
Procrustes Analysis with Deformations:

A Closed-Form Solution by Eigenvalue Decomposition

Fang Bai

ENCOV, TGI, Institut Pascal, UMR6602 CNRS, Université Clermont Auvergne
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Abstract

Generalized Procrustes Analysis (GPA) is the problem of bringing multiple shapes into a common

reference by estimating transformations. GPA has been extensively studied for the Euclidean and affine

transformations. We introduce GPA with deformable transformations, which forms a much wider and

difficult problem. We specifically study a class of transformations called the Linear Basis Warps (LBWs),

which contains the affine transformation and most of the usual deformation models, such as the Thin-

Plate Spline (TPS). GPA with deformations is a nonconvex underconstrained problem. We resolve the

fundamental ambiguities of deformable GPA using two shape constraints requiring the eigenvalues of the

shape covariance. These eigenvalues can be computed independently as a prior or posterior. We give a

closed-form and optimal solution to deformable GPA based on an eigenvalue decomposition. This solution

handles regularization, favoring smooth deformation fields. It requires the transformation model to satisfy

a fundamental property of free-translations, which asserts that the model can implement any translation.

We show that this property fortunately holds true for most common transformation models, including the

affine and TPS models. For the other models, we give another closed-form solution to GPA, which agrees

exactly with the first solution for models with free-translation. We give pseudo-code for computing our

solution, leading to the proposed DefGPA method, which is fast, globally optimal and widely applicable.

We validate our method and compare it to previous work on six diverse 2D and 3D datasets, with special

care taken to choose the hyperparameters from cross-validation.

1 Introduction

The problem of Generalized Procrustes Analysis (GPA) is to register a set of shapes with known correspon-

dences into a single unknown reference shape, by estimating transformations. The existing literature focuses

on GPA with Euclidean (or similarity in case of scaling) and affine transformations, which do not cope with

deformations. When present in the datum shapes, the un-modeled deformations are typically considered

as noise, which creates biases on the estimation thus causing misfitting to the data. This is undesirable,

particularly when the shape is nonrigid and the precision is critical, for example in medical applications.

We consider GPA with deformation models. In specific, we consider a generic class of transformation

models, termed Linear Basis Warps (LBWs), which generalize over affine transformation models and most

commonly used warp models, like the Thin-Plate Spline (TPS) (Bookstein, 1989; Duchon, 1976), Radial Basis

Functions (RBF) (Fornefett et al., 2001), and Free-Form Deformations (FFD) (Rueckert et al., 1999; Szeliski

and Coughlan, 1997). The LBW shares many similarities with the affine model, where the transformation

parameters are linear as weights to a set of possibly nonlinear basis functions. This gives additional modeling

flexibility to the LBW which copes with nonlinear deformations, while retaining the computational simplicity

of linear models.
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We propose GPA with LBWs. Our cost function is formulated in the coordinate frame of the reference

shape (which is termed the reference-space cost). This cost function is linear least-squares in optimizable

parameters which maximizes the benefit of using the LBW. An important point to bear in mind is that

a sufficiently generic deformation model can match any arbitrary shape to another to a good degree of

fitness. This makes the estimation of the reference shape highly ambiguous. We resolve these ambiguities

by shape constraints, and show that these extra degree of freedoms can be determined by the eigenvalues of

the covariance matrix of the reference shape, termed reference covariance prior. Importantly, the reference

covariance prior is independent of the rest of the computation, thus can be enforced as a prior or posterior.

We propose a method to estimate the reference covariance prior based on the similarity to the datum shapes

while other options are also possible.

We propose a globally optimal solution in closed-form to the GPA formulation with LBWs. Our solution

is based on a specific case of the eigenvalue problem (Theorem 1) and the characterization of LBWs (Theorem

2 and Theorem 3). We present our ideas following a specific-to-general scheme: Section 4 for affine GPA,

Section 5 for GPA with LBWs, and Section 6 for GPA with partial datum shapes.

Section 4. We present in Section 4.1 our affine GPA formulation and the ideas behind the shape con-

straints S1 = 0 and SSᵀ = Λ, and then in Section 4.2 the theoretical results on how to solve the formulation

globally in closed-form. We show that a closed-form solution exists if the matrix to decompose has an all-one

eigenvector. In Section 4.3, we present a method to estimate the reference covariance prior Λ. We show in

Section 4.4 that the proposed formulation is invariant to coordinate transformations of the datum shapes,

where the optimal reference shape will remain the same. Lastly, in Section 4.5, we draw the connection

between our method and the classical affine GPA method by eliminating translations explicitly.

Section 5. We first introduce LBWs (Section 5.1) and GPA with LBWs (Section 5.2), and then relate

the existence of an all-one eigenvector to the equivalent properties of LBWs (Section 5.3 and Theorem 2 in

specific). We introduce the concept of free-translations (Definition 1), and show that to have the desired

properties in Theorem 2 it suffices to have a LBW where its translation part is constraint-free (Proposition

4). Both the affine transformation and the TPS warp, which are the two most commonly used LBWs,

fall into this category, thus the resulting GPA problems can be solved in closed-form by Theorem 1 and

Proposition 1. Lastly, in Section 5.4, we propose a soft-constrained version (using a penalty term) when the

condition is not met, which can also be solved in closed-form.

Section 6. We extend the results from full shapes to partial shapes, i.e., the estimation of the refer-

ence covariance prior via the shape completion (Section 6.1), the GPA formulation with LBWs for partial

shapes (Section 6.2), and the all-one eigenvector characterization (Section 6.3). Section 6.4 shows that the
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proposed GPA formulation with LBWs is invariant to coordinate transformations of the datum shapes,

where the optimal reference shape will remain the same. Section 6.5 shows how to handle reflections in the

solution. Section 6.6 gives pseudo-code to benefit future research. Implementation details are summarized

in Algorithm 1 and Algorithm 2.

In a nutshell, we present a closed-form GPA method, termed DefGPA (i.e., for GPA based on LBWs),

which is fast, globally optimal and copes with the general problem with regularization and incomplete

shapes. The rest of this article is organized as follow. Section 2 introduces our notation, the GPA problem,

and the Brockett cost function on the Stiefel manifold. Section 3 reviews the related work. Section 4, 5 and

6 describe our DefGPA method. Section 7 provides experimental results. Section 8 concludes the paper.

2 Modeling Preliminaries

2.1 Notation and Terminology

Notation. We use R to denote the set of real numbers, Rn the set of column vectors of dimension n, and

Rm×n the set of matrices of dimension m × n. All the vectors are column majored, denoted by lower-case

characters in bold. The matrices are upper-case characters in bold. The scalars are in italics. For matrices,

we reserve I for identity matrices and O for all-zero matrices. For vectors we reserve 0 for all-zero vectors

and 1 for all-one vectors. All these special matrices and vectors are assumed to have proper dimensions

induced by the context. Aᵀ is the transpose of A, A−1 the inverse of A, and A† the Moore-Penrose pseudo-

inverse of A. We use the notation Range (A) and Null (A) to denote the range space and null space of

A, respectively. A � O means A is positive semidefinite. A � B means A −B is positive semidefinite.

The symbol ‖·‖F denotes the matrix Frobenius norm, and ‖·‖2 the vector `2 norm. tr (A) is the trace for a

square matrix A. ‖A‖2F = tr (AAᵀ) = tr (AᵀA). We use nnz(·) as a shorthand for “number of non-zeros”.

The d top eigenvectors and bottom eigenvectors. Let A = QΛQᵀ be the eigenvalue decom-

position of a symmetric matrix A, where Q = [q1, q2, . . . , qn] is a square orthonormal matrix. Let

Λ = diag (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn. Then we call q1, q2, . . . , qd in sequence the d top

eigenvectors, and qn, qn−1, . . . , qn−d+1 in sequence the d bottom eigenvectors of A. The analogous concepts

in the Singular Value Decomposition are the d leftmost and rightmost singular vectors.

Shape covariance matrix. We model shapes as point-clouds. Given a d-dimensional shape of m points

S ∈ Rd×m, the geometric center, also called centroid, is the mean of its columns, defined as mean(S) = 1
mS1.
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The concept covariance matrix of the shape S is defined by:

Cov(S) = (S −mean(S)1ᵀ) (S −mean(S)1ᵀ)ᵀ .

In particular, if S is at the origin of the coordinate frame, mean(S) = 0, the shape covariance becomes

Cov(S) = SSᵀ.

2.2 Generalized Procrustes Analysis

A datum shape is represented as a matrix Di ∈ Rd×m (i ∈ [1 : n]). Here d ∈ {2, 3} is the dimension of the

points and m the number of points in the shape. We will index the j-th point in the shape Di as Di[j],

which is the j-th column of Di. The shape points are arranged correspondence-wise: the j-th point in shape

Di1 and the j-th point in shape Di2 correspond to different observations of the same physical point. Missing

data are caused by unobserved points in some shapes. They are modeled by binary visibility variables γi,j

(i ∈ [1 : n], j ∈ [1 : m]), where γi,j = 1 if and only if the j-th point occurs in the i-th shape, and γi,j = 0

otherwise. The reference shape S ∈ Rd×m is defined accordingly, with its j-th column S[j] corresponding

to the j-th physical point. All the points occur in the reference shape S.

We denote Ti (i ∈ [1 : n]) the transformation from the datum shape Di to the reference shape S. Here

Ti can be Euclidean, similarity, affine, or non-rigid transformations. Different choices of Ti yield different

types of GPA problems. The general GPA problem can be written as:

arg min
{Ti},S

n∑
i=1

m∑
j=1

γi,j‖Ti (Di[j])− S[j]‖22

s.t. C (T1, T2, . . . , Tn,S) = 0,

(1)

where C (T1, T2, . . . , Tn,S) = 0 denotes the set of constraints used to avoid degeneracy. A typical degenerate

case is Ti (p) = 0 for any point p, and S = O. The detailed choices of these constraints will be provided

later on.

The GPA model in formulation (1) holds for many transformation models and handles missing datum

points. We give a more compact matrix form which will simplify the derivation of our methods. To this

end, we define the diagonal visibility matrix Γi = diag (γi,1, γi,2, . . . , γi,m) (i ∈ [1 : n]), constructed by the

visibility variables corresponding to the shape Di. By noting that:

χ2
r =

n∑
i=1

m∑
j=1

γi,j‖Ti (Di[j])− S[j]‖22 =

n∑
i=1

m∑
j=1

‖γi,jTi (Di[j])− γi,jS[j]‖22 =

n∑
i=1

‖Ti (Di) Γi − SΓi‖2F ,
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we can write the GPA model in a compact matrix form:

arg min
{Ti},S

n∑
i=1

‖Ti (Di) Γi − SΓi‖2F

s.t. C (T1, T2, . . . , Tn,S) = 0.

(2)

In case of full shapes (shapes without missing datum points), we have Γi = I (i ∈ [1 : n]).

The reference-space cost and the datum-space cost. The cost function defined in formulations (1)

and (2) is called the reference-space cost since the residual error is evaluated in the coordinate frame of the

reference shape (Bartoli et al., 2013). In contrast, it is possible to derive a cost function in the datum-space:

χ2
d =

n∑
i=1

‖DiΓi − T −1i (S) Γi‖2F . (3)

The datum-space cost is a generative model since all the datum shapes Di are generated by the single

reference shape S with transformations T −1i . In contrast, the reference-space cost is discriminative, as it

seeks for the transformations Ti that can best match the datum shapes Di with the reference shape S.

The reference-space cost and the datum-space cost are identical if Ti represents Euclidean transformations

(Bartoli et al., 2013).

2.3 Brockett Cost Function on the Stiefel Manifold

The matrix Stiefel manifold is the set of matrices satisfying:

St(d,m) =
{
X ∈ Rm×d | XᵀX = I

}
.

In particular, we shall use the classical result of the following Stiefel manifold optimization problem:

arg min
X∈St(d,m)

tr (XᵀPXΛ) . (4)

The cost in problem (4) is termed the Brockett cost function in the Stiefel manifold optimization literature

(Absil et al., 2009; Birtea et al., 2019; Brockett, 1989). Importantly, this problem admits a closed-form

solution. The critical points of the Brockett cost function on the Stiefel manifold are the eigenvectors of P

(Birtea et al., 2019; Brockett, 1989). The global minimum of problem (4) can thus be obtained by arranging

the eigenvectors as follow. Let
(
αj , ξj

)
(j ∈ [1 : m]) be the set of eigenvalues and eigenvectors of P , such that

Pξj = αjξj , with 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm arranged in the ascending order. Let the diagonal elements of
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Λ being arranged in the descending order λ1 ≥ λ2 ≥ · · · ≥ λd. Then X? = [ξ1, ξ2, . . . , ξd], comprising the d

bottom eigenvectors of P , is globally optimal to problem (4), with a total cost α1λ1+α2λ2+ · · ·+αdλd. Any

other combination yields a larger cost which proves the optimality of X?, by a result of Hardy-Littlewood-

Polya (Brockett, 1989; Hardy et al., 1952).

Lemma 1. Let P be a symmetric matrix with its d-bottom eigenvectors being X = [ξ1, ξ2, . . . , ξd]. Let Λ

be a diagonal matrix Λ = diag (λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The globally optimal solution

to the optimization problem:

arg min
S

tr (SPSᵀ) s.t. SSᵀ = Λ, (5)

is S? =
√

ΛXᵀ, i.e., obtained by scaling the d bottom eigenvectors of P by
√

Λ.

Proof. We introduce a matrix X so that Sᵀ = X
√

Λ. The constraint SSᵀ = Λ thus becomes XᵀX = I.

The cost function tr (SPSᵀ) can be rewritten as tr (SPSᵀ) = tr
(√

ΛXᵀPX
√

Λ
)

= tr (XᵀPXΛ). The

globally optimal solution to problem (5) is thus S?ᵀ = X?
√

Λ, with X? being the solution of problem (4).

In other words, S? is obtained by scaling the d bottom eigenvectors of P by
√

Λ.

Remark 1. Analogously, the globally optimal solution to the following maximization problem:

arg max
S

tr (SQSᵀ) s.t. SSᵀ = Λ. (6)

is to scale the d top eigenvectors of the matrix Q by
√

Λ.

3 Related Work

GPA considers shape registration with known correspondences, which abounds in the literature. We classify

the literature according to the used transformation model.

3.1 Rigid Case

Two shapes. The classical approach to the Procrustes analysis problem starts with linear algebraic results

of two shape registration using least-squares. In particular, the closed-form solution of registering two point-

clouds with orthonormal matrices (termed orthogonal Procrustes) was established half a century ago (Green,

1952; Schönemann, 1966). The result can be extended to tackle translations (Arun et al., 1987) and scale

factors (Horn et al., 1988). The result in (Arun et al., 1987; Horn et al., 1988) uses orthonormal matrices to

represent rotations. Besides, it is possible to derive the result using unit quaternions to represent rotations

(Horn, 1987), and furthermore, using dual quaternions to represent both rotations and translations (Walker
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et al., 1991). When confronting large noise, the orthonormal matrix based approaches (Arun et al., 1987;

Horn et al., 1988) can give a reflection matrix (with determinant −1) as apposed to a valid rotation matrix

(Umeyama, 1991). A correction to the special orthogonal group (SO(3), which represents valid rotations)

is given in (Umeyama, 1991), and a more concise derivation in (Kanatani, 1994). A comparative study of

these methods is provided in (Eggert et al., 1997). However from the statistical point of view, these methods

assume that noise only occurs in the target point-cloud, which is isotropic, identical and independently

Gaussian distributed. This assumption can deviate from real noise schemes. More sophisticated formulations

based on anisotropic and inhomogeneous Gaussian noise models are discussed in (Matei and Meer, 1999;

Ohta and Kanatani, 1998), where the renormalization technique based on the quaternion parameterization

is used to solve the resulting optimization problem effectively. Overall, two shape rigid Procrustes analysis

can be considered a solved problem.

Multiple shapes. Multiple shape Procrustes analysis is a more difficult problem, which is termed gener-

alized Procrustes analysis (GPA) (Gower, 1975; Kristof and Wingersky, 1971). The work in (Kristof and

Wingersky, 1971; Ten Berge, 1977) examined the optimality conditions of the orthogonal GPA (Euclidean

GPA without translations). The derived conditions are either necessary or sufficient, however not necessary-

sufficient. Actually, due to the existence of rotations, the Euclidean GPA, or similar problems like pose graph

optimization (PGO) (Bai et al., 2021) has recently been acknowledged as highly nonlinear and non-convex

(Rosen et al., 2019). Therefore up to now, exact techniques for the rigid GPA are all iterative. In early

days, using the pairwise rigid Procrustes result as a subroutine, rigid GPA was solved by alternating the

estimation of the reference shape and that of the transformations until convergence (Gower, 1975; Rohlf and

Slice, 1990; Ten Berge, 1977; Wen et al., 2006). However, such methods are not guaranteed to attain the

global optimum of the cost function. The translation part of the rigid GPA problem is free of constraints,

thus can be eliminated from the cost function by a variable projection scheme (Golub and Pereyra, 2003).

As a result, the rigid GPA can be formulated as a rotation estimation problem on the manifold (Benjemaa

and Schmitt, 1998; Krishnan et al., 2005; Williams and Bennamoun, 2001). Sequential techniques were

proposed based on the unit quaternion (Benjemaa and Schmitt, 1998) and orthonormal matrices (Williams

and Bennamoun, 2001). A complete approach on the SO(3) Lie group has been provided in (Krishnan et al.,

2005). Building upon efficient sparse linear algebra techniques (Davis, 2006) and Lie group theory (Iserles

et al., 2000), the Lie group approach can be considered as the current state-of-the-art. An initialization

technique to the iterative solver was provided in (Bartoli et al., 2013).
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3.2 Affine Case

There exists a vast body of research in shape analysis (Dryden and Mardia, 2016; Kendall, 1984; Kendall

et al., 2009) where the GPA problem arouse in parallel, e.g., the complex arithmetic approach for 2D shapes

and its relation to Procrustes analysis (Kent, 1994). The shape statistics, i.e., mean and variability, are

defined on aligned shapes (thus being invariant to rotation, translation and scaling). A commonly used

alignment technique is the Procrustes analysis (Kendall, 1984) or GPA (Goodall, 1991). The affine GPA

has been studied with a closed-from solution proposed (Rohlf and Slice, 1990). In the present notation,

following the result in (Rohlf and Slice, 1990), the principal axes of the reference shape are estimated as

the d top eigenvectors of the matrix
∑n

i=1D
ᵀ
i (Dᵀi )

†
, after centering each Di to the origin of the coordinate

frame and eliminating the translation parameters.

We derive similar results in Section 4.5 in the global optimization context instead of the alternation

scheme used in (Rohlf and Slice, 1990), which means the scaling factor (i.e., the reference covariance prior

used in the proposed shape constraint) is estimated in a different way (Section 4.3). We show in Section 4.5

that this approach gives the same result as the proposed formulation (8), while the proposed formulation

without eliminating translations is more general and extensible to the LBWs.

The above affine GPA solution, in our context, is called the reference-space solution. On the other

hand, the full shape affine GPA in the datum-space admits a closed-form solution using the Singular Value

Decomposition (SVD). Let Di be zero centered. Then the datum-space cost is
∑n

i=1 ‖Di −AiS‖2F . The

optimal solution, [Aᵀ1, · · · ,A
ᵀ
n]ᵀS as a whole, can be determined via the SVD of the matrix [Dᵀ1, · · · ,D

ᵀ
n]ᵀ.

This idea is in the same spirit of the Tomasi-Kanade factorization (Tomasi and Kanade, 1992) in computer

vision, which studied the affine transformation of the orthographic camera model. We term this method as

∗AFF d and use it as a benchmark algorithm in the experiments.

3.3 Deformable Case

In shape analysis, a shape is considered as an element on the so-called shape manifold (the set of all possible

shapes) (Kendall, 1984; Kilian et al., 2007). The shape deformation is thus studied as the shortest path

on the shape manifold, i.e., the geodesic path under a chosen Riemannian metric (Kilian et al., 2007). In

the rigid case, after discarding translation and scaling, the shape manifold is a quotient manifold invariant

to rotations and the Riemannian metric can be chosen as the Procrustes distance (Kendall, 1984). For

deformable cases, the Riemannian metric can be otherwise formulated based on the rigidity or isometry

(Kilian et al., 2007). The work (Kendall, 1984; Kilian et al., 2007), as well as this paper, use landmarks (or

meshes with fixed connections) to model shapes and define transformations. In addition, recent research
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has studied shape analysis based on curves (Joshi et al., 2007; Younes et al., 2008) or surfaces, e.g., level

sets (Osher and Fedkiw, 2003), medial surfaces (Bouix et al., 2005), Q-maps (Kurtek et al., 2010, 2011),

Square Root Normal Fields (SRNF) (Jermyn et al., 2012; Laga et al., 2017), etc. See the review papers

(Laga, 2018; Younes, 2012). There is also a line of work including skeletal structures, e.g., the medial axis

representations (M-rep) (Fletcher et al., 2004), and SCAPE (mesh with an articulated skeleton) (Anguelov

et al., 2005).

Beyond different shape modeling techniques, deformations based on landmarks/meshes have a rich lit-

erature. Typically, the deformation of a mesh is defined piece-wisely, with a local transformation associated

to each vertex or triangle (Freifeld and Black, 2012), or with additional geometric or smoothing constraints

(Allen et al., 2003; Anguelov et al., 2005; Song et al., 2020; Sumner et al., 2007). It is worth mentioning that

such piece-wise models are commonly used in describing template based deformations, where a reference

shape is given a priori. In this paper, we use landmarks to model shapes and warps to model deformations.

The landmarks can be extracted from the key-points or the samplings of the shape boundary (Cootes et al.,

1995). While the proposed method applies to meshes as well, the connection of vertices (or edges of the

meshes) is never required. Our analysis is based on a class of warps, called LBWs, which is a linear combi-

nation of the nonlinear basis functions (Bartoli et al., 2010; Bookstein, 1989; Fornefett et al., 2001; Rueckert

et al., 1999; Szeliski and Coughlan, 1997). A typical example of the LBWs is the well-known TPS warp

(Bookstein, 1989) which we will use to demonstrate our results.

There has been work using warps to refine the shapes after solving the rigid registration (Brown and

Rusinkiewicz, 2007; Kim et al., 2008). Such methods are not template free in essence as when it comes to

the estimation of the warp parameters, a reference shape has been known already. Little attention has been

paid to estimate the reference shape and the transformation parameters all together in a unified manner.

In this work, we provide a closed-form solution to the unified estimation problem.

Different from classical affine methods (Goodall, 1991; Kendall, 1984; Rohlf and Slice, 1990), our method

allows for the possibility to keep the translation parameters during the estimation (Theorem 1 and Propo-

sition 1). This is crucial to GPA with LBWs, as in certain cases, the translation parameters cannot be

explicitly identified. In specific, for LBWs, we relate the constraint-free translation (Definition 1) to the

existence of an eigenvector of all-ones and the equivalent properties of LBWs (Theorem 2 and Theorem 3),

which constitutes the foundation of our closed-form solution.



4 Generalized Procrustes Analysis with the Affine Model 14

4 Generalized Procrustes Analysis with the Affine Model

4.1 Standard Form with the Shape Constraint

We start with the case without missing datum points, i.e., Γi = I in formulation (2). We study the affine-

GPA with Ti (Di) = AiDi + ti1
ᵀ, with Ai ∈ Rd×d being linear and ti ∈ Rd a translation. We write the

affine transformation in homogeneous form as:

AiDi + ti1
ᵀ =

[
Ai ti

]Di

1ᵀ

 def
= ÃiD̃i, (7)

where we term D̃i the homogeneous representation of Di by completing Di with a row of all ones. In this

representation, matrix Ãi = [Ai, ti] contains all parameters to be estimated.

Following the reference-space cost (2), our proposed formulation is given as:

I :


arg min
{Ãi},S

∑n
i=1 ‖ÃiD̃i − S‖2F

s.t. SSᵀ = Λ, S1 = 0.

(8)

In formulation (8), SSᵀ = Λ and S1 = 0 are the shape constraints, which concretize the constraint

C (·) = 0 in formulation (2). The matrix Λ, termed reference covariance prior, is a diagonal matrix Λ =

diag (λ1, λ2, . . . , λd) driven by d parameters λ1, λ2, . . . , λd. We shall shortly present in Section 4.3 a method

to estimate Λ based on rigidity. The ideas behind these two shape constraints are motivated as follow.

4.1.1 The Shape Constraint S1 = 0

This shape constraint is used to center the reference shape to the origin of the coordinate frame. The role of

this constraint is twofold: 1) it provides d constraints to remove the d gauge freedoms caused by translations;

2) it reduces the shape covariance matrix of the reference shape to the form Cov(S) = SSᵀ as in this case

mean(S) = 1
mS1 = 0.

4.1.2 The Shape Constraint SSᵀ = Λ

This shape constraint is used to: 1) capture the eigenvalues of the shape covariance matrix Cov(S) = SSᵀ,

and 2) fix the gauge freedom caused by rotations. The main insight here is that the eigenvalues of the shape

covariance matrix remain unchanged if the shape undergoes rigid transformations. Moreover, by letting

Cov(S) = SSᵀ = Λ we fix the gauge freedom caused by rotations.
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Lemma 2. Cov(RS + t1ᵀ) = RCov(S)Rᵀ for any arbitrary rotation R and translation t.

Proof. By the fact that mean(RS+ t1ᵀ) = 1
m (RS + t1ᵀ) 1 = Rmean(S) + t, we thus have (RS + t1ᵀ)−

mean(RS + t1ᵀ)1ᵀ = R (S −mean(S)1ᵀ).

Let Cov(S) = UΛUᵀ be the eigenvalue decomposition of Cov(S). Then RCov(S)Rᵀ = RUΛUᵀRᵀ

admits the eigenvalue decomposition of Cov(RS + t1ᵀ) by Lemma 2. This means matrix Cov(RS + t1ᵀ)

has the same eigenvalues as matrix Cov(S), which are given as the diagonal elements of Λ. Moreover,

Cov(RS + t1ᵀ) = Λ if and only if R = Uᵀ which fixes the rotation.

In general, we want the reference shape to look similar to the datum shapes, thus we choose the eigen-

values of SSᵀ to be close to those of the datum shape covariance matrices. Based on this idea, we present a

method to estimate Λ in Section 4.3. However, as we shall see in what follows, the matrix Λ is never used

in the intermediate calculation thus can be determined separately as a prior or posterior.

4.2 Globally Optimal Solution

Problem (8) is separable. Given S, we obtain Ãi = S(D̃i)
†, where (D̃i)

† = D̃
ᵀ
i (D̃iD̃

ᵀ
i )
−1 is the Moore-

Penrose pseudo-inverse of D̃i. Substituting Ãi = S(D̃i)
† into the cost function of problem (8), we obtain:

n∑
i=1

‖ÃiD̃i − S‖2F =

n∑
i=1

‖S(D̃i)
†D̃i − S‖2F =

n∑
i=1

tr
(
S
(
I − (D̃i)

†D̃i

)
Sᵀ
)
,

where we have used the fact that matrix I − (D̃i)
†D̃i = I − D̃ᵀi (D̃iD̃

ᵀ
i )
−1D̃i is symmetric and idempotent

(because it is the orthogonal projection matrix to the null space of D̃i). Let us denote QI =
∑n

i=1(D̃i)
†D̃i =∑n

i=1 D̃
ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i. By using SSᵀ = Λ, the cost function can be simplified as:

‖ÃiD̃i − S‖2F = ntr(Λ)− tr (SQIS
ᵀ) .

Therefore after eliminating Ãi from the optimization, problem (8) reduces to:

arg max
S

tr (SQIS
ᵀ) s.t. SSᵀ = Λ, S1 = 0. (9)

Lemma 3. QI1 = n1. Moreover if we let P I =
∑n

i=1

(
I − (D̃i)

†D̃i

)
then P I1 = 0.

Proof. The matrix (D̃i)
†D̃i = D̃

ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i is the orthogonal projection matrix to the range space

of D̃
ᵀ
i . Because 1 ∈ Range(D̃

ᵀ
i ) as 1 is the last column of D̃

ᵀ
i , we have D̃

ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i1 = 1, thus

QI1 =
∑n

i=1 D̃
ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i1 = n1. By noticing P I + QI = nI, we have P I1 = n1−QI1 = 0.



4 Generalized Procrustes Analysis with the Affine Model 16

Therefore problem (9) admits a special property that QI has an eigenvector 1 because QI1 = n1. As a

result, this problem admits a closed-form solution by the following proposition whose detailed proof requires

Theorem 1 which we will present shortly.

Proposition 1. If 1 is an eigenvector of Q, then the globally optimal solution to problem

arg max
S

tr (SQSᵀ) s.t. SSᵀ = Λ, S1 = 0, (10)

is to scale by
√

Λ the d top eigenvectors of Q excluding the vector 1.

Proof. Using Sᵀ = X
√

Λ, we can rewrite problem (10) into problem (11) with u = 1. By Theorem 1, the

optimal X is the d top eigenvectors of Q excluding the vector 1.

We summarize the globally optimal solution to the affine GPA formulation (8) as follow.

Summary 1. Problem (8) is solved in closed-form. The optimal reference shape S? is obtained by scaling

by
√

Λ the d top eigenvectors of QI excluding the vector 1. The optimal affine transformations are given by

Ã
?
i = [A?

i , t
?
i ] = S?D̃

ᵀ
i (D̃iD̃

ᵀ
i )
−1 (i ∈ [1 : n]).

Now we present the supporting results to Proposition 1, i.e., Theorem 1 which gives the solution to

problem (11). We start with the following Lemma.

Lemma 4. Let M ∈ Rm×m be a symmetric matrix, and (αj , ξj) (j ∈ [1 : m]) the set of eigenvalues and

unit eigenvectors of M such that Mξj = αjξj, ‖ξj‖2 = 1. Then M can be written as: M =
∑m

j=1 αjξjξ
ᵀ
j .

By Lemma 4, given an arbitrary eigenvector ξk of M , by adding multiples of ξkξ
ᵀ
k, saying aξkξ

ᵀ
k (a is an

arbitrary real number) to M , we have M +aξkξ
ᵀ
k =

∑m
j=1,j 6=k αjξjξ

ᵀ
j +(αk + a) ξkξ

ᵀ
k. Therefore the matrix

M + aξkξ
ᵀ
k has exactly the same set of eigenvectors as M . In M + aξkξ

ᵀ
k, the eigenvalue of ξk becomes

αk + a, while the rest remains unchanged as that in M .

Theorem 1. If u is an eigenvector of Q, then the solution to the optimization problem

arg max
X

tr (XᵀQXΛ) s.t. XᵀX = I, Xᵀu = 0 (11)

is the d top eigenvectors of Q excluding the vector u.

Proof. Since Xᵀu = 0, problem (11) is equivalent to the following:

arg max
X

tr (Xᵀ (Q− cuuᵀ)XΛ) s.t. XᵀX = I, Xᵀu = 0, (12)
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where c is an arbitrary scalar.

Now we consider the following relaxation of problem (12) without constraint Xᵀu = 0, and assume c is

positive and sufficiently large:

arg max
X

tr (Xᵀ (Q− cuuᵀ)XΛ) s.t. XᵀX = I, (13)

which admits a standard Brockett cost function on the Stiefel manifold (see Section 2.3). The optimal

solution of problem (13), say X∗, comprises the d top eigenvectors of Q− cuuᵀ.

Since u is an eigenvector of Q, matrix Q− cuuᵀ has the same set of eigenvectors as Q. By assuming c

to be positive and sufficiently large, it is always possible to shift u to the bottom-eigenvector of Q− cuuᵀ,

thus the eigenvector u is always excluded from X∗. In other words, the d top eigenvectors of Q− cuuᵀ are

the d top eigenvectors of Q excluding the eigenvector u.

Lastly, the eigenvectors of Q−cuuᵀ with respect to different eigenvalues are orthogonal thus X∗
ᵀu = 0.

Therefore problem (13) is a tight relaxation of problem (12) if c is positive and sufficiently large.

4.3 Estimation of the Reference Covariance Prior

We estimate the reference covariance prior Λ using the eigenvalues of the datum shape covariance matri-

ces Cov(DiD
ᵀ
i ) (i ∈ [1 : n]). By zero-centering each datum shape Di as D̄i = Di − 1

mDi11ᵀ, we have

Cov(DiD
ᵀ
i ) = D̄iD̄

ᵀ
i . Since Λ is diagonal, we denote Λ = diag (λ1, λ2, . . . , λd) and define the vector

λ = [λ1, λ2, . . . , λd]
ᵀ. Abusing notations, we collect the eigenvalues of each datum shape covariance DiD

ᵀ
i

by a diagonal matrix Λi and define the vector λi =
[
λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
d

]ᵀ
. Without loss of generality, we

assume that the elements in λi have been sorted in the descending (or non-ascending) order such that

λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
d ≥ 0. The task is now to estimate λ from λi (i ∈ [1 : n]).

To proceed, we consider the geometric implication of
√
λi =

[√
λ
(i)
1 ,

√
λ
(i)
2 , . . . ,

√
λ
(i)
d

]ᵀ
, i.e., the vector

comprising the d leftmost singular values of shape D̄i. It has been known in (Horn, 1987) that the scale of

the shape Di can be represented by 1√
m
‖D̄i‖F . Dropping the common constant 1√

m
, we consider:

‖D̄i‖F =
√

tr
(
D̄iD̄

ᵀ
i

)
=
√

tr (Λi) =

√
λ
(i)
1 + λ

(i)
2 + · · ·+ λ

(i)
d = ‖

√
λi‖2.

This suggests that
√
λi is a vector with each of its component representing the scale along the corresponding

Euclidean axis, and its length the overall shape scale. Given
√
λ1,
√
λ2, . . . ,

√
λn from n datum shapes, we

are interested in finding
√
λ =

[√
λ1,
√
λ2, . . . ,

√
λd
]ᵀ

.

The reference shape is defined up to scale (i.e., up to a similarity transformation), thus in
√
λ, all that
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matters is the proportion of its components, namely the direction of the vector
√
λ. Therefore we propose

to estimate the direction of
√
λ on the unit ball, denoted by θ, by minimizing the angles between θ and

each
√
λi via maximizing their inner products as:

θ? = arg max
θ∈Rd

n∑
i=1

(
θᵀ
√
λi

‖
√
λi‖2

)2

s.t. ‖θ‖2 = 1. (14)

Upon defining Π =

[
√
λ1

‖
√
λ1‖2

√
λ2

‖
√
λ2‖2

· · ·
√
λn

‖
√
λn‖2

]
, problem (14) can be rewritten as the Rayleigh quotient

optimization:

θ? = arg max
θ∈Rd

θᵀΠΠᵀθ s.t. ‖θ‖2 = 1,

whose solution is given in closed-form, which is the leftmost left singular vector of the matrix Π, or

equivalently the top eigenvector of the matrix ΠΠᵀ. Since ΠΠᵀ has non-negative elements, by the Per-

ron–Frobenius theorem, the elements of θ? can be chosen all non-negative.

Given θ?, we can choose
√
λ = sθ? up to a scale factor s > 0. In practice, it is desirable to choose

√
λ

to be at the similar scale of
√
λi. Therefore, we choose the average scale s = 1

n

∑n
i=1‖
√
λi‖2.

4.4 The Coordinate Transformation of Datum Shapes

We show that by applying (possibly distinct) arbitrary rigid transformations to each datum shape Di, the

optimal reference shape of problem (8) remains unchanged. Thus formulation (8) is unbiased when facing

coordinate transformations.

Lemma 5. Let D′ = RD + t1ᵀ. We further denote D̃ =

D
1ᵀ

 and D̃
′

=

D′
1ᵀ

. Then we have

Range(D̃
′ᵀ

) = Range(D̃
ᵀ
) and the orthogonal projection matrices thus satisfy:

D̃
′ᵀ

(D̃
′
D̃
′ᵀ

)−1D̃
′
= D̃

ᵀ
(D̃D̃

ᵀ
)−1D̃.

Proof. The matrices D̃
′ᵀ

and D̃
ᵀ

have the same range space, i.e., Range(D̃
′ᵀ

) = Range(D̃
ᵀ
), because:

D̃
′ᵀ

=

[
DᵀRᵀ + 1tᵀ 1

]
= D̃

ᵀ

Rᵀ 0

tᵀ 1

 .
The orthogonal projection matrices (also called orthogonal projectors) to Range(D̃

′ᵀ
) and Range(D̃

ᵀ
) are

the same by uniqueness (Meyer, 2000).
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Proposition 2. In problem (8), when we apply arbitrary rigid transformations to each datum shape Di,

the matrix QI remains the same. So does the optimal reference shape.

Proof. By Lemma 5, matrix D̃
ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i remains the same when we apply arbitrary rigid transforma-

tions to the datum shape Di. Thus QI =
∑n

i=1 D̃
ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i remains the same as well.

4.5 Connection to Classical Results by Eliminating Translations

We recapitulate the key idea of affine GPA in (Rohlf and Slice, 1990) as follows in formulation (15), and

show that this approach attains the same result as formulation (8) while the latter is more general. In

formulation (8), the optimal ti given Ai and S is ti = − 1
m(AiDi − S)1. Moreover if S1 = 0, we have

ti = − 1
mAiDi1. Substituting the estimate ti = − 1

mAiDi1 back to formulation (15), we have:


arg min
{Ai},S

∑n
i=1 ‖AiD̄i − S‖2F

s.t. SSᵀ = Λ,

(15)

where D̄i = Di − 1
mDi11ᵀ (i ∈ [1 : n]) are zero-centered datum shapes. Let Q◦ =

∑n
i=1 D̄

ᵀ
i (D̄iD̄

ᵀ
i )
−1D̄i.

Following a similar derivation to Section 4.2, we can reduce problem (15) to formulation (6) with Q = Q◦,

thus the optimal reference shape S of problem (15) is to scale the d top eigenvectors of Q◦ by
√

Λ. We drop

the constraint S1 = 0 in formulation (15) because this constraint is automatically satisfied for the optimal

S of formulation (15), as Q◦1 = 0 thus 1 is orthogonal to the d top eigenvectors corresponding to nonzero

eigenvalues.

Proposition 3. QI = n
m11ᵀ + Q◦. The d top eigenvectors of QI excluding the vector 1 are the d top

eigenvectors of Q◦, thus problems (8) and (15) give the same optimal reference shape S.

Proof. Let us denote the homogeneous form of the zero-centered datum shape as:

˜̄Di =

D̄i

1ᵀ

 , thus ˜̄Di
˜̄D
ᵀ

i =

D̄iD̄
ᵀ
i O

O m

 ,
where we have used the fact that D̄i1 = 0. From Proposition 2, we have QI =

∑n
i=1 D̃

ᵀ
i (D̃iD̃

ᵀ
i )
−1D̃i =∑n

i=1
˜̄D
ᵀ

i

(
˜̄Di

˜̄D
ᵀ

i

)−1 ˜̄Di. By a straightforward calculation, it can be verified that:

˜̄D
ᵀ

i

(
˜̄Di

˜̄D
ᵀ

i

)−1 ˜̄Di =
1

m
11ᵀ + D̄

ᵀ
i (D̄iD̄

ᵀ
i )
−1D̄i,

thus we obtain QI = n
m11ᵀ+Q◦. We notice Q◦1 = 0 because of D̄i1 = 0, which means 1 is an eigenvector
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of Q◦ with eigenvalue 0. Therefore QI and Q◦ have the same eigenvectors by Lemma 4, while 1 corresponds

to the largest eigenvalue n in QI and in contrast to the smallest eigenvalue 0 in Q◦.

5 Generalized Procrustes Analysis with the Deformation Model

We consider GPA with the deformation model as nonlinear warps. In particular, we consider a class of

generalized warps, termed LBWs, whose transformation parameters are linear with respect to the nonlinear

basis functions that lift source points to the higher-dimensional feature space. In this section, we consider

full shape registration and postpone the discussion of partial shape registration to Section 6.

5.1 Linear Basis Warps

A warp is a generalized transformation, that maps a source point p ∈ Rd (d ∈ {2, 3}) to its target point

p′ ∈ Rd. The LBW is expressed as a linear combination of a set of basis functions.

5.1.1 Formulation

Let β(p) be a vector of basis functions:

β(p) = [β1(p), β2(p), . . . , βl(p)]ᵀ ,

with each element βk(p) : Rd � R (k ∈ [1 : l]) being a scalar basis function. The vectorized basis function

β(p) : Rd � Rl brings a d-dimensional point p to the l-dimensional feature space, thus is also termed a

feature mapping in the context of linear regression models (Bishop, 2006). Given the basis function β(p),

we write a warp model, W(p,W ) : Rd� Rd, as:

W(p,W ) = W ᵀβ(p), (16)

with W ∈ Rl×d being the unknown weight matrix. An example is provided in Appendix A.2, showing how

to write the TPS warp in this form.

5.1.2 Operating on Point Clouds

For a point-cloud of m points in a matrix D = [p1, p2, . . . ,pm] ∈ Rd×m. We apply the warp W(p,W ) to

each point in D to obtain its warped version. Abusing notations, we write the result as:

W(D,W ) = W ᵀB(D), (17)
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with B(D) ∈ Rl×m collecting the feature of each point in D as its columns:

B(D) = [β(p1), β(p2), . . . ,β(pm)] .

5.1.3 Regularization

The warp is often used with a regularization term to avoid over-fitting, for instance, if the dimension

of the feature space is greater or equivalent to the number of points in the point-cloud. In the context

of deformations, such a term is formed from the partial derivatives of the warp, with different physical

implications. In particular, the second-order derivatives are used in the TPS warp:

R(W ) =

∫
Rd

∥∥∥∥ ∂2∂p2W(p,W )

∥∥∥∥2
F

dp.

This is directly proportional to the bending energy. The bending energy term is exactly zero if and only if

the warp is affine (Bookstein, 1989). Other possibilities of regularizations include the spring term used in

elastic registration (Christensen and He, 2001), and the viscosity term used in fluid registration (Bro-Nielsen

and Gramkow, 1996).

For the TPS warp, the integral can be solved in closed-form, as a quadratic form of the transformation

parameters:

R(W ) = ‖ZW ‖2F . (18)

Here Z is given as the square root of the bending energy matrix, see Appendix A.3. For other warps, we

assume the regularization term can be fairly approximated by the quadratic form as well.

The regularization term is however not compulsory. It is always possible to avoid over-fitting by limiting

the dimension of the feature space, by choosing a smaller l � m (Rueckert et al., 1999). For completeness

of the discussion, we consider the case with regularization.

5.1.4 Examples of Linear Basis Warps

The LBW generalizes over many deformation models, e.g. the Free-Form Deformations (FFD) (Rueckert

et al., 1999; Szeliski and Coughlan, 1997), and the Radial Basis Functions (RBF) (Bookstein, 1989; Fornefett

et al., 2001). Concretely we will use the Thin-Plate Spline (TPS) (Bookstein, 1989; Duchon, 1976), a

theoretically principled RBF that minimizes the overall bending energy, in the practical implementation of

our theory. An introduction of the TPS warp as an LBW is provided in Appendix A.

The affine transformation is a special case of the LBW without regularization. This can be shown from
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the homogeneous form in equation (7), by setting W ᵀ =

[
A t

]
, B(D) =

D
1ᵀ

.

5.2 Generalized Procrustes Analysis with Linear Basis Warps

We consider the case without missing datum points, and use the LBW in formulation (2). We constrain

the reference shape to be zero centered by S1 = 0. The shape constraint SSᵀ = Λ is used to enforce the

rigidity of the solution, and the reference covariance prior Λ is estimated as in Section 4.3. We propose the

following formulation for deformable GPA:

II :


arg min
{W i},S

∑n
i=1 ‖W

ᵀ
iBi(Di)− S‖2F +

∑n
i=1 µi‖ZiW i‖2F

s.t. SSᵀ = Λ, S1 = 0.

(19)

Although being termed deformable GPA, formulation (19) includes the affine-GPA formulation (8) in ho-

mogeneous form as a special case. The translation part cannot be identified directly from the LBW, thus

needs to be estimated jointly inside the transformation parameters.

To proceed, we define the shorthand Bi
def
= Bi(Di). The problem is separable. Given a reference shape

S, the estimate of W i is given in closed-form by solving the linear least-squares problem whose solution is:

W i = (BiBᵀi + µiZ
ᵀ
iZi)

−1BiS
ᵀ. (20)

Substituting equation (20) into problem (19), we obtain an optimization problem with respect to S only:

arg min
S

tr (SP IIS
ᵀ) s.t. SSᵀ = Λ, S1 = 0, (21)

where matrix P II is defined as:

P II =

n∑
i=1

(
I −Bᵀi (BiBᵀi + µiZ

ᵀ
iZi)

−1Bi

)
.

We define Qi = Bᵀi (BiBᵀi + µiZ
ᵀ
iZi)

−1Bi, and:

QII =
n∑
i=1

Bᵀi (BiBᵀi + µiZ
ᵀ
iZi)

−1Bi =
n∑
i=1

Qi.

Then P II =
∑n

i=1 (I −Qi) = nI −
∑n

i=1Qi, and tr (SP IIS
ᵀ) = ntr (Λ)− tr (SQIIS

ᵀ). Problem (21) can
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thus be equivalently written as a maximization problem:

arg max
S

tr (SQIIS
ᵀ) s.t. SSᵀ = Λ, S1 = 0. (22)

If 1 is an eigenvector of QII, or equivalently if 1 is an eigenvector of P II, then Problem (21) and Problem

(22) can be solved globally by Proposition 1. Once we obtain the optimal reference shape S?, the optimal

transformation parameters can be calculated by equation (20).

5.3 Eigenvector Characterization and Globally Optimal Solution

Now we characterize a class of LBWs for which the resulting P II and QII have an eigenvector 1. To this

end, we prove that the following statements are equivalent. The proofs have been moved to Appendix B to

benefit easy reading.

Theorem 2. The following statements are equivalent:

(a) P II1 = 0.

(b) QII1 = n1.

(c) Qi1 = 1.

(d) The cost function tr (SP IIS
ᵀ) is invariant to translations.

(e) There exists x such that Bi(Di)
ᵀx = 1; moreover if µi > 0, x must satisfy Zix = 0.

Theorem 2 relates various aspects of the LBW based GPA to the existence of an eigenvector 1 in P II

and QII. In particular, case (d) states that the reduced problem is invariant to translations, and case (e)

stipulates the rules that the LBW as a mapping must follow. While case (e) in Theorem 2 is related to

the datum shape Di, we show in what follows that it can be satisfied if the LBW satisfies certain property,

making the statement independent of the input datum shapes.

Now we show a sufficient condition to case (e) in Theorem 2 which is that the LBW must contain free-

translations. We drop the subscript i and use the notation B (·) to indicate that this is a property of the

LBW thus is independent of the warp input.

Definition 1. The LBW, given by {W ᵀB (·) , ZW , µ} is said to contain free-translations if: there exists

x such that B (·)ᵀ x = 1; moreover if µ > 0, x must satisfy Zx = 0.
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We now explain the idea behind Definition 1. The LBW contains free-translations, if we can recover the

translation vector t explicitly by an invertible matrix G such that:

W ᵀB (·) = W ᵀG−1 (B (·)ᵀGᵀ)ᵀ = [ · · · t · · · ]
W ᵀG−1

[ · · · 1 · · · ]
B(·)ᵀGᵀ

ᵀ,

where W ᵀG−1 contains a column vector t and B (·)ᵀGᵀ contains a column vector 1. Therefore 1 ∈

Range (B (·)ᵀGᵀ) = Range (B (·)ᵀ). Using G, the term ZW can be decomposed as:

ZW = ZGᵀ
(
W ᵀG−1

)ᵀ
= ZGᵀ [ · · · t · · · ]

W ᵀG−1

ᵀ.

Without loss of generality, we assume that in B (·)ᵀGᵀ the k-th column vector is 1, identified by the standard

basis vector ek, such that B (·)ᵀGᵀek = 1. Then it can be easily verified that the translation t is constraint-

free in ZW if and only if the k-th column of ZGᵀ is 0, i.e., ZGᵀek = 0. Since B (·)ᵀ has full column rank,

so Gᵀek is the unique x such that B (·)ᵀ x = 1, Zx = 0.

Proposition 4. The statements in Theorem 2 are satisfied if the LBW contains free-translations.

We state that the affine transformation and the TPS warp satisfy Definition 1. The proof for the affine

case is straightforward. For the TPS warp, the algebraic proof is given in Appendix A.4. Intuitively, this

can be explained because for the TPS warp, the bending energy term only affects the nonlinear part of

the warp, which means that the linear part of the TPS warp is constraint-free and so is its translational

component.

Proposition 5. The affine transformation and the TPS warp satisfy the statement of Theorem 2.

The above results are summarized as follow:

Summary 2. Formulation (19) can be solved globally if the the LBW contains free-translations. The

optimal reference shape S? is to scale by
√

Λ the d top eigenvectors of QII (or equivalently the d bot-

tom eigenvectors of P II) excluding the eigenvector 1. The optimal transformation parameters are W i =

(BiBᵀi + µiZ
ᵀ
iZi)

−1BiS
?ᵀ (i ∈ [1 : n]).

5.4 Reformulation using the Soft Constraint

In Theorem 1, we have proved the equivalence of formulations (11) and (13). Therefore, formulation (22)

can be equivalently written as:

arg max
S

tr
(
S
(
QII − n1̄1̄

ᵀ)
Sᵀ
)

s.t. SSᵀ = Λ, (23)
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where we have used QII1̄ = n1̄, with 1̄ being normalized.

In problem (23), we can replace n with any n′ ≥ n. This is because
(
QII − n′1̄1̄

ᵀ)
1̄ = (n− n′)1̄, where

the eigenvalue corresponding to the eigenvector 1̄ becomes (n− n′) ≤ 0, while the rest of the eigenvalue of(
QII − ν1̄1̄

ᵀ)
is nonnegative. Thus the eigenvector 1̄ is excluded in the solution for any n′ ≥ n. The rest of

the eigenvectors remain unchanged. Expanding the cost of problem (23), we obtain:

arg max
S

tr (S (QII)S
ᵀ)− n′‖S1̄‖22 s.t. SSᵀ = Λ, (24)

where n′ ≥ n. Finally we substitute P II = nI −QII and 1̄ = 1
m1, then obtain a minimization problem:

arg min
S

tr (S (P II)S
ᵀ) + ν‖S1‖22 s.t. SSᵀ = Λ, (25)

where ν ≥ n/m. Note that problem (25) is equivalent to problem (21), while the hard constraint S1 = 0

has been reformulated as a soft constraint in the form of a penalty term.

At last, formulation (19) is equivalent to the following one with the soft constraint:

arg min
{W i},S

n∑
i=1

‖W ᵀ
iBi(Di)− S‖2F +

n∑
i=1

µi‖ZiW i‖2F + ν‖S1‖22

s.t. SSᵀ = Λ.

(26)

The equivalence can be easily shown by noting that given S, the term ν‖S1‖22 becomes a constant, thus

the relation between the estimates of W i and S remains the same. Then with an analogous derivation to

Section 5.2, after eliminating W i, problem (26) is reduced to problem (25).

It is worth mentioning that formulation (26) is equivalent to formulation (19) for any LBW that satisfies

Theorem 2 (for example, the affine transformation and the TPS warp). However formulation (26) is more

tractable in terms of solution methods, since there is no need to take care of the hard constraint S1 = 0,

which can be difficult if Theorem 2 is not satisfied (e.g., the translation part is constrained). In any case,

formulation (26) can be reduced to a Brockett cost function, which can be easily solved globally.

6 Generalized Procrustes Analysis with Partial Shapes

Now we have equipped with enough insights to discuss GPA with partial shapes. We will follow the soft

regularized method discussed in Section 5.4, which generalizes over the cases where Theorem 2 is not satisfied.

As the affine transformation is a special case of the LBW, we consider GPA with the LBW only.



6 Generalized Procrustes Analysis with Partial Shapes 26

Algorithm 1: Estimate Reference Covariance Prior

1 function EstimateReferenceCovariancePrior(D1,D2, . . . ,Dn)
2 for i ∈ [1 : n] do
3 D̄i = Di − 1

mDi11ᵀ /* Zero-centered shapes */

4
√
λi ← d-LeftmostSingularValues(D̄i) /* Elements in non-ascending order */

5 end

6 Π←
[ √

λ1

‖
√
λ1‖2

√
λ2

‖
√
λ2‖2

· · ·
√
λn

‖
√
λn‖2

]
7 θ? ← LeftmostSingularVector(Π)

8 s← 1
n

∑n
i=1‖
√
λi‖2 /* Use average scale */

9
√
λ← sθ?

10
√

Λ← diag(
√
λ) /* Construct diagonal matrix */

11 Λ←
√

Λ
√

Λ
12 return Λ

13 end

6.1 Estimating the Reference Covariance Prior

The reference shape S is a full shape. In order to estimate the reference covariance prior Λ, we recover a

full shape representation for each Di (i ∈ [1 : n]). Such a process is meant to be cheap, thus we use the

classical pairwise similarity GPA to compute the similarity transformation between datum shapes, and then

complete the missing points by averaging their occurrence in other shapes.

For each partial shape Di, we compute the pairwise similarity transformation between Di and Dk

(k ∈ [1 : n]) by:

ŝik, R̂ik, t̂ik = arg min
sik,Rik, tik

‖(sikRikDk + tik1
ᵀ −Di) ΓiΓk‖2F ,

where Rik is an orthonormal matrix, sik a non-negative scalar, and tik a d-dimensional translation vector.

This classical Procrustes problem can be solved in closed-form (see Appendix D).

Subsequently we complete the missing points in Di using their occurrence in other shapes by:

Di = DiΓi + D̂iΓ
−1
+ (I − Γi) , (27)

to obtain a full shape Di. Here D̂i =
∑n

k=1

(
ŝikR̂ikDk + t̂ik1

ᵀ
)

Γk and Γ+ =
∑n

k=1 Γk. Then we estimate

the reference covariance prior Λ by the result in Section 4.3 based on the zero-centered full shapes D̄i =

Di − 1
mDi11ᵀ, which is detailed in Algorithm 1.
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6.2 Closed-Form Solution

We extend the soft-regularized formulation (26) to partial shape GPA as:

III :


arg min
{W i},S

∑n
i=1 ‖W

ᵀ
iBi(Di)Γi − SΓi‖2F +

∑n
i=1 µi‖ZiW i‖2F + ν‖S1‖22

s.t. SSᵀ = Λ.

(28)

This formulation includes formulation (26) as a special case, thus is the ultimate form we will implement.

Formulation (28) can be solved by firstly eliminating the transformation parameters, and then solving

an optimization problem in S by Lemma 1. The key steps are sketched as follow. We define the shorthand

Bi
def
= Bi(Di). Given S, problem (28) becomes linear least-squares in W i whose solution is:

W i = (BiΓiBᵀi + µiZ
ᵀ
iZi)

−1BiΓiS
ᵀ. (29)

By substituting equation (29) into problem (28), we obtain:

arg min
S

tr (S (P III + ν11ᵀ)Sᵀ) s.t. SSᵀ = Λ, (30)

where P III is defined as:

P III =
n∑
i=1

(
Γi − ΓiBᵀi (BiΓiBᵀi + µiZ

ᵀ
iZi)

−1BiΓi

)
. (31)

Problem (30) can be solved in closed-form by Lemma 1. We summarize the above results as:

Summary 3. Formulation (28) can be solved globally. The optimal reference shape S? is obtained as

scaling the d bottom eigenvectors of (P III + ν11ᵀ) by
√

Λ. The optimal transformation parameters are given

by W ?
i = (BiΓiBᵀi + µiZ

ᵀ
iZi)

−1BiΓiS
?ᵀ (i ∈ [1 : n]).

6.3 Eigenvector Characterization and Tuning Parameters

We rewrite P III as P III =
∑n

i=1P i, with:

P i = Γi − ΓiBᵀi (BiΓiΓiBᵀi + µiZ
ᵀ
iZi)

−1BiΓi.

Then P i satisfies: I � Γi � P i � O. This can be shown by writing P i as P i = ΓiΦiΓi with Φi =

I−ΓiBᵀi (BiΓiΓiBᵀi + µiZ
ᵀ
iZi)

−1BiΓi where I � Φi � O. As a summation, P III satisfies: nI � P III � O.
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We extend Theorem 2 from full shapes to partial shapes as follow.

Theorem 3. The following statements are equivalent:

(a) P III1 = 0.

(b) P i1 = 0.

(c) There exists x such that ΓiBi(Di)
ᵀx = Γi1; moreover if µi > 0, x must satisfy Zix = 0.

Proof. The proof is analogous to that for Theorem 2. See Appendix C.

By Definition 1, if the LBW contains free-translations, then the LBW satisfies: “there exists x such

that Bi (·)ᵀ x = 1; moreover if µi > 0, x must satisfy Zix = 0”. Thus by left-multiplying Bi(·)ᵀ with

Γi, the following statement is also true: “there exists x such that ΓiBi(·)ᵀx = Γi1; moreover if µi > 0, x

must satisfy Zix = 0”. Therefore the property of free-translations in the LBW is sufficient for case (c) in

Theorem 3.

Proposition 6. The statements in Theorem 3 are satisfied if the LBW contains free-translations. The

affine transformation and the TPS satisfy the statements in Theorem 3.

If the statements in Theorem 3 are satisfied, then 1 is an eigenvector of (P III + ν11ᵀ) with (P III + ν11ᵀ) 1 =

mν1. Thus if we choose ν ≥ n/m, the eigenvector 1 is excluded from the solution.

Proposition 7. The tuning parameter ν can be safely set to any ν ≥ n/m.

The rows of S? are (un-normalized) eigenvectors of (P III + ν11ᵀ) obtained by excluding the eigenvector

1. By the orthogonality of eigenvectors, we know S?1 = 0. Thus we conclude:

Proposition 8. If the statements in Theorem 3 are satisfied and ν ≥ n/m, the optimal reference shape S?

is zero-centered.

Thus if the statements in Theorem 3 are satisfied, solving formulation (28) with the soft constraint is

equivalent to solving the one with the hard constraint:

arg min
{W i},S

n∑
i=1

‖W ᵀ
iBi(Di)Γi − SΓi‖2F +

n∑
i=1

µi‖ZiW i‖2F

s.t. SSᵀ = Λ, S1 = 0.

(32)

However, we would always recommend users to solve formulation (28) since it is always solvable in closed-

form, and generalizes to LBWs where the statements in Theorem 3 are not satisfied.
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6.4 The Coordinate Transformation of Datum Shapes

We apply (possibly distinct) rigid transformations (Ri, ti) to each datum shape Di, and denote the trans-

formed datum shapes as D′i = RiDi + ti (i ∈ [1 : n]). We denote Z ′i the new regularization matrix in

replacement of Zi under transformed datum shapes.

Lemma 6. In formulation (28), if there exists an invertible matrix H i such that Bi (D′i) = H iBi(Di) and

Z ′i = ZiH
ᵀ
i for each i ∈ [1 : n], the matrix P III remains the same. So does the optimal reference shape S.

Proof. The proof is obvious as P III is invariant to such transformations.

Proposition 9. For the TPS warp, if we apply the same rigid transformation (Ri, ti) to both the datum

shape Di and the control points in Di, then Bi(D
′
i) = Bi(Di) and Z ′i = Zi.

Proof. See Appendix A.5.

Together with the discussion on the affine case in Section 4.4, we have the following conclusion:

Proposition 10. In formulation (28), if the LBW is chosen as the affine transformation or the TSP warp,

then the optimal reference shape S remains the same when we apply rigid coordinate transformations to the

datum shapes ahead.

The above result indicates that we can parameterize the datum shapes in any coordinate frame, while the

solution of formulation (28) will give exactly the same optimal reference shape. The optimal transformations

of formulation (28) will automatically accommodate the coordinate transformations.

6.5 Reflection

The reflection in the computed reference shape S? can be easily coped with by simply flipping the sign of

one row in S?. Let S? = [s1, s2, . . . , sd]
ᵀ. It is easy to verify that S? is still globally optimal if we flip the

signs of any sk (k ∈ [1 : d]). Assume there are no reflections between the datum shapes. The reflection in

S? can be detected by computing an orthogonal Procrustes between S? and any one of Di (i ∈ [1 : n]) by:

R̂, t̂ = arg min
R∈O(d), t

‖(RDi + t1ᵀ − S?) Γi‖2F .

The optimal t is t̂ = − 1
nnz(Γi)

(R̂Di−S?)Γi1. Denote Ki = Γi− 1
nnz(Γi)

Γi11ᵀΓi. Denote E = DiKiK
ᵀ
iS

?ᵀ

and its SVD as E = UΣV ᵀ. Then the optimal R is R̂ = V Uᵀ.

If det(R̂) = 1, there is no reflection. If det(R̂) = −1, we let S? = [−s1, s2, . . . , sd]ᵀ. The correctness

of such an approach is shown as follow. The determinants satisfy det (E) = det (U) det (Σ) det (V ᵀ) and
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det(R̂) = det (U) det(V ᵀ). Because det (Σ) > 0, we know that det (E) and det(R̂) have the same sign. By

flipping the sign of one row in S?, we flip the sign of one column in E, which causes the flip of the sign of

det (E), thus det(R̂) as well.

6.6 Pseudo-Code

Our algorithm is rather easy to implement. We term the proposed deformable GPA framework as DefGPA.

The overall procedure is given as pseudo-code in Algorithm 2. We release our Matlab implementation of

DefGPA to foster future research in this direction.

Code repository: https://bitbucket.org/clermontferrand/deformableprocrustes/src/master/

Algorithm 2: DefGPA – GPA with LBWs

Data: {Di ∈ Rd×m,Γi ∈ Rm×m}, i ∈ [1 : n] /* Datum shapes and visibility indicators */

Output: S? and {W ?
i }, i ∈ [1 : n] /* Reference shape and transformation parameters */

1 begin
2 for i ∈ [1 : n] do /* Users’ choice */

3 Bi(·), Zi ← InitializeWarpModel /* Choose and initialize LBWs */

4 µi ← ChooseSmoothingParameter /* Choose LBWs’ smoothing parameters */

5 Bi ← Bi(Di) /* Lift to feature space */

6 end
7 ν ← m/n /* By Proposition 7 */

8 for i ∈ [1 : n] do /* Shape completion from pairwise Procrustes */

9 if nnz(Γi) = n then /* A full shape */

10 Di ←Di

11 else /* A partial shape */

12 for k ∈ [1 : n] do

13 ŝik, R̂ik, t̂ik ← PairwiseSimilarityProcrustes(Di, Dk)

14 end
15 Di ← Equation (27) /* Predict missing points and complete shape */

16 end

17 end
18 Λ← EstimateReferenceCovariancePrior(D1,D2, . . . ,Dn) /* Algorithm 1 */

19 P ← Equation (31)
20 X? ← d-BottomEigenvectors(P + ν11ᵀ) /* Solve for reference shape */

21 S? ←
√

ΛX?ᵀ

22 for i ∈ [1 : n] do /* Solve for individual transformations */

23 W ?
i ← (BiΓiBᵀi + µiZ

ᵀ
iZi)

−1BiΓiS
?ᵀ

24 end

25 end
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Dataset Dim. F/P Landmarks Shapes Description

Face 2D P 43 - 68 10 different facial expressions and camera perspectives
Bag 2D F 155 8 deforming handbag
Pillow 2D F 69 10 deforming pillow cover
LiTS 3D F 54 8 CT scans with fiducial landmarks
Liver 3D F 4004 10 simulated deformations of a human 3D liver model
ToyRug 3D F 30 200 2D features and 3D points from a stereo rig

Table 1: List of datasets used for evaluation.

(a) Face (b) Bag (c) Pillow (d) Liver

(e) LiTS

Left Right

(f) ToyRug

Figure 1: Sample image of each dataset.

7 Experimental Results

We provide experimental results with respect to various deformable scenarios. While our method adapts to

general LBWs, we use the affine transformation and the TPS warp to show the results. A brief introduction

of the TPS warp is provided in Appendix A.

7.1 Experimental Setups

The datasets used for evaluation are listed in Table 1, while samples are given in Figure 1. In Table 1, “F”

standards for full shapes (without missing datum points), and “P” for partial shapes (with missing datum

points). These are public datasets coming from different papers and designed for different problems. These

datasets cover the case of structural deformations like facial expressions (Bartoli et al., 2013), deformable

objects (Bartoli, 2006; Gallardo et al., 2017), and tissue deformations (Bilic et al., 2019). Both 2D and 3D

cases are considered. The Liver dataset is a mesh with 4004 corresponding vertices, while the others are

2D/3D images with corresponding landmarks.

We use Euclidean GPA and Affine GPA with costs defined in the datum-space as benchmark algo-
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rithms. These two methods are denoted as ∗EUC d and ∗AFF d, where d means the methods minimize

the datum-space cost. The notion ∗ indicates they are benchmark methods. For ∗EUC d and ∗AFF d, we

use the MATLAB implementation by (Bartoli et al., 2013) based on closed-form initialization and Leven-

berg–Marquardt refinement.

Our methods are denoted by AFF r, TPS r(3), TPS r(5), and TPS r(7) respectively, where r means

the methods minimize the reference-space cost. AFF r stands for GPA with the affine model, and TPS r(·)

stands for GPA with the TPS warp. We choose the control points of the TPS warp evenly along each

principal axis of the datum shape. We examine the cases of 3, 5 and 7 points along each principal axis,

which results in 9, 25, 49 overall control points for 2D datasets and 27, 125, 343 overall control points for

the LiTS and Liver datasets. The ToyRug dataset is almost flat, thus we assign two layers of control points

along the first two principal axes which yields 18, 50, 98 overall control points.

Our methods are implemented in MATLAB, which constitutes a fair comparison against ∗EUC d and

∗AFF d. The experiments are carried out by an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz × 8 CPU,

running Ubuntu 18.04.5 LTS. The MATLAB version is R2020b.

7.2 Evaluation Metrics

7.2.1 Landmark Residual

We use RMSE r to denote the landmark residual defined in the reference-space, and RMSE d the landmark

residual in the datum-space. These two metrics are defined as:

RMSE r =

√√√√1

κ

n∑
i=1

‖(Ti (Di)− S?) Γi‖2F

RMSE d =

√√√√1

κ

n∑
i=1

∥∥(Di − T −1i (S?)
)
Γi
∥∥2
F
,

where κ =
∑n

i=1 nnz (Γi). If the transformation model is invertible, it is easy to derive RMSE r and RMSE d

from one another. However, this is typically not the case for LBWs, e.g. the TPS warp is not invertible.

We propose to use control points and their images as samples to fit an inverse TPS warp. In specific, let

T (·) be a TPS warp, and ci (i ∈ [1 : l]) be its l control points. Let the images of these l control points

under T (·) be c′i = T (ci) (i ∈ [1 : l]). Then in essence T (·) is a regression model obtained by fitting the

datum pairs (ci, c
′
i) (i ∈ [1 : l]) with ci being the input and c′i being the output. Therefore the inverse of

T (·), denoted by T −1 (·), can be defined by fitting the pairs (c′i, ci) (i ∈ [1 : l]), with c′i being the input and

ci being the output. For the TPS warp, this is realized by letting c′i be the set of control points of T −1 (·),
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and computing the warp parameters using the relation T −1 (c′i) = ci.

7.2.2 Cross-Validation Error

The warp models can overfit the data by using a small enough TPS smoothing parameter. We quantify this

behavior by the Cross-Validation Error (CVE) defined as:

CVE =

√√√√1

κ

n∑
i=1

∥∥∥(Ŝi − S?)Γi

∥∥∥2
F
,

where the predicted reference shape Ŝi is computed by the G-fold cross-validation as follow. We group all

m points indexed as 1, 2, . . . ,m as G mutually exclusive subsets as:

p1, · · · ,pN
g1

, pN+1, · · · ,p2N
g2

· · · p(G−1)N+1, · · · ,pm
gG

.

Each subset has N points except the subset gG which contains the remaining left. We index the points gk

in shape Di as Di (gk), and the points in shape Ŝi as Ŝi (gk). Now for each subset gk (k = [1 : G]), we solve

the GPA with all the points except those in gk. This solution is denoted as S?gk for the reference shape and

Tgk:i (i ∈ [1 : n]) for the transformations. Then for each datum shape, we predict the positions of points

in Di (gk) by the transformation Tgk:i (Di (gk)). We correct the gauge of Tgk:i (Di (gk)) with the Euclidean

Procrustes between S?gk and S? (by eliminating points gk in S?). Denote such a solution to be Rgk and

tgk . Finally we set Ŝi (gk) = RgkTgk:i (Di (gk)) + tgk1
ᵀ. Repeating the above procedure for all G subsets,

we obtain the predicted reference shape Ŝi.

The CVE resembles the RMSE, except that it handles overfitting. For the Face, Bag, Pillow, LiTS and

ToyRug dataset, we set N = 1. For the Liver dataset, we set N = 40 to cope with the larger dataset size

and dimension.

7.3 Thin-Plate Spline Smoothing Parameters

We set the TPS smoothing parameter µi as µi = nnz (Γi) θ, (i ∈ [1 : n]), and adjust θ within the range

[1e− 5, 1e+ 5]. We report the RMSE r, RMSE d, and CVE with respect to different θ in Figure 2. The θ

used to generate our results are marked as vertical lines, annotated with the chosen value.

In Figure 2, the RMSE r decreases monotonically as θ decreases, as a smaller θ implies more flexibility.

However, a sufficiently small θ may cause overfitting. The overfitting in DefGPA is mainly twofold: the bias

to the data, and the bias to the optimization criterion (i.e., the cost function). When overfitting happens,
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Figure 2: The choice of TPS smoothing parameters. The Root-Mean-Squared-Error (RMSE), Rigidity-Score
(RS), and Cross-Validation-Error (CVE) are plotted with respect to different θ values (in horizontal axes).

the optimization tends to fit the training data to the cost function as much as possible, thus actually creating

misfitting to new data and other criteria. This suggests that we can use the fitness to new data and other

criteria to detect overfitting. The idea of using new data is realized by cross-validation given as the CVE

metric, and that of using other criteria by the datum-space cost (denoted by RMSE d). In Figure 2, the

overfitting is reflected as the divergence of the RMSE r and RMSE d metric, as well as the slope change of

the CVE curve. In general, CVE has a positive slope if RMSE r and RMSE d agree with one another, and

a negative slope if RMSE r and RMSE d diverge.

For 2D datasets, we choose θ = 10 for the Face, and θ = 100 for the Bag and Pillow datasets. For 3D

datasets, we choose θ = 0.1 for the LiTS, and θ = 0.01 for the Liver and ToyRug datasets. Although the

bending energy term has different constants for 2D and 3D cases, the choice of θ is roughly stable within

each category.
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In terms of overfitting, we focus on the agreement of the trend of the RMSE r and RMSE d curves:

whether they both increase or decrease. There is always a gap between the RMSE r and RMSE d metrics,

which stands for the asymmetry between different cost functions. We will examine this asymmetry in Section

7.6.

7.4 Results Based on Landmarks

7.4.1 Statistics

We report in Table 2 the RMSE d, RMSE r, CVE and the computational time per GPA problem. The

RMSE d, RMSE r and CVE are evaluated in pixels, and the time in seconds.

Dataset ∗EUC d ∗AFF d AFF r TPS r(3) TPS r(5) TPS r(7)

Face RMSE d 7.11 6.52 6.73 4.35 3.60 3.35
RMSE r 7.11 6.64 6.67 4.74 3.96 3.72
CVE 7.26 7.07 7.05 5.27 4.62 4.42
Time 0.6326 0.2113 0.0731 0.0759 0.0149 0.0191

Bag RMSE d 30.23 17.73 18.08 8.91 6.80 6.42
RMSE r 30.23 19.78 18.90 9.16 7.12 6.75
CVE 30.48 20.19 19.27 9.59 7.62 7.30
Time 0.3785 0.0535 0.0328 0.0303 0.0218 0.0275

Pillow RMSE d 23.44 16.23 16.34 7.58 5.39 4.89
RMSE r 23.44 17.96 16.84 7.82 5.47 5.02
CVE 24.01 19.26 18.11 10.10 8.25 7.99
Time 0.1862 0.0339 0.0253 0.0211 0.0140 0.0176

LiTS RMSE d 19.85 15.43 15.71 13.60 11.76 11.13
RMSE r 19.85 15.84 15.74 13.50 11.57 10.77
CVE 20.50 17.19 17.44 16.63 16.08 16.01
Time 0.2144 0.0267 0.0245 0.0234 0.0387 0.1284

Liver RMSE d 4.94 4.60 4.65 2.27 1.27 0.97
RMSE r 4.94 4.68 4.29 1.95 1.14 0.90
CVE 5.01 4.78 4.38 2.06 1.25 1.02
Time 249.3995 41.8242 9.7071 10.1804 11.0086 13.3759

ToyRug RMSE d 0.88 0.42 2.94 0.60 0.57 0.58
RMSE r 0.88 2.41 0.47 0.29 0.23 0.21
CVE 0.98 12.01 0.59 0.43 0.39 0.37
Time 2.2158 0.2969 0.0792 0.1393 0.2122 0.4351

Table 2: The statistics of landmark registration.

7.4.2 Visualization

For each case, we visualize the optimal reference shape S?, along with the set of predicted reference shapes

Ŝi computed by the leave-N -out cross-validation. The details of how to compute each Ŝi have been given
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Figure 3: The fitness of each methods visualized by the cross-validation on 2D datasets. The reference shape
S? is plotted in green and the predicted reference shapes Ŝi in blue.

in Section 7.2. Recall that Ŝi is sensitive to overfitting, thus is better to benchmark fitness than using the

transformed datum shapes Ti(Di) directly.

For the 2D datasets, we visualize Ŝi and S? directly in Figure 3. The predicted reference shapes Ŝi are

plotted in blue, and the optimal reference shape S? on top in green. For the 3D datasets, we visualize the

points in S?, and encode the CVE with the marker size and color in Fig. 4. The bigger the marker and the

redder the color, the larger the associated CVE value.

The result in Figure 3 shows that the landmark fitness is consistently improved by using the affine-GPA

(∗AFF d and AFF r) or the TPS warp based GPA compared with the Euclidean-GPA (∗EUC d). Both

∗AFF d and AFF r give similar results. There is a clear improvement of TPS r(3) over the affine-GPA.

However, the improvement of TPS r(7) over TPS r(5) is marginal.

The result in Fig. 4 agrees with the result in Figure 3, which improves sequentially by using the

∗EUC d, AFF r, TPS r(3), TPS r(5) and TPS r(7) methods. Both the datum-space method ∗AFF d and

the reference-space method AFF r produce similar results on the LiTS and Liver datasets. The ∗AFF d

method gives rather poor fitness on the ToyRug dataset. This is due to the asymmetry in the cost function

which be examined in detail in Section 7.6.
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Figure 4: The fitness of each methods visualized by the cross-validation on 3D datasets. We present the
reference shape S? and encode the cross-validation error for each point with both the marker sizes and
colors. The smaller the marker, the lower the error.

7.5 Results Based on Image Intensities

For the 2D datasets, we visualize the image intensities under the computed warps. The image pixel coor-

dinates can be regarded as testing points (in addition to the landmarks) which are immune to the issue of

overfitting. We thus evaluate the fitness using the intensities in the transformed pixel coordinates.

Let Ii be a sample image. For each pixel coordinates [u, v], we apply the transformation Ti to obtain its

target position [u′, v′] = Ti ([u, v]). The transformed image (or warped image) I ′i is defined as I ′i(u
′, v′) =

Ii(u, v). The warped image I ′i resides in the coordinate frame of the reference shape, thus can be compared

with other warped images. Having computed n warped sample images I ′i (i ∈ [1 : n]), we define the image

intensity deviation as an image ∆I ′(u, v) = std {I ′1(u, v), I ′2(u, v), . . . , I ′n(u, v)}. In the case of RGB images,
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we compute the intensity deviation for all the three channels to obtain an RGB intensity deviation image.

We visualize the image intensity deviation for the Bag and Pillow datasets in Figure 5. The result for

∗AFF d is similar to AFF r, thus is not shown. In Figure 5, from left to right, the methods ∗EUC d,

AFF r, TPS r(3), TPS r(5) and TPS r(7) consistently increase the fitness due to the increasing modeling

capabilities (from rigid to affine and deformable models), shown as the shrinking of bright regions.

The image intensity deviation of the Face dataset is noisy due to perspective changes, so we visualize a

typical warped sample image (with missing correspondences and perspective changes) and the corresponding

transformed landmarks in Figure 6. This result helps intuitively understand how each transformation model

works: the rigid model preserves the distance; the affine model shears the image; the deformation models

can deform the image nonlinearly (e.g., the area around the nose and mouth in Figure 6). The improved

fitness using deformation models is obvious without saying.

(a) Bag

(b) Pillow

Figure 5: The intensity deviation of the transformed datum images. From left to right are respectively the
intensity deviation for ∗EUC d, AFF r, TPS r(3), TPS r(5) and TPS r(7). The bright regions correspond
to large intensity deviations, and the dark regions to small intensity deviations.

Figure 6: The transformed images using the computed warps. From left to right are respectively the warped
images by ∗EUC d, ∗AFF d, AFF r, TPS r(3), TPS r(5) and TPS r(7). The transformed landmarks are
marked in blue, and the landmarks in the reference shape are marked in green.
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RMSE = 51.07 RMSE = 43.70

(a) ∗EUC d

RMSE = 21.73 RMSE = 9.64

(b) ∗AFF d
RMSE = 52.54 RMSE = 20.57

(c) AFF r

RMSE = 31.09 RMSE = 11.99

(d) TPS r(3)
RMSE = 29.47 RMSE = 11.33

(e) TPS r(5)

RMSE = 29.06 RMSE = 11.29

(f) TPS r(7)

Figure 7: The discrepancy between the generated image features and original image features on the ToyRug
dataset. The generated image features are plotted in the green color, and the original image features in the
red color. The blue x-markers are reprojected 2D image features from the triangulated 3D datum shapes.
The RMSE statistics are measured in pixels.

7.6 The Asymmetry in Cost Functions

For the ToyRug dataset, the RMSE r and RMSE d statistics in Table 2 have shown a strong asymmetry

between the reference-space cost and datum-space cost, in particular for the ∗AFF d and AFF r methods.

This asymmetry is further evidenced in Figure 4 as the ∗AFF d method yields one magnitude larger CVE

error than the AFF r method. Recall that the datum-space cost aims to find the generative model that best

explains all the data; in contrast, the reference-space cost aims to find the reference shape that produces

the best fitness to the data. The above results suggest that while being closely related, minimizing the

datum-space cost does not necessarily result in a good fitness to the reference shape. Now we report on the

other hand that minimizing the reference-space does not necessarily produce a good generative model.

The 3D datum shapes of the ToyRug dataset are obtained by triangulating the image features of a stereo

camera rig with known intrinsic and extrinsic parameters. To evaluate GPA methods as generative models,

we use the 3D reference shape estimate and transformation estimates to generate 3D datum shapes, and

reproject the generated 3D datum shapes to 2D image features. We report the discrepancies between the
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generated image features and the original image futures in Figure 7, by visualizing the result of the datum

shape that produces the largest error.

Contrary to the worst reference-space fitness, the ∗AFF d method generates the best image features that

closely match the original ones as shown in Figure 7, because it minimizes the datum-space cost directly

while being more flexible than the ∗EUC d method. Due to nonrigid deformations, the datum-space method

∗EUC d does not provide good result. In parallel, because of the metric asymmetry, poor performance is

observed for the AFF r method which minimizes the reference-space cost. However, although not optimizing

the datum-space cost directly, the reference-space methods TPS r(3), TPS r(5) and TPS r(7) are still capable

to provide satisfactory results. The quality of the generated features are consistently improved over the

TPS r(3), TPS r(5) and TPS r(7) methods. In particular, the features in the bottom right corner generated

by the method TPS r(7) are better than those generated by the ∗AFF d method.

This brings us to the final conclusion. The datum-space cost and the reference-cost are two distinct but

closely related metrics, while a good result based on one cost does not necessarily guarantee a good result

on the other cost due to the metric asymmetry. However it does not mean that the cost functions make a

big difference for every dataset: as can be seen in Table 2, the RMSE r and RMSE d metrics agree most of

the time. In adverse cases like the ToyRug dataset, the deformation models like the TPS warp can achieve

the best result on both sides, which coins the importance of using DefGPA over classical GPA methods.

8 Conclusion

To summarize, we have introduced the problem of GPA with deformations. We have proposed a general

problem statement applicable to LBWs, subsuming previous statements made for specific models. We have

derived a closed-form solution, applicable to the general case of partial shapes and with regularization. We

have extensively validated the proposed solution on various datasets with great care taken to select the

regularization weights. Our future work will include studying the consistency of estimates under certain

statistical models, and extending our theory to the Nonrigid Structure-from-Motion (NRSfM) problem.

A The Thin-Plate Spline

A.1 General Mapping Definition

The Thin-Plate Spline (TPS) is a nonlinear mapping driven by a set of chosen control centers. Let

c1, c2, . . . , cl, with ci ∈ Rd (d = 2, 3), be the l control centers of TPS. We present the TPS model in

3D; the 2D case can be analogously derived by removing the z coordinate and letting the corresponding
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TPS kernel function be φ (r) = r2 log
(
r2
)

(Bookstein, 1997). Strictly speaking, the TPS only occurs in 2D,

but is part of a general family of functions called the harmonic splines. For simplicity, we call the function

TPS independently of the dimension.

We denote a point in 3D by pᵀ = [x, y, z]. The TPS function τ(p) is a R3� R mapping:

τ(p) =
l∑

k=1

wk φ (‖p− ck‖) + a1x+ a2y + a3z + a4

where φ (·) is the TPS kernel function. In 3D, we have φ (r) = −|r|.

We collect the parameters in a single vector ηᵀ = [wᵀ,aᵀ], with the coefficient in the nonlinear part as

wᵀ = [w1, w2, · · · , wl], and that in the linear part as aᵀ = [a1, a2, a3, a4]. Let p̃ᵀ = [x, y, z, 1]. Collect the

nonlinear components in a vector:

φᵀp = [φ (‖p− c1‖) , φ (‖p− c2‖) , · · · , φ (‖p− cl‖)] .

Then the TPS function compacts in the vector form as:

τ(p) = φᵀpw + p̃ᵀa.

We define c̃ᵀi = [cᵀi , 1] (i ∈ [1 : l]), and C̃ = [c̃1, c̃2, . . . , c̃l]. The transformation parameters in the nonlinear

part of the TPS model are constrained with respect to the control centers, i.e., C̃w = 0. To solve the

parameters of TPS, the l control centers c1, c2, . . . , cl, are mapped to l scalar outputs y1, y2, . . . , yl, by

τ(ck) = yk (k ∈ [1 : l]). We collect the outputs in a vector yᵀ = [y1, y2, . . . , yl].

A.2 Standard Form as a Linear Regression Model

While there are l + 4 parameters in η, we will show in the following that the 4 constraints in C̃w = 0 can

be absorbed in a reparameterization of the TPS model, by using l parameters only.

To proceed, we define a matrix:

Kλ =



λ φ12 . . . φ1l

φ21 λ . . . φ2l
...

...
...

φl1 φl2 . . . λ


,

where we use the shorthand φij = φ (‖ci − cj‖). The original diagonal elements of Kλ are all zeros,
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i.e., φ11 = φ22 = · · · = φll = 0. λ is an adjustable parameter acting as an internal smoothing parameter to

improve the conditioning of the matrix.

The l TPS mappings of control centers τ(ck) = yk (k ∈ [1 : l]), and the 4 parameter constraints C̃w = 0

can be collected in the following matrix form:

Kλ C̃
ᵀ

C̃ O


w
a

 =

y
0

 ,
which admits a closed-form solution: w

a

 = Eλy,

with the matrix Eλ ∈ R(l+4)×l defined as:

Eλ =

K−1λ −K−1λ C̃ᵀ
(
C̃K−1λ C̃

ᵀ
)−1

C̃K−1λ(
C̃K−1λ C̃

ᵀ
)−1

C̃K−1λ

 .
Therefore the TPS function writes:

τ(p) =

φp
p̃


ᵀ w
a

 =

φp
p̃


ᵀ

Eλy = yᵀEᵀλ

φp
p̃

 .

Let β(p) = Eᵀλ

φp
p̃

. Then τ(p) = yᵀβ(p).

The 3D TPS warp model W (p) : R3 � R3 is obtained by stacking 3 TPS functions together, one for

each dimension:

W(p) =


τx(p)

τy(p)

τz(p)

 =


yᵀx β(p)

yᵀy β(p)

yᵀz β(p)

 =
[
yx,yy,yz

]ᵀ
β(p). (33)

This is the standard form of the general warp model defined in equation (16), with W =
[
yx,yy,yz

]
∈ Rl×3

being a set of new transformation parameters that are free of constraints.

A.3 Regularization by Bending Energy Matrix

Let Ēλ = K−1λ −K
−1
λ C̃

ᵀ
(
C̃K−1λ C̃

ᵀ
)−1

C̃K−1λ . The l × l matrix Ēλ is the bending energy matrix of the

TPS warp (Bookstein, 1989), which satisfies ĒλKλĒλ = Ēλ. The bending energy matrix Ēλ is positive
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semidefinite, with rank l− 4. The bending energy of a single TPS function is proportional to wᵀKλw, with

w = Ēλy, which is given by: ∫
Rd

‖ ∂
2

∂p2
τ(p)‖2F dp ∝ wᵀKλw = yᵀĒλy.

For the 3D TPS warp model, the overall bending energy is:

∫
Rd

∥∥∥∥ ∂2∂p2W(p,W )

∥∥∥∥2
F

dp

=

∫
Rd

(∥∥∥∥ ∂2∂p2 τx(p)

∥∥∥∥2
F

+

∥∥∥∥ ∂2∂p2 τy(p)

∥∥∥∥2
F

+

∥∥∥∥ ∂2∂p2 τz(p)

∥∥∥∥2
F

)
dp

=yᵀxĒλyx + yᵀyĒλyy + yᵀzĒλyz

= tr
(
W ᵀĒλW

)
= ‖
√

ĒλW ‖2F

where
√
Ēλ is the matrix square root of Ēλ. Then the bending energy of the TPS warp writes into the

standard form R(W ) = ‖
√
ĒλW ‖2F , given in equation (18).

A.4 The Thin-Plate Spline Satisfies B (·)ᵀ x = 1 and Zx = 0

Let an arbitrary point cloud D be D = [p1, p2, . . . ,pm]. Then by equation (33) and the point-cloud

operation defined in Section 5.1.2, we write:

B(D) = [β(p1), β(p2), . . . ,β(pm)]

= Eᵀλ

φp1 φp2 . . . φpm

p̃1 p̃2 . . . p̃m


= Eᵀλ

MD

1ᵀ

 .
Hence B(D)ᵀ has structure:

B(D)ᵀ =

[
Mᵀ

D 1

]
Eλ.
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A.4.1 B(·)ᵀx = 1

It suffices to show such an x satisfies Eλx =

0

1

. Because:

EλC̃
ᵀ

=

O
I

 =⇒ EλC̃
ᵀ

0

1

 =

O
I


0

1

 =

0

1

 ,

such an x indeed exists, which is x = C̃
ᵀ

0

1

.

A.4.2 Zx = 0

We need to show:

Zx = 0 ⇐⇒ ‖Zx‖2 = xᵀZᵀZx = 0.

The proof is immediate by noting that ZᵀZ = Ēλ, and Ēλx = ĒλC̃
ᵀ

0

1

 = O

0

1

 = 0.

A.5 The Thin-Plate Spline is Invariant to the Coordinate Transformation

Given a datum shape D, we apply the same rigid transformation (R, t) to each datum point pi, and denote

the transformed datum point as p′i = Rpi + t. Each control point ci is transformed to c′i = Rci + t. The

matrix Kλ is invariant by replacing ci with c′i as its elements are radial basis functions. By replacing C̃ by

C̃
′
=
[
c̃′1, c̃

′
2, . . . , c̃

′
l

]
, the matrix Eλ becomes:

E ′λ =

I O

O (T ᵀ)−1

Eλ, with T =

R t

0ᵀ 1

 .
φpi is also invariant by simultaneously replacing ci with c′i and pi with p′i. Notice that p̃′i = T p̃i, thus:

β
(
p′i
)

= E ′λ
ᵀ

φp′i
p̃′i

 = Eᵀλ

φpi
p̃i

 = β (pi) .

This proves B (D′) = B (D) where D′ = RD + t1ᵀ. Denote Ē ′λ to be the top l × l sub-block of E ′λ. It is

obvious that Ē ′λ = Ēλ thus the regularization matrix Z ′ =

√
Ē ′λ =

√
Ēλ = Z remains unchanged.
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B Lemmas and Proof of Theorem 2

B.1 Lemmas on Positive Semidefinite Matrices

Lemma 7. For any M =
∑n

i=1M i, if M i � O for each i ∈ [1 : n], then M � O.

Lemma 8. For any M � O, we have xᵀMx = 0 ⇐⇒ Mx = 0.

Proof. Given M � O, there exist a matrix
√
M , such that M =

√
M
√
M . Therefore:

xᵀMx = ‖
√
Mx‖22 = 0 ⇐⇒

√
Mx = 0 =⇒Mx =

√
M
√
Mx = 0.

This completes the proof of the sufficiency. The necessity is obvious.

Lemma 9. For any M =
∑n

i=1M i � O, with each M i � O, we have Mx = 0 ⇐⇒ M ix = 0 for each

i ∈ [1 : n].

Proof. Because M � O and M i � O, by Lemma 8, it suffices to show xᵀMx = 0 ⇐⇒ xᵀM i x = 0,

which is true because xᵀMx =
∑n

i=1 x
ᵀM i x with each summand xᵀM i x ≥ 0. Therefore xᵀMx = 0 ⇐⇒

xᵀM i x = 0 for each i ∈ [1 : n].

B.2 Proof of Theorem 2

We assume µi being a tuning parameter µi ≥ 0. Then the following chain of generalized equality holds:

I � Bᵀi (BiBᵀi )
−1Bi � Bᵀi (BiBᵀi + µiZ

ᵀ
iZi)

−1Bi � O.

Therefore I −Qi � O, and thus P II =
∑n

i=1 (I −Qi) � O.

Proof. We shall prove the result by showing: (a) ⇐⇒ (b), (a) ⇐⇒ (c), (a) ⇐⇒ (d), and (c) ⇐⇒ (e).

(a) ⇐⇒ (b). Because P II = nI−QII, thus P II1 = n1−QII1, which means P II1 = 0 ⇐⇒ QII1 = n1.

(a) ⇐⇒ (c). Note that P II =
∑n

i=1 (I −Qi) � O with I −Qi � O. Therefore by Lemma 9, we have

P II1 = 0 ⇐⇒ (I −Qi) 1 = 0 ⇐⇒ Qi1 = 1.

(a) ⇐⇒ (d). Applying a translation t to S, we have:

tr (SP IIS
ᵀ) = tr ((S + t1ᵀ)P II (S + t1ᵀ)ᵀ) ⇐⇒ −2tr (SP II1t

ᵀ) = tr (t1ᵀP II1t
ᵀ) . (34)

Sufficiency: if P II1 = 0, then −2tr (SP II1t
ᵀ) = tr (t1ᵀP II1t

ᵀ) = 0.



C Proof of Theorem 3 46

Necessity: note that P II is positive semidefinite, so tr (t1ᵀP II1t
ᵀ) ≥ 0, which means tr (SP II1t

ᵀ) ≤ 0.

Since equation (34) holds for any t, flip the sign of tᵀ, we obtain tr (SP II1t
ᵀ) ≥ 0. Therefore:

0 ≤ tr (SP II1t
ᵀ) ≤ 0 ⇐⇒ tr (SP II1t

ᵀ) = 0 ⇐⇒ tr (t1ᵀP II1t
ᵀ) = 0.

Note that 1ᵀP II1 is a scalar, hence:

tr (t1ᵀP II1t
ᵀ) = 1ᵀP II1 tr (ttᵀ) = 1ᵀP II1‖t‖22 = 0,

for any t, if and only if 1ᵀP II1 = 0 ⇐⇒ P II1 = 0 by Lemma 8.

(c) ⇐⇒ (e). Let Q̄i = Bᵀi (BiBᵀi )
−1Bi, and (Bᵀi )

†
= (BiBᵀi )

−1Bi. Applying the Woodbury matrix

identity, the matrix Qi can be expanded as:

Qi = Bᵀi (BiBᵀi + µiZ
ᵀ
iZi)

−1Bi

= Q̄i − µi
(
Zi (Bᵀi )

†
)ᵀ (

I + µiZi (BiBᵀi )
−1
Zᵀi

)−1
Zi (Bᵀi )

†︸ ︷︷ ︸
∆i

.

Then we write:

I −Qi =
(
I − Q̄i

)
+ µi∆i � O,

with I − Q̄i � O and ∆i � O. Noting that µi ≥ 0, by Lemma 9, we have (I −Qi) 1 = 0 if and only if(
I − Q̄i

)
1 = 0 and ∆i1 = 0. In other words, Qi1 = 1 if and only if Q̄i1 = 1 and ∆i1 = 0.

Note that Q̄i = Bᵀi (BiBᵀi )
−1Bi is the orthogonal projection into the range space of Bᵀi , which states

Q̄i1 = 1 ⇐⇒ 1 ∈ Range (Bᵀi ) ⇐⇒ ∃x such that Bᵀix = 1. Therefore such an x is x = (Bᵀi )
†
1.

Since Zi (BiBᵀi )
−1
Zᵀi � O, we know I + µiZi (BiBᵀi )

−1
Zᵀi is exactly positive definite. Therefore

∆i1 = 0 ⇐⇒ 1ᵀ∆i1 = 0 happens if and only if Zi (Bᵀi )
†
1 = 0 which is Zix = 0.

C Proof of Theorem 3

Proof. (b) ⇐⇒ (c). We define Q̄i = ΓiBᵀi (BiΓiΓiBᵀi )
−1BiΓi. By the Woodbury matrix identity:

ΓiBᵀi (BiΓiΓiBᵀi + µiZ
ᵀ
iZi)

−1BiΓi

= Q̄i − µi
(
Zi (ΓiBᵀi )

†
)ᵀ (

I + µiZi (BiΓiΓiBᵀi )
−1
Zᵀi

)−1
Zi (ΓiBᵀi )

†︸ ︷︷ ︸
∆i

.
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Then P i can be written as: P i =
(
Γi − Q̄i

)
+ µi∆i with Γi − Q̄i � O and ∆i � O. Thus P i � O. By

Lemma 9, P i1 = 0 if and only if
(
Γi − Q̄i

)
1 = 0 and ∆i1 = 0

Note that Q̄i is the orthogonal projection to Range (ΓiBᵀi ). Thus we have:

(
Γi − Q̄i

)
1 = 0 ⇐⇒ Q̄iΓi1 = Γi1 ⇐⇒ Γi1 ∈ Range (ΓiBᵀi ) ,

if and only if there exists x such that ΓiBᵀix = Γi1. Such an x is x = (ΓiBᵀi )
†
1.

Note that ∆i � O and I + µiZi (BiΓiΓiBᵀi )
−1
Zᵀi � O, thus we have:

∆i1 = 0 ⇐⇒ 1ᵀ∆i1 = 0 ⇐⇒ Zix = Zi (ΓiBᵀi )
†
1 = 0.

(a) ⇐⇒ (b). Since P i � O, the proof is immediate by Lemma 9.

This completes the proof.

D Rigid Procrustes Analysis with Two Shapes

The pairwise Procrustes problem aims to solve for a similarity transformation (a scale factor s > 0, a

rotation/reflection R ∈ O(3), and a translation t ∈ R3), that minimizes the registration error between the

two point-clouds D1 and D2 with known correspondences:

arg min
s>0,R∈O(3)

‖sRD1 + t1ᵀ −D2‖2F .

This problem admits a closed-form solution (Horn, 1987; Horn et al., 1988; Kanatani, 1994).

Let D̄1 = D1 − 1
mD111ᵀ, and D̄2 = D2 − 1

mD211ᵀ. Let the SVD of D̄1D̄
ᵀ
2 be D̄1D̄

ᵀ
2 = ŪΣ̄V̄

ᵀ
. Then

the optimal rotation is R? = V̄ Ū
ᵀ

if R? ∈ O(3). If we require R? ∈ SO(3), the optimal rotation is:

R? = V̄ diag
(
1, 1,det

(
V̄ Ū

ᵀ))
Ū
ᵀ
.

The optimal scale factor and the optimal translation are then given by:

s? =
tr
(
R?D̄1D̄

ᵀ
2

)
tr
(
D̄1D̄

ᵀ
1

)
t? =

1

m
D21−

1

m
s?R?D11.
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