method ↓ | Patient → 1 2 3 4 5 6 7 Avg

MR 06.50 14.42 17.33 10.38 09.89 11.93 11.53 11.71

Whole liver AB 07.51 20.93 33.78 14.89 12.99 10.51 13.97 16.37

HB 06.82 19.39 16.45 13.29 13.23 17.37 12.46 14.14

MR 04.88 12.16 09.61 09.57 07.98 09.99 05.28 08.49

Visible AB 06.56 18.83 30.57 09.63 08.79 08.80 10.96 13.45

HB 04.80 17.76 09.05 06.96 09.58 14.32 11.59 10.58

MR 06.07 12.09 08.71 09.52 07.05 14.86 05.26 09.08

Tumour AB 07.41 18.33 29.87 11.60 07.52 10.29 07.08 13.16

HB 06.59 17.60 07.69 10.79 11.05 16.83 07.21 11.11

Table 4: Registration variability (in mm) over the surgeons on 7 in vivo datasets.

The average variability for all the patients is of 9.1 mm for MR, 13.2 mm for AB, and343

11.1 mm for HB. One of the key results is that, while HB offers a higher flexibility on the344
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model deformation than for AB, the overall registration variability remains lower. MR shows345

the lowest variability because it has very little flexibility.346

3.2.2 Control View347

From the registrations made by the surgeons on the in-vivo data, we selected 6 patients for348

which we had views of the liver acquired from a different optical trocar. We measured the 2D349

reprojection errors as the distance from occluding contours manually extracted from the lap-350

aroscopic images to the boundaries of the registered model’s reprojections. It was performed351

for both the reference and additional views. Tables 5 and 6 report the 2D reprojection errors352

in pixels for the reference and the additional views respectively. Table 7 reports the average353

of the reprojection errors for both views.354

Patient → 1 2 3 4 5 6 Avg

MR 32.22 34.12 34.68 30.04 18.63 37.99 31.28

AB 15.16 25.67 22.99 15.19 09.20 09.47 16.28

HB 17.23 20.35 13.20 14.97 09.83 08.40 14.00

Table 5: Reprojection error (in pixels) of the in-vivo patient data in the reference view.

Patient → 1 2 3 4 5 6 Avg

MR 33.09 31.69 53.01 37.35 17.40 44.87 36.24

AB 24.07 26.07 58.40 42.78 17.13 26.71 32.53

HB 34.75 28.29 42.19 37.57 15.58 21.95 30.05

Table 6: Reprojection error (in pixels) of the in-vivo patient data in the control view.
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Patient → 1 2 3 4 5 6 Avg

MR 32.66 32.90 43.85 33.69 18.02 41.43 33.76

AB 19.62 25.87 40.69 28.98 13.17 18.09 24.40

HB 25.99 24.32 27.69 26.27 12.70 15.17 22.02

Table 7: Reprojection error average (in pixels) of the in-vivo patient data from both reference

and control views.

The average reprojection errors are much higher for MR than for AB and HB, while HB355

has the lowest values. The rigid model in MR cannot be correctly aligned to fit the imaged356

liver.357

3.2.3 Registration Time358

The total setup time is 05:56 (5 minutes and 56 seconds) on average in our experiments.359

This time can be split between time requiring the surgeon’s attention (understanding the360

scene, marking the landmarks and performing HB registration), which is 04:05, with standard361

deviation 00:38, and time not requiring the surgeon attention (for the software to initialize362

the system and compute AB registration), which is 01:05 on average. It is worth noting363

that, once the surgeon has understood the scene and made the first registration, subsequent364

registrations on the same patient will take less time.365
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Figure 12: Patient images used for control view evaluation, along with two examples of

augmented images and their reprojection errors after HB registration. Laparoscopic images

have Full HD resolution (1920 x 1080 pixels). The liver surface mesh is rendered in gray,

their subsurface tumours in yellow and veins in blue.

25



3.3 Accuracy Evaluation on Ex-Vivo Sheep Liver366

We assess the accuracy of our method with respect to inner tumours, by means of an ex-vivo367

sheep liver which was injected with alginate to create three artificial tumours. Two CT368

scans of the liver were made. The first one was performed to build the preoperative 3D369

model to register. The liver was then deformed. The second CT scan was performed on the370

deformed liver together with a Structure-from-Motion based 3D reconstruction to obtain a371

registration ground truth (see Figure 13). The registrations were made on two laparoscopic372

views of the deformed liver using MR, AB and HB for two degrees of visual cues visibility:373

low and regular. This emulates the possible occlusions from fat and the surrounding organs.374

The distances between the three registered tumours and their respective ground-truths were375

then measured. The results are reported in Table 8.376

(a) (b) (c)

Figure 13: (a) SfM-reconstructed model of the deformed liver. (b) CT-reconstructed models

of the deformed liver and tumours. (c) SfM and CT models aligned using ABSOR.
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MR method

Tumour ↓ | View → 1 2 Avg

1 02.46 07.02 04.74

2 02.07 03.38 02.72

3 01.57 02.02 01.79

MR method

Tumour ↓ | View → 1 2 Avg

1 00.82 06.56 03.69

2 02.82 02.91 02.86

3 01.50 01.14 01.32

AB method

Tumour ↓ | View → 1 2 Avg

1 02.93 06.65 04.79

2 01.39 02.88 02.13

3 03.79 01.49 02.64

AB method

Tumour ↓ | View → 1 2 Avg

1 01.67 05.78 03.72

2 02.32 02.28 02.30

3 01.36 01.86 01.61

HB method

Tumour ↓ | View → 1 2 Avg

1 01.08 03.65 02.36

2 01.25 02.58 01.91

3 01.19 01.51 01.35

(a)

HB method

Tumour ↓ | View → 1 2 Avg

1 01.02 05.58 03.30

2 01.87 02.35 02.11

3 01.31 01.23 01.27

(b)

Table 8: Registration errors for three synthetic inner tumours on an ex-vivo sheep liver using

(a) low visibility and (b) regular visibility of the visual cues. The errors are in millimeters

and correspond to the average of the deviations of the registered model’s vertices. For each

tumour, the best result is in bold and the second best is underlined.

We observe that method HB outperforms for all three tumours and both visibility levels.377

Methods MR and AB compete for the second best performance, depending on the tumour,378

though MR is overall slightly better.379

4 Discussion380

The registration errors obtained from our method are very promising. The user can expect381

a similar or lower range of error nearby the tumour area, an error which is below the 1 cm382

oncologic margin advised in the literature for tumour resection in laparoscopic hepatectomy.383

The low variability obtained from our method suggests that surgeons have a similar inter-384
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pretation of the scene and were provided with an appropriate tool to edit the model shape385

accordingly. The lowest variability shown by MR can be explained by the limited control on386

the model compared to AB and HB, namely restricted to the model’s rigid pose.387

The time spent by surgeons to perform registration represents a very small portion of the388

total surgery time. Nonetheless, automating the detection of the landmarks could drastically389

decrease the manual interaction required from the surgeon, reducing the total registration390

time and thus improving usability. The problem of landmark detection in the laparoscopic391

image could be tackled within the framework of deep neural networks. However, it is a diffi-392

cult problem which to date remains open. Contrarily to organ detection and segmentation,393

for which recent techniques show compelling results, landmark detection would require the394

machine to detect curves (which are more difficult to represent than regions in a deep neural395

network) and to classify them in a type related to their semantics (lying on or off the liver)396

and geometric properties (being part of the silhouette, for instance). This problem is still397

open in the computer vision and medical image processing literature.398

The amount of visible liver also plays an important role in the registration, as shown399

in Table 2. The lack of visibility affects greatly MR, while AB and HB have better and400

consistent errors regardless the FoV size. This indicates that in such cases both AB and HB401

are able to recover the shape of the hidden parts successfully. In general, we see an increase402

in the registration error for a higher number of vertices/tetrahedrons in the preoperative403

3D model, as seen in Table 3. Nevertheless this does not always hold for each individual404

dataset, which means that factors such as the viewpoint and the liver shape play a more405

important role in the registration than the number of tetrahedrons in the preoperative 3D406

model. Preliminary results on the ex-vivo experiments show that our method is able to407

accurately recover the location of the inner tumours for a varying visibility degree of visual408

cues, even if they are far from any visual constraint and regardless the viewpoint used for409

registration, as shown in Table 8. The two levels of visibility bring an interesting observation:410

the stronger the visibility, the smaller the differences between the methods. Specifically, we411

observe that HB brings a substantial improvement when visibility decreases. This is a412
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sensible result, because when visibility decreases, the added value of the surgeon expertise413

expressed by their interactions increases, maintaining the performance, while MR and AB414

may only worsen.415

The registration performance remains correlated to the technical difficulties inherent to416

laparoscopic surgery, such as a reduced field of view and limited viewpoint range, which may417

substantially vary with patient anatomy. For example, the registration of a laparoscopic418

image where the liver is entirely visible and whose anatomical landmarks can be accurately419

localised (such as patient #5 in Table 5) is more accurate than one performed on an image420

where the liver is a partly visible and whose landmarks localisation is ambiguous (such as421

patient #3 in Table 5).422

Our approach works on static laparoscopic images, which represent weak inputs, but non-423

etheless captures the effects of respiration, diaphragm interactions and pneumoperitoneum424

via the extracted visual cues. In other words, the visual cues inherently represent these425

complex constraints, which are not capturable otherwise in the routine surgical context of426

the problem at hand. The strength of our approach is to complement these visual cues which427

are also weak constraints, by surgeon interactions. This allows our system to take advantage428

of the observable landmarks from the input laparoscopic image (via the visual cues) and of429

the surgeons expertise and understanding of the intraoperative scene (via their interactions).430

Our results confirm that combining a biomechanical model constrained by visual cues and431

manual interactions is very fruitful. As future work, the registration software will be modi-432

fied to let the surgeon choose the number of control points in the generated cage, according433

to the complexity of the liver’s shape. The influence of using a more advanced biomechanical434

model on the performance should also be evaluated. Further clinical tests have to be made435

in order to validate our method, notably regarding the location of inner structures after436

registration on human cases. If such tests confirm an overall registration error lower than 1437

cm, then the proposed method will give surgeons a reliable basis to guide resection.438
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