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Abstract Registration maps or warps form a key el-

ement in Shape-from-Template (SfT). They relate the

template with the input image, which contains the pro-

jection of the deformed surface. Recently, it was shown

that isometric SfT can be solved analytically if the warp

and its first-order derivatives are known. In practice,

the warp is recovered by interpolating a set of discrete

template-to-image point correspondences. This process

relies on smoothness priors but ignores the 3D geom-

etry. This may produce errors in the warp and poor

reconstructions. In contrast, we propose to create a 3D

consistent warp, which technically is a very challeng-

ing task, as the 3D shape variables must be eliminated

from the isometric SfT equations to find differential

constraints for the warp only. Integrating these con-

straints in warp estimation yields the isowarp, a warp
3D consistent with isometric SfT. Experimental results

show that incorporating the isowarp in the SfT pipeline

allows the analytic solution to outperform non-convex

3D shape refinement methods and the recent DNN-

based SfT methods. The isowarp can be properly initial-

ized with convex methods and its hyperparameters can

be automatically obtained with cross-validation. The
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isowarp is resistant to 3D ambiguities and less compu-

tationally expensive than existing 3D shape refinement

methods. The isowarp is thus a theoretical and practical

breakthrough in SfT.
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1 Introduction

This paper is about the Shape-from-Template (SfT)

problem, also known as template-based non-rigid 3D

reconstruction. The object of interest in SfT is a sur-

face that deforms and from which we take a single im-

age with a calibrated camera. The known template is

a reference shape of the surface (one of its possible de-
formations) and a texture map that describes its ap-

pearance. Solving SfT means recovering the deformed

surface seen in the image as a one-to-one embedding

from the template. Importantly, SfT requires a defor-

mation prior. Isometry is a widely applicable prior,

which forces geodesic distances to be preserved, and is

a good approximation for the deformation undergone

by many common materials such as clothing, tissue or

paper. Isometry is a differential concept that involves

the embedding function and its derivatives. It has been

thoroughly studied in SfT [35,28,4,24,12] whose spe-

cific instance we refer to as isometric SfT. Early isomet-

ric SfT methods [35,28] use approximations of isometry,

namely the inextensibility constraint and the Maximum

Depth Heuristic (MDH). The theoretical properties of

these models is not fully understood and their results

are inaccurate. Very recently, isometric SfT has been

described exactly using the differential geometry of sur-

faces, image projections and isometric deformations,

leading to the differential SfT methods. The elements
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Fig. 1 Differential SfT diagram. Arrows represent locally dif-
ferentiable functions. The template is represented as a 2D
texture map endowed with a local metric Ut, i.e. the first
fundamental form of the template’s surface. The projection
function Πp represents the perspective camera. The embed-
ding Xi has the same parametrization domain as the tem-
plate. By following the composition rule, where ◦ denotes
function composition, the reprojection equation for the warp
is given as η = Πp ◦Xi. Given that JXi

is the Jacobian ma-
trix of Xi, the isometry equation comes from the fact that
isometries preserve the local metric and thus J>Xi

JXi
= Ut.

The resulting PDE system is called the isometric SfT system.

involved in differential SfT (the template domain, de-

formed surface, image plane) are connected with func-

tions. Their relationship is revealed in a commutative

graph shown in Fig. 1. Two important functions contain

the unknowns in SfT. i) The reconstruction embedding

Xi, usually described with a scalar depth function ρ,

embeds the template domain to form the deformed sur-

face and is the sought solution to SfT. ii) The warp η,

which represents the registration between the template

and the input image. While Xi is not directly measur-

able, we can take discrete measurements of η by extract-

ing point correspondences between the template’s tex-

ture map and the input image. A recent breakthrough

in SfT showed that there exists a direct analytic ex-

pression that transforms η and its first order deriva-

tives into Xi [4]. This expression is exact given that η

is error free and shows that isometric SfT is well-posed

given η. It also means that obtaining η is equivalent

to solving isometric SfT. Logically, thus current meth-

ods first estimate the warp η and then use the analytic

solution for Xi. However, estimating the warp is a diffi-

cult regression problem that has been overlooked in the

literature. Firstly, the warp is sampled at zeroth-order,

by means of point correspondences, which requires in-

terpolation to obtain its derivatives. Secondly, there are

no known geometric constraints to make the warp 3D

consistent in isometric SfT. This leaves the warp es-

timation largely disconnected from the 3D geometry,

only relying on weaker smoothness priors.

We challenge the current SfT paradigm: we raise

the possibility of incorporating 3D geometry directly

at warp estimation. This difficult problem has so far

remained open. It raises three main fundamental unan-

swered questions. Q1) What are the equations to guar-

antee the 3D geometry consistency of a warp? Q2) Can

we transform these equations in a prior to be used in

warp estimation? Q3) To which extent this new prior

improves the quality of the warp and ultimately of the

3D reconstruction?

This paper brings answers to these questions. Our

main contributions are then threefold. i) We show that

the warp in isometric SfT, hereinafter the isometric

warp or simply the isowarp, is the solution of a non-

linear system of second-order PDEs that depend on the

template’s known first fundamental form. This repre-

sents a breakthrough in our theoretical understanding

of SfT that reveals the mathematical properties of the

warp independently of the surface shape. ii) We propose

a method to compute the isowarp from point corre-

spondences using unconstrained iterative optimization.

We show how to initialize the solution and automat-

ically select the hyperparameters. iii) We show that

given an isowarp, which is exactly compatible with the

SfT equations, the analytic reconstruction is also exact,

producing isometric solutions. Beyond the theoretical

advances, the isowarp has important practical advan-

tages: 1) it allows the analytic solution [4] to achieve

a higher reconstruction quality than existing nonlinear

refinement methods, clearly outperforming warps based

on smoothing priors, namely the bending energy [8] or

the Schwarzian derivatives [32], see Fig. 2, 2) it is re-

sistant to 3D ambiguities, 3) it involves fewer variables

and has a fast convergence and 4) its hyperparameters

can be optimally obtained with cross-validation, which

is not possible with the existing shape refinement meth-

ods.

The isowarp was first published for the weak-

perspective camera [31]. For this particular camera

model it is formulated as a simple linear equation sys-

tem. In contrast, we find the isowarp for the perspective

camera, which is tremendously more challenging owing

to its nonlinear nature, and considerably more impor-

tant in terms of practical use.

We recall that the isowarp is a fundamental contri-

bution, in the sense that it establishes a fundamental

new multiple image model in computer vision. While

multiple image models are very well understood for

rigid objects (they are, in particular, the inter-image

homography for a planar scene and the fundamental

matrix for a non-planar scene [19]), they are still largely

unknown for deformable objects. Some deformable ob-

jects can extend while they deform and this creates

a complex and largely underconstrained image geom-

etry. However, many objects deform closely to isome-

tries, preserving their geodesics. While modeling this
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Fig. 2 Results of isometric SfT for different warp models and reconstruction methods on a real example of a cushion. a), b)
and c) are the warps obtained with BS-warp, BS-Schwarp and BS-Isowarp respectively; and e), f), g), h), i) and j) show the 3D
reconstruction results of BS-warp, BS-Schwarp, BS-Isowarp, TPS-Chhatkuli17, Salzmann11 and BS-warp+Ref respectively,
whose names are defined later in the paper. The reconstruction ground truth is obtained using dense SfM from multiple
images [1]. The experiment uses a 3D template and the warps are computed using 100 SURF point correspondences [6]. We
give an isometry factor, computed for a set of points W in the template. We give 2D and 3D generalization errors over a set
of 1200 correspondences, different from those used in estimation. In registration, we find seemingly very similar results for
the different warps. In reconstruction however, our isowarp leads to the best results, outperforming the rest of warp-based
methods, the MDH and even 3D refinement. The reason is that, even if the isowarp does not achieve a drastic improvement
in registration, it intrinsically enforces geometric constraints, giving structural coherence to the derivatives, directly leading to
outperforming 3D reconstruction results without 3D refinement.

property using differential equations has been largely

exploited and understood in the recent years by com-

bining a perspective camera and a representation of the

3D surface [4,12], it is far from trivial to create the

mathematical object which establishes the relationship

between images independently of the actual 3D surface.

This object is the isowarp and is shown to be governed

by a differential equation, given for the first time in this

paper, as equation (11).

The paper is organized as follows. Section 2 presents

the state-of-the-art in SfT. Section 3 describes the geo-

metric model of isometric SfT. Section 4 derives the

isowarp equations. Section 5 gives the isowarp algo-

rithm. Section 6 gives experimental results. Finally, Sec-

tion 7 concludes.

2 Previous Work

We review the state-of-the-art in SfT with special at-

tention to differential isometric SfT methods and the

techniques they use to compute the warp. We also re-

view the contributions of the paper with respect to the

existing methods.
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2.1 General SfT Methods

The general landscape of SfT methods is pictured in

Fig. 3. We first distinguish between iterative-refinement

and initialization-free methods. Iterative-refinement

methods are based on non-convex optimization and

they require accurate initialization to avoid falling into

incorrect local minima. We have refinement methods

based on particles [26] and those directly optimizing

a cost function with local descent methods [18,9,39],

such as the popular Levenberg-Marquardt. These meth-

ods are accurate if they converge to the correct local

minimum. Initialization-free methods do not require an

initial guess of the solution. In this category we distin-

guish between local and global methods. Local methods

are based on differential [4,12] or piece-wise [15] models

of the surface, recovering point-wise depth, surface nor-

mals, or planes [15]. Usually these methods count with

analytic solutions that do not require optimization al-

beit a last step of surface integration and/or stitching,

which is usually a Linear Least-Squares (LLS) problem.

Global methods recover the surface in a single step (in

this sense all the aforementioned iterative-refinement

methods are global). In this category we find differen-

tial boundary conditioned problems [11] and methods

based on convex optimization, such as the MDH [35,

28], methods based on l1 optimization [23] and meth-

ods based on LLS [22].

In terms of deformation priors we distinguish be-

tween isometric and non-isometric methods. The iso-

metric model has been extensively studied [35,28,4,12,

9] and counts with methods in all previous categories.

Other popular models that are non-isometric are based

on conformity [4], Laplacian smoothness [24], linear [22,

23] and non-linear elasticity [18,3] and statistical learn-

ing, such as the low-rank shape model [2,39]. In iso-

metric SfT, the state-of-the-art strategy is to use local

methods, in particular differential SfT solutions [4,12],

to initialize iterative-refinement methods [9].

In the recent years, DNN-based SfT methods have

appeared [33,17,36,16]. These methods learn the func-

tion that maps the input image to the template and to

the object depth from a training dataset. They solve

both registration and reconstruction in a single step,

which is a strong advantage against the classical meth-

ods based on a pre-computed registration. However,

DNN-based methods require a large amount of data

with multiple deformations to be trained and are com-

putationally demanding. Their 3D results over a test

set strongly depend on the similarity of deformations

used during the training, a disadvantage not present in

non-DNN methods. Most DNN-based SfT methods are

object-specific [33,17,16], which means their networks

Local

Isometry Non-Isometry Initialization
Free

Iterative
Refinement

Global
Conformity
Equiareality

Smoothness
Low-rank

SfT METHODS

PRIORS SOLVER STRATEGIES

Initialization Free
Iterative

Local Global

Isometry [4,12] [35,28] [9,26,4]
Conformity [4] [4]
Equireality [11] [11]
Smoothness [27] [24]
Elasticity [23] [22,18,3]
Low-rank [2,39]

Fig. 3 Classification of SfT methods. The classification is
made by the deformation priors and between initialization-
free and iterative-refinement methods.

are trained for reconstructing a specific template (with

a specific texture). Hence, they need to be retrained for

each new object. In contrast, the object-generic DNN-

based SfT method [36] works even if the texture of the

object was not present in the training dataset. However,

object-specific methods are more accurate. DNN-based

SfT methods are not scalable in the sense that they

have fixed output sizes, both in terms of the output

meshes in [33,17,36] and dense maps [16].

2.2 Warp Estimation

Warp functions are defined with different function rep-

resentations. We find linear basis expansions, such

as the thin-plate spline [8], the tensor-product B-

spline [34], finite elements [29] or finite differences as

in optical flow methods [20]. In SfT [4,12,32], the

warp is estimated from point correspondences extracted

with either keypoint detection methods [21,6] or opti-

cal flow methods [37]. The false correspondences are

removed using specific robust deformable registration

methods [30,29]. The measurements are thus discrete

and scattered in the image, especially in wide-baseline

conditions. Fitting a warp function under these con-

ditions requires priors. Existing methods rely on a

smoother, which is a prior that penalizes high frequen-

cies. The smoother plays an important role as it di-

rectly controls how the warp interpolates data and how

its derivatives are shaped. The most common smoother

is based on penalizing the norm of the second-order

derivatives of the warp and is known as the bending

energy [8,20,40]. The main problem of the bending en-
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ergy is that it makes the warp locally affine [8], oblit-

erating local perspective effects which contain crucial

information for the reconstruction [32]. In fact, in the

limit where the bending energy is exactly enforced the

warp is a mere affine function (see the magenta warp in

Fig 10.d) for an illustration). Another smoother, which

has been recently proposed, is based on the Schwarzian

derivatives [25], which are projective differential invari-

ants preserved by planes. When used to compute a

warp, called the schwarp, it helps preserving local per-

spective effects. However, the schwarp also distorts the

local structure of the warp by assuming that the sur-

face is locally flat. When imposed exactly, the schwarp

becomes a homographic function.

There also exist rational warp representations that

capture the local projective structure. For instance we

find the generalized TPS warps [5] and the NURBS

warp [10]. They use a 3D form of bending energy ex-

pressed in homogeneous coordinates. They tend to be

unstable due to their rational structure [32].

None of the previous warp estimation methods in-

cludes constraints to make the warp consistent with

the 3D geometry. A warp resulting from these methods

is likely to produce non-isometric and unstable recon-

structions, as exemplified by Fig. 2.

2.3 Differential Isometric SfT Methods

Differential SfT methods study solutions to the iso-

metric SfT system, a system of non-linear first-order

PDEs [4], see Fig. 1. These equations depend on the

unknown reconstruction embedding Xi, uniquely de-

fined with the depth function ρ, and the warp η. These

methods find analytic solutions for ρ, and its deriva-

tives ∇ρ = (ρu, ρv)
>, in terms of η, ηu and ηv and the

template’s known local metric Ut. Using these analytic

solutions, there exist several strategies depending on

how the warp is computed. Fig. 4 shows the three main

existing strategies based on the SfT analytic solutions

and the one we propose, strategy 4. We describe them

next in detail. They are also mentioned in Fig. 2.

Strategy 1. Direct depth solution from any warp. This

strategy was first proposed in [4] along with the first an-

alytic solution and well-posedness properties of isomet-

ric SfT. This solution assumes that ρ and its derivatives

∇ρ are independent algebraic variables in the isomet-

ric SfT system, not related via differentiation, leading

to the non-holonomic solution. This solution is applied

in [4] to warps computed from point correspondences

with the bending energy as smoother.

Strategy 2. Depth’s gradient integration from any warp.

The next step in differential SfT methods was proposed

in [12], where the non-holonomic depth’s gradient was

used to recover the surface via integration. This strat-

egy is significantly more stable against the amount of

perspective and more accurate than strategy 1. Strate-

gies 1 and 2 use the same solution to the isometric SfT

system. They differ if the warp has errors. The recov-

ered surface is not exactly isometric to the template.

If the warp is error free, the two strategies converge to

the same exact solution.

Strategy 3. Direct depth solution from a locally projec-

tive warp. In this strategy a schwarp is first obtained to

apply the analytic solution. This warp better captures

the local perspective effects than the usual warps. This

strategy involves non-convex optimization to retrieve

the warp. In practice, the improvement of schwarps in

3D reconstruction is however limited and degrades with

increasing surface curvature.

Proposed strategy 4. Direct depth solution from the

isowarp. We propose a new reconstruction strategy and

method in isometric SfT. We derive a set of warp con-

straints from the 3D isometry equations. We then de-

rive a new method that forces any warp representation,

such as the B-spline, to comply with the isowarp equa-

tions. We show that using the isowarp followed by the

analytic depth solution achieves 3D refinement quality

reconstructions. This has many practical advantages in

terms of accuracy and computational complexity since

the isowarp does not suffer the possible ambiguities aris-

ing from the 3D to 2D projection characteristic of the

3D refinement methods and involves less unknown vari-

ables.

Final 3D refinement. Strategies 1 and 2 are usually

used as initialization in a final 3D refinement step based

on non-convex optimization to achieve state-of-the-art

reconstruction quality. It appears as a final step in [4,

12], where strategies 1 and 2 are first proposed, for

stabilizing the results and achieving competitive re-

construction accuracy. The 3D refinement method con-

verges well to the sought solution from strategies 1 and

2. Indeed, both refined solutions are similar. However,

3D refinement falls into a local minimum with lesser

quality initialization and is computationally costly. Be-

sides, the non-convex cost function involves several

terms, including the isometry constraint, the reprojec-

tion term and a smoother, and combines them using

unknown hyperparameters. Obtaining these hyperpa-

rameters with cross-validation represents an open prob-

lem without the access to 3D ground-truth. This is



6 David Casillas-Perez et al.

1

2

4

3

Fig. 4 Differential methods for isometric SfT. We show 4 main strategies represented by numbered arrows in the figure. Arrows
1 and 2 represent the methods [4] and [12] which use the analytic expression for the depth ρ and its derivatives ρu and ρv
respectively. Arrow 3 represents the schwarp method [32], which expands the effort to obtain a quality warp in a 2D refinement
step to improve the 3D reconstruction. Arrow 4 represents our isowarp method, which imposes the isowarp equations to obtain
a warp fully compatible with isometry.

mainly because the 2D metrics that can be used without

ground-truth data, such as the 2D reprojection error,

do not completely constrain all the degrees-of-freedom

of the surface solution, leading to suboptimal sets of hy-

perparameters. As a consequence, the hyperparameters

in refinement methods cannot be adjusted automati-

cally and must thus be manually tuned or kept fixed to

predefined suboptimal values. In contrast, the hyperpa-

rameters for the isowarp can be obtained automatically

by cross-validation, and we give an algorithm that im-

plements this step.

3 Problem Formulation

3.1 Notation

We use script upper-case characters such as S to de-

note regular surfaces in R3 and subsets of the usual

topology of R2, such as U which represents the surface

parametrization domain. Surface parametrizations are

represented by pairs (U , Xt), where U is the domain set

of the function and Xt : U → R3 is the parametrization

function of the surface, represented by an upper-case

letter with a single subscript. The subscript signals the

associated surface. We use greek upper-case characters

for maps between surfaces, e.g. the isometric map Ψ ,

and greek lower-case characters for maps between sub-

sets of R2, e.g. the warp η. Mapping composition is rep-

resented by the ◦ symbol. The operators ‖·‖ and 〈·, ·〉 re-

fer to the Euclidean norm and the dot product, respec-

tively. Along the paper, we consider row vectors of the

Euclidean vector space R3 and we represent them with

tuples as (x, y, z). Cases where a column vector is re-

quired will be indicated through the transpose operator

using the superscript (·)>. Image points are denoted by

the coordinate vectors (u, v). A canonical basis is used

in both cases. Operators tr() and det() are the trace

and the determinant of a square matrix respectively.

Operators and functionals are defined with upper-case

letters and square brackets. For instance D[η] denotes

an error metric over the function η. We use , to denote

equality definitions.
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3.2 Geometric Setup

The geometric model of isometric SfT is illustrated in

Fig. 5. Let the subset T ⊂ R3 be a regular parametric

Fig. 5 The diagram shows the differential geometric model
we use to study isometric SfT. The known template T is
transformed by an isometric map Ψ into the unknown surface
S, which is then projected with a perspective camera Πp to
create the image I. In this diagram one can find identities
by following different paths that connect the domains. The
arrows represent functions and we can thus follow them by
function composition (for instance we have Xi = X̄i ◦ η). See
Section 3.2 for details.

surface known as the template surface or simply the

template, and let (U , Xt) be one of its parametrizations.

The template and its parametrization are known. The

subset S ⊂ R3 is the regular parametric surface that

results from composing the template with an unknown

isometric map Ψ . We review isometric maps and their

properties in Section 3.4.

The observed image of surface S is represented by

I ⊂ R2 and captured by a perspective camera. We as-

sume that the restriction of perspective projection map

Πp|S to S is bijective with image I. This assumption

ensures the surface is not self-occluded and thus that a

point is uniquely projected into image I.

The warp is represented by η = (η1, η2)> ∈
C2(U , I) in Fig. 5. It is a two-diffemorphism be-

tween the open sets U , I ⊂ R2, the parametric do-

main of the template and the image respectively. A

two-diffeomorphism is a twice continuously differen-

tiable map with differentiable inverse map too. The

diffeomorphic character of the warp ensures that the

parametrizations (U , Xi) and (I, X̄i) of S are compati-

ble. We derive constraints that η has to fulfill to become

an isowarp in Section 4.

3.3 Camera Model and Image Embedding

We assume that the image plane is at z = 1 in camera

coordinates, which is achieved by working in standard-

ized retinal coordinates. The perspective projection of

a point (x, y, z) is then given by:

Πp : R3 \
{

(x, y, z) ∈ R3 | z = 0
}
→ R2

(x, y, z)
> 7→

(x
z
,
y

z

)>
. (1)

The bijective projection assumption permits the un-

known surface S to be parametrized from the image

domain using a scalar depth function. It is called the

image embbeding of the surface (I, X̄i). The image do-

main I however may be brought to the template do-

main U using the warp η, which maps between them in

a one to one manner. This way, we construct a surface

embedding whose domain is the template’s. In other

words, this function maps a template point to its corre-

sponding 3D point on the deformed surface S directly

in camera coordinates. This is visualized in Fig. 5 and

follows the usual geometric setup of SfT, as described

in [4,11] for instance. As a result, the deformed sur-

face S can be expressed in terms of a depth function

ρ : U ⊂ R2 → R as:

Xi = X̄i ◦ η =
ρ

ζ ◦ η
(
η>, 1

)>
, (2)

where ζ(u′, v′) =
√

1 + u′2 + v′2. Appendix A shows the

detailed derivation of this image embedding which was

first used in [4].

As will be seen, working with the parametrization

(U , Xi) of S has two principal advantages. First, it al-

lows us to compute the first fundamental form, also

known as the metric tensor, over the same parametriza-

tion domain as the template, which is essential to obtain

the isowarp equations. Second, it greatly simplifies the

form of these equations.

3.4 Isometric Maps

An isometric map between two surfaces Ψ : S1 → S2 is

a diffeomorphism that preserves the intrinsic distance

(the geodesic distance) and, consequently, the angles

and the areas. Formally, isometries are defined in terms

of the pushforward function.

Definition 1 (Isometric map) A diffeomorphism

Ψ : S1 → S2 between surfaces in R3 is an isometric map

(also called isometry) if for each point p ∈ S1, the push-

forward function dΨp : TpS1 → TΨ(p)S2 of Ψ is a linear

isometric function. It means that:

〈w,h〉 = 〈dΨp(w), dΨp(h)〉, (3)
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where w,h ∈ TpS1 are any two vectors of the tangent

plane of S1 at p. Two regular surfaces S1 and S2 are

isometric to one another if there exists an isometric map

between them.

Isometric maps can also be characterized in terms of

differential geometry. The next theorem shows that it is

possible to find parametrizations of isometric surfaces

with common domain that preserve the coefficients of

the first fundamental form.

Theorem 1 A diffeomorphism Ψ : S1 → S2 between

two surfaces S1 and S2 in R3 with parametrizations

(U , X1) and (U , X2) respectively, is an isometric map if

and only if it preserves the coefficients of the first fun-

damental form computed from these parametrizations.

The proof of the theorem is a well known result that

can be found in Do Carmos’s book [13]. It is important

to emphasize that the coefficients of the first fundamen-

tal form computed from both parametrizations (U1, X1)

and (U2, X2) of S1 and S2 respectively, are not necessar-

ily equal even if they are isometric surfaces. A common

domain U1 = U2 = U is required to apply Theorem 1.

This is one of the reasons why we use the parametriza-

tion (2) of surface S.

4 The Isowarp

We review how to obtain the depth and depth’s gradi-

ent non-holonomic solutions, as was first shown in [4].

We then impose the differential consistency to those so-

lutions by differentiating the non-holonomic depth ex-
pression and substituting it back into the SfT equations.

This allows us to find the isowarp equations which will

characterize the isowarp. As a preliminary, we formally

define the isowarp.

Definition 2 (Isowarp) A warp η ∈ C2(U1,U2) be-

tween the domains U1,U2 ⊂ R2 of two surfaces S1
and S2 with a generic parametrization (U1, X1) and a

perspective parametrization (U2, X̄2) respectively (see

Fig. 5), is an isowarp if and only if the surfaces are

related by an isometric map.

Note that using the identity X2 = X̄2 ◦ η the sur-

face S can be expressed through the parametrization

(U1, X2) (2) which shares the domain with S1. In terms

of isometric SfT and according to the definition, the

template T can be defined by any generic parametriza-

tion (U , Xt), but the deformed surface S must be pro-

jected by the perspective projection (1). Consequently,

there exist a parametrization referred from the template

domain as (U , Xi = X̄i ◦ η) (2).

4.1 The Non-Holonomic Solution

Theorem 1 ensures that the coefficients of the first fun-

damental form of two isometric surfaces are equal when

they are computed from parametrizations that share a

common domain. Fig. 5 shows that U is the common

domain of the parametrizations (U , Xt) and (U , Xi) of

surfaces T and S respectively. Consequently, denoting

the first fundamental form of these parametrizations as

Ut and Ui, we obtain the following matrix PDE:

Ut =

(
Et Ft
Ft Gt

)
=

(
Ei Fi
Fi Gi

)
= Ui, (4)

where Et, Ft and Gt are the known coefficients of the

first fundamental form of the template T . The matrix

expression (4) represents the isometry equation for a

generic parametrization (U , Xi) of surface S. Calculat-

ing the coefficients Ei = 〈∂Xi∂u ,
∂Xi
∂u 〉, Fi = 〈∂Xi∂u ,

∂Xi
∂v 〉

and Gi = 〈∂Xi∂v ,
∂Xi
∂v 〉 from the perspective parametriza-

tion (U , Xi) (2), and reordering terms we achieve the

following system of PDEs:

∇ρ∇ρ> + ρ2H[η] = Ut, (5)

where ∇ρ is the gradient vector of the depth function

ρ and H[η] is the following first-order differential oper-

ator:

H[η] =
1

‖ω‖2

(
J>η Jη −

1

‖ω‖2
(J>η ηη

>Jη)

)
, (6)

where Jη is the full rank Jacobian matrix of the warp η,

and ω : U → R3 is ω> = (η>, 1). Note that H[η]

depends only on the warp function η and its deriva-

tives Jη. Evaluated at any point of the warp domain,

H[η](u, v) is a symmetric positive-definite matrix. Ex-

pression (5) shows the isometry equations customized

for the perspective parametrization. The left-hand side

of the equation is composed by a sum of two matrices,

∇ρ∇ρ> and ρ2H, whose ranks are 1 and 2 respectively.

Following [4], there exists an analytic closed-form ex-

pression ρ̂[η] for the depth function ρ:

ρ̂[η] =√√√√ tr(UtH−1[η])

2
−

√
(tr(UtH−1[η]))

2

4
− det(UtH−1[η])

.

(7)

Using ρ̂[η] in a reconstruction algorithm does not guar-

antee that the resulting surface is isometric, unless η

would be noise-free, which is never the case in practice.
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4.2 The Isowarp Equations

Equation (7) constitutes the non-holonomic depth so-

lution. Observe that ρ̂[η] only depends on the warp η

via H[η] and the coefficients of the first fundamental

form Ut of the template. The non-holonomic depth ρ̂[η]

is a differentiable operator and we can thus compute its

derivatives:

ρ̂u[η] ,
∂ρ̂[η]

∂u
, ρ̂v[η] ,

∂ρ̂[η]

∂v
, (8)

where the new differential operators ρ̂u[η], ρ̂v[η] depend

on the second-order derivatives of η.

We rewrite equation (5) to find the following PDE

system:

∇ρ∇ρ> =

(
ρ2u ρuρv
ρuρv ρ2v

)
= Ut − ρ2H[η]. (9)

Substituting equations (7) and (8) with ρ̂[η] and its

derivatives ρ̂u[η], ρ̂v[η] in equation (9) we obtain the

isowarp equations. They are three PDEs that relate the

warp η and its partial derivatives up to second-order ηu,

ηv, ηuu, ηuv, ηvv. Moving all terms in equation (9) to

the left-hand side we obtain their matrix form:(
ρ̂2u[η] ρ̂u[η]ρ̂v[η]

ρ̂u[η]ρ̂v[η] ρ̂2v[η]

)
−Ut+ρ̂2[η]H[η] =

(
0 0

0 0

)
. (10)

As a result and due to symmetry we obtain the follow-

ing PDE system:
I1[η] = ρ̂2u[η]− Et + ρ̂2[η]H11[η] = 0

I2[η] = ρ̂u[η]ρ̂v[η]− Ft + ρ̂2[η]H12[η] = 0

I3[η] = ρ̂2v[η]−Gt + ρ̂2[η]H22[η] = 0,

(11)

where Hij [η] denotes the (i, j)th entry of H. The

PDE system (11) represents the isowarp equations,

a set of 3 non-linear second-order PDEs I1[η], I2[η]

and I3[η] in 12 variables: (η1, η1u, η
1
v , η

1
uu, η

1
uv, η

1
vv) and

(η2, η2u, η
2
v , η

2
uu, η

2
uv, η

2
vv). Appendix B gives code to de-

rive the isowarp equations using Matlab’s symbolic en-

gine. The following theorem formally characterizes the

isowarp from system (11).

Theorem 2 A warp function η ∈ C2(U1,U2) between

the domains U1,U2 ⊂ R2 of two surfaces S1 and S2 with

a generic parametrization (U1, X1) and a perspective

parametrization (U2, X2) (2) respectively, is an isowarp

if and only if it satisfies the system of isowarp equa-

tions (11).

Proof It is a consequence of the isowarp Definition 2

and of the development followed to derive the isowarp

equations in Sections 4.1 and 4.2.

Importantly, the isowarp equations only have η as free

variable: the other variables are known from the tem-

plate, as we managed to eliminate the unknown 3D sur-

face. Obviously, the system of isowarp equations (11)

does not uniquely determine the isowarp. It represents

constraints the warp must verify to be an isowarp. In

other words, the system (11) characterizes the set of im-

age warps which feasibly represent the projection of any

isometric deformation of a known surface. The isowarp

algorithm described next shows how to combine these

equations to a data term to actually estimate a warp.

5 Isowarp Algorithm

We propose a method to compute the isowarp from a set

of N point correspondences C = {(pi, qi) ∈ U × I | 1 ≤
i ≤ N} between the template’s domain defining U and

an input image I. It is based on a 2D refinement process

which enforces the isowarp equations. An iterative es-

timation algorithm is proposed to automatically select

the hyperparameters by cross-validation.

Originally, the isowarp algorithm assumes that no

self-occlusion occurs, hence, that a diffeomorphic map

exists between the image and the sought reconstruc-

tion. However, this is not a hard assumption, as we

can still use the isowarp strategy when the warp is

piecewise diffeomorphic, excluding self-occluded areas

from the reconstruction. The method developed in [30]

which estimates piecewise smooth warps by deactivat-

ing the smoothing terms in self-occluded areas, can be

used with the isowarps. The method also removes the

possible mismatches.

5.1 Overview of the BS-Isowarp Algorithm

Figure 6 shows an overview of the complete BS-Isowarp

Algorithm. We estimate the isowarp following 3 steps

using a B-spline representation, leading to the BS-

Isowarp. We first compute a BS-warp as initialization,

as this warp has a convex solution, for which we give

a full-fledged algorithm including automatic hyperpa-

rameter selection in Section 5.2, along with a short

description of the original variational problem. Inter-

estingly, this BS-warp algorithm serves as a gentle in-

troduction to the BS-Isowarp algorithm, whose layout

we give in Algorithm 1. This algorithm first calls the

BS-warp algorithm, then selects the BS-Isowarp hy-

perparameters and finalizes the isowarp. These last

two steps depend on two essential algorithms, BS-

Isowarp-Hyperparameters and BS-Isowarp-Base. The

BS-Isowarp-Base algorithm is given first, in Section 5.3,
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Fig. 6 Overview of the BS-Isowarp Algorithm. Dotted squares separate the isowarp estimation steps from the reconstruction
block. The BS-Isowarp Algorithm has three main steps. Firstly, a convex problem is solved to retrieves the BS-warp η0 (magenta
box), which includes automatic hyperparameter selection (blue box), see Section 5.2. The BS-warp serves as an initialization
to the BS-Isowarp-Base algorithm (yellow box), which establishes a variational problem that enforces the isowarp equations,
see Section 5.3. This Algorithm repeatedly calls the BS-Isowarp-Hyperparameters Algorithm (grey box), which implements a
cross-validation mechanism to select the hyperparameters, see Section 5.4.

along with the variational problem. Specifically, this al-

gorithm estimates the BS-Isowarp given the hyperpa-

rameters. The BS-Isowarp-Hyperparameters algorithm

is then given in Section 5.4, as it depends on the

BS-Isowarp-Base algorithm. It implements a cross-

validation mechanism to select the hyperparameters.

Algorithm 1: BS-Isowarp

Input : Template T , image I, point
correspondences C.

Output: Control points w of the B-spline.

1 Initialization: w0 = BS-warp(T , I, C).
2 Hyperparameters: (λd, λi, λs) =

BS-Isowarp-Hyperparameters(T , I, C, w0).
3 Finalization: w =

BS-Isowarp-Base(T , I, C, w0, λd, λi, λs).

5.2 Convex Initialization by the BS-warp Algorithm

We obtain the initial estimate η0 by solving the follow-

ing classical variational problem:

arg min
η0

ε0[η0] with ε0[η0] = λd0
εd[η0] + λb0

εb[η0].

(12)

The functional εd[η] is the data term, given by the mean

square transfer error of the point correspondences:

εd[η] =
1

N

N∑
i=1

‖η(pi)− qi‖2. (13)

The functional εb[η] is the bending energy which penal-

izes the warp second-order derivatives, given by:

εb[η] =
1

|P |
∑
p∈P

∥∥∥∥ ∂2η

∂(u, v)2
(p)

∥∥∥∥2 . (14)

Given the hyperparameters (λd0 , λb0), the estimation

problem (12) is convex and solved with LLS. We repre-

sent η using a B-spline model. This converts the varia-

tional problem (12) into a linear least-squares problem

depending on a set w0 of control points. Optimal val-

ues for the hyperparameters λd0
and λb0

are chosen

by applying Monte Carlo cross-validation [14]. We fix

the number of splits to K = 10 and choose 90% of ran-

dom correspondences to create each warp proposal. The

remaining 10% correspondences are used as validation

set. As validation metric we measure the mean square

transfer error over the validation set. We vary λb0
in the

range [10−3, 106], which we determined experimentally,

and fix λd0 to 1 as only their ratio matters. Thanks to

the convexity of problem (12), we can evaluate a large

number of values nb0
= 256. The BS-warp algorithm is

given in Algorithm 2.

5.3 Variational Problem and Base Solution by the

BS-Isowarp-Base Algorithm

The isowarp algorithm relies on the following varia-

tional problem:

arg min
η

ε[η] with ε[η] = λdεd[η]+λiεi[η]+λsεs[η]. (15)

Compared with the classical formulation (12), it has

an extra functional εi[η]. This functional models the
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Algorithm 2: BS-warp

Input : Template T , image I, point
correspondences C.

Output: Control points w0 of the B-spline.

1 Hyperparameters: Set λd0
= 1. Use Monte Carlo

cross-validation to infer λb0
in the range [10−3, 106]

with nb0
= 256. Solve problem (12) by LLS for each

value of λb0
and keep the one which minimizes the

validation metric.
2 Finalization: Solve (12) by LLS with all

correspondences C.

isowarp constraint measured at a dense regular grid of

points P ⊂ U with |P | points in the template domain:

εi[η] =
1

|P |
∑
p∈P

3∑
k=1

(Ik[η](p))
2
, (16)

where Ik[η] is an isowarp equation (11). While εi[η] im-

poses that the warp is an isowarp, it does not impose

it to be smooth. This makes sense as the isometric sur-

face deformation it captures is not necessarily smooth.

We thus use a smoother εs[η], which we choose as the

schwarp [32],

εs[η] =
1

|P |
∑
p∈P

4∑
k=1

(Sk[η](p))
2
, (17)

where the Schwarzian equations [32] are:


S1[η] = η1uuη

2
u − η2uuη1u

S2[η] = η1vvη
2
v − η2vvη1v

S3[η] = η1uuη
2
v − η2uuη1v + 2

(
η1uvη

2
u − η2uvη1u

)
S4[η] = η1vvη

2
u − η2vvη1u + 2

(
η1uvη

2
v − η2uvη1v

)
.

(18)

The hyperparameters λd, λi and λs are scalars that con-

trol the importance of each functional.

Assuming known hyperparameters, the BS-Isowarp-

Base algorithm estimates η by solving the variational

problem (15) given an initial estimation η0. Similarly

to the BS-warp algorithm, we use a B-spline represen-

tation and estimate its control points denoted w. The

problem is however non-convex. We use the Levenberg-

Marquardt which finishes if a minimum is reached with

a fixed tolerance of 10−8 or a maximum number of it-

erations nf = 64 has passed. The BS-Isowarp-Base al-

gorithm is given in Algorithm 3.

5.4 Hyperparameter Selection by the

BS-Isowarp-Hyperparameters Algorithm

The estimation of the optimal hyperparameters

(λd, λi, λs) also relies on Monte Carlo cross-validation

Algorithm 3: BS-Isowarp-Base Algorithm

Input : Template T , image I, point
correspondences C, initial control points
w0, hyperparameters (λd, λi, λs).

Output: Control points w of the B-spline.

1 Optimization: Run the Levenberg-Marquardt
algorithm to minimize ε[η] (15) with respect to the
control points w starting from w0.

in this case, with the same data split and validation

metric as for the BS-warp. Obviously, only 2 out of 3

are independent hyperparameters and we thus fix λd to

1. However, for obvious computational efficiency rea-

sons, we cannot try all possible combinations for the

two remaining free hyperparameters. We thus estimate

each one in turn, keeping the other one fixed. We pro-

pose a heuristic but very effective way to conduct this

two-round process. We start with λs and end with λi.

We first vary λs in the range [100, 104], while nullify-

ing λi and call the base warp algorithm for each value.

We fix the number of values to ns = 32. We then vary

λi in the range [100, 104] sampled by ni = 32 values

while fixing λs to 10% of the obtained value. This two-

round process may lead to a suboptimal local minimum.

Intuitively, since the Schwarzian equations (18) tend

to oversmooth warps, reducing or even vanishing their

second-order derivatives, they artificially diminish the

value of the isowarp functional. Our strategy is to de-

crease the hyperparameter λs to a fixed ratio with re-

spect to its initial optimum. We choose 10% as a heuris-

tic ratio with very good results in practice. Remark that

the Schwarzian derivatives (18) [32] form a smoother,

not a constraint which should be fulfilled. We provide

an experimental investigation on hyperparameter sen-

sitivity in Section 6.2.3 and justify the chosen ranges

numerically. We give our BS-Isowarp-Hyperparameters

algorithm in Algorithm 4.

5.5 The Complete Isowarp Reconstruction Algorithm

Surface reconstruction is achieved in a final step by eval-

uating the non-holonomic depth equation (7) using the

obtained isowarp and the template. The importance of

this algorithm is that it is able to automatically adjust

its hyperparameters. We show in the experiments of

Section 6 that this strategy is consistently better than

3D refinement methods: the strategy reaches 3D refine-

ment quality reconstruction but involves fewer variables

and does not suffer from ambiguities derived from the

3D to 2D projection that can affect the convergence of

iterative methods. The reprojection error may not be
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Algorithm 4: BS-Isowarp-Hyperparameters

Algorithm

Input : Template T , image I, point
correspondences C, initial control points
w0.

Output: Optimal hyperparameters (λd, λi, λs).

1 Hyperparameter λs: Set λd = 1 and λi = 0. Use
Monte Carlo cross-validation to infer λs in the
range [100, 104] with ns = 32. Solve problem (15)
by BS-Isowarp-Base(T , I, C, w0, 1, 0, λs) for each
value of λs and keep the one which minimizes the
validation metric.

2 Hyperparameter λi: Set λd = 1 and λs = λs

10
. Use

Monte Carlo cross-validation to infer λi in the range
[100, 104] with ni = 32. Solve the problem (15) by
BS-Isowarp-Base(T , I, C, w0, 1, λi, λs) for each
value of λi and keep the one which minimizes the
validation metric.

used to select the hyperparameters related to the depth,

as explained in Section 2.3.

In other words, cross-validation cannot be imple-

mented with 3D refinement methods to select hyper-

parameters as there is no sensible validation metric in-

dependent of the ground-truth. In practice the hyper-

parameters of 3D refinement methods are thus chosen

manually.

6 Experimental Results

We present experimental results to compare the isowarp

against state-of-the-art in registration and 3D recon-

struction.

6.1 Compared Methods and Error Metrics

We use BS or TPS at the beginning of each method’s

name to indicate whether the warp and depth func-

tions are represented using the B-spline or the Thin-

Plate Spline. In terms of registration we compare our

method, called BS-Isowarp, with two different state-

of-the-art warp estimation methods: BS-warp [34] and

BS-Schwarp [32]. Table 1 summarizes the main charac-

teristics of all evaluated warp estimation methods. We

Method Constraint Smoother Convex Initialization
BS-warp - Bending energy Yes N/A

BS-Schwarp - Schwarzian Eqs. (18) No BS-warp
BS-Isowarp Isowarp Eqs. (11) Schwarzian Eqs. (18) No BS-warp

Table 1 Characteristics of the evaluated warp methods.

provide the 2D error metric Ewrp
gen (19), computing the

transfer error over a set of correspondences Q, the test

set, which is different from the set of correspondences

used to estimate the warp η̃:

Ewrp
gen [η̃] =

√√√√ 1

|Q|
∑

(p,q)∈Q

‖η̃(p)− q‖2. (19)

The 2D error metric (19) allows us to evaluate overfit-

ting and warp quality. In synthetic experiments, where

ground truth is available, we also provide 2D error mea-

sures of first (20) and second-order (21) derivatives with

respect to the ground truth warp η. We use a dense set

of points W chosen to cover the template domain to

compute the relative metrics:

Ewrp
gen′ [η, η̃] =

√√√√ 1

|W |
∑
p∈W

D[η − η̃](p)

D[η](p)
(20)

Ewrp
gen′′ [η, η̃] =

√√√√ 1

|W |
∑
p∈W

D2[η − η̃](p)

D2[η](p)
, (21)

where:

D[η](p) =

∥∥∥∥ ∂η

∂(u, v)
(p)

∥∥∥∥2 (22)

D2[η](p) =

∥∥∥∥ ∂2η

∂(u, v)2
(p)

∥∥∥∥2 . (23)

We also evaluate the influence of warp quality in 3D

reconstruction. We compare the four different recon-

struction strategies described in Fig. 4. For simplicity,

we keep the same acronyms used in warp estimation for

the reconstruction methods based on the direct depth

solution (7). Otherwise a different name is given to

the reconstruction method. We use BS-warp and BS-

warp+Ref for methods using strategy 1. The latter uses

non-linear shape refinement [9] initialized with the for-

mer. TPS-Chhatkuli17 uses the original implementa-

tion [12] of strategy 2 based on TPS warps. We omit re-

finement in strategy 2 as it consistently gives very sim-

ilar reconstruction results to BS-warp+Ref in all our

experiments. BS-Schwarp represents strategy 3 and BS-

Isowarp the proposed strategy 4. Besides, we compare

the four strategies with the MDH method [35], named

Salzmann11. The original method [35] reconstructs the

given correspondences. We added a final step of surface

fitting with a TPS in order to compute 3D error metric.

Table 2 summarizes the principal properties of all the

evaluated isometric SfT methods.
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Method Warp Method Strategy 3D Ref. Init. by
BS-warp BS-warp 1 No N/A

BS-warp+Ref BS-warp 1 Yes BS-warp
TPS-Chhatkuli17 TPS-warp 2 No N/A

BS-Schwarp BS-Schwarp 3 No N/A
BS-Isowarp BS-Isowarp 4 No N/A
Salzmann11 Correspondences - No N/A

Table 2 Characteristic of the evaluated isometric SfT meth-
ods.

We provide the 3D error metric E3Dgen (24) of the

reconstruction for all evaluated methods:

E3Dgen[X̃] =

√√√√ 1

|R|
∑

(p,Q)∈R

∥∥∥X̃(p)−Q
∥∥∥2, (24)

where R is a set of pairs of points with p in the template

domain and Q its corresponding ground truth 3D point,

different from the ones used to reconstruct.

We use Monte Carlo cross-validation to choose the

best hyperparameter in the BS-warp, BS-Schwarp and

BS-Isowarp methods as explained in Section 5. The

hyperparameters of TPS-Chhatkuli17, Salzmann11 and

BS-warp+Ref are manually adjusted by varying them

in intervals around the values recommended by the au-

thors in their published codes, using the average recon-

struction error as a metric to find a suitable value.

6.2 Synthetic Data Experiments

We test the registration and reconstruction methods

using synthetically generated surfaces and their image

projections. We describe next the simulation conditions

and the experimental setup. Besides, we present the

results of the BS-Isowarp in a hyperrealistic synthetic

experiment with a shoe, in Section 6.2.6.

6.2.1 Simulation Setup

We generate a set of 100 images from rigid and de-

formable surfaces. We simulate an A4 paper sheet as

a planar template. In the rigid case, we rotate and

translate the template to emulate rigid transformations.

In the deformable case, the template is isometrically

transformed into part of a cylinder and is then rotated

and translated. We emulate a pin-hole camera with a

resolution of 640 × 480 pixels and a focal length of

500 pixels. We randomly generate 100 point correspon-

dences between the images for warp estimation. The

test set we use to compute the error metrics from equa-

tions (19), (20), (21) and (24) consists of 1500 randomly

generated correspondences. We fix the number of B-

spline control points to 12. We add noise, independently

to each image coordinate, with a Gaussian distribution

with a 5 pixel standard deviation. We measure an aver-

age error by repeating each experimental condition 100

times.

6.2.2 Examples

We show registration and reconstruction results for a

rigid and a deformable, synthetically generated exam-

ples. Fig. 7 illustrates the planar template, the point

correspondences and the images for both experiments.

Fig. 8 and 9 show the registration and reconstruction
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Fig. 7 Experiments with synthetic data. a) and b) show a
planar template transformed rigidly. c) and d) show the de-
formable case where the template is isometrically transformed
into a cylinder. The red circles show the ground-truth corre-
spondences and the green circles show the noisy correspon-
dences.

results we obtain for the rigid case. We observe that the

quality of all warps is very high in the rigid case. Table 3

gives the 2D error and the first and second-order deriva-

tive errors. There are no significant differences between

the methods in 2D error and first-order derivative error.

However we can notice that BS-Isowarp overcomes BS-

Schwarp and BS-warp in second-order derivative error.

Observe that BS-warp produces a non-uniform error

Method 2D Error 1st Derivative 2nd Derivative
BS-warp 2.80 1.42 26.85

BS-Schwarp 2.58 1.09 14.15
BS-Isowarp 2.10 0.81 8.71

Table 3 2D error and relative first and second-order deriva-
tive error for all evaluated warp methods in the rigid case.

pattern in the warp in contrast to BS-Schwarp and BS-

Isowarp. In terms of reconstruction Table 4 gives the
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Fig. 8 Registration results in the rigid case. a), b) and c) show the warps obtained with BS-warp, BS-Schwarp and BS-Isowarp
respectively. d) shows a comparison of the behaviour of each method in the top left hand corner. e), f) and g) represent a heat
map for each warp that shows the 2D error in pixels at each point, see Section 6.2.2 for more details.

3D error for this rigid example. BS-Isowarp obtains the

best 3D reconstructions in the rigid case closely followed

by BS-Schwarp. BS-warp does not achieve an accurate

3D reconstruction and produces high frequency recon-

struction errors. TPS-Chhatkuli17 does not perform as

well as expected in this case. The multiple hyperpa-

rameters to choose explain this result. BS-warp+Ref

achieves accurate reconstruction, though inferior to BS-

Isowarp. Salzmann11 obtains the worst reconstruction

due to its sensitivity to noise in the correspondences.

Method Rigid case Deformable case
BS-warp 5.13 29.94

BS-Schwarp 2.38 37.99
BS-Isowarp 2.25 4.32

TPS-Chhatkuli17 6.10 51.87
BS-warp+Ref 4.37 6.89
Salzmann11 39.62 84.66

Table 4 3D error for all evaluated methods in the rigid and
deformable cases. The errors are given in millimeters.

In the deformable case, Fig. 10 and 11 illustrate

the registration and reconstruction results respectively.

BS-Isowarp produces better registration results than

BS-warp and BS-Schwarp. This is clearly visible in the

upper right corner where the surface curvature is pro-

nounced (see Fig. 10.d). Table 5 gives the 2D error and

the first and second-order derivative errors for this ex-

periment. Fig. 11 shows the reconstruction results of

all evaluated methods. BS-Isowarp achieves the best

reconstruction results followed by BS-warp+Ref. The

Method 2D Error 1st Derivative 2nd Derivative
BS-warp 4.71 4.24 22.03

BS-Schwarp 4.30 3.83 25.68
BS-Isowarp 2.57 1.90 14.21

Table 5 2D error and relative first and second-order deriva-
tive error for all evaluated warp methods in the deformable
case.

other reconstruction methods behave similarly and are

not able to produce accurate reconstructions.

The performance of the evaluated reconstruction

methods in our synthetic experiments may at first sight

look worse than what the original paper reported [12].

However, bear in mind that our experiments use few

point correspondences with high noise to test the inter-

polation capabilities of the different warp methods. In

our experiments smooth registration warps fail to ac-

curately recover the first-order derivatives, which leads

to poor results in the BS-warp and TPS-Chhatkuli17

methods.

6.2.3 Hyperparameter Sensitivity

We measure the sensitivity of the hyperparameters used

in BS-warp, BS-Schwarp and BS-Isowarp. Table 6 de-

scribes the main hyperparameter for each evaluated

method. We use the synthetic deformation from the

previous section. For each warp estimation method, BS-

warp, BS-Isowarp and BS-Schwarp, we vary the hyper-

parameter in the range [100, 104] for BS-Isowarp and

BS-Schwarp and [10−3, 106] for BS-warp. For each hy-

perparameter value we compute the warp. The first row
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Fig. 9 Reconstruction results in the rigid case. a), b), c), d), e) and f) show the 3D reconstruction results of BS-warp,
BS-Schwarp, BS-Isowarp, TPS-Chhatkuli17, BS-warp+Ref and Salzmann11 respectively. g), h), i), j), k) and l) show a heat
map for each warp that shows the 3D error at each point, see Section 6.2.2 for more details.

Method Penalizer Symbol
BS-warp Bending energy λb

BS-Schwarp Schwarzian equations λs

BS-Isowarp Isowarp equations λi

Table 6 Principal hyperparameter for each evaluated warp.

of Fig. 12 shows the 2D error in function of the hyper-

parameter for all methods. The second row of Fig. 12

shows the same experiment by overlaying the results

with different noise standard deviations in the interval

from 1 to 5 pixels. We observe that all the evaluated

methods present a large basin, of at least two orders

of magnitude the hyperparameter value, where the 2D

error measurements are similar. This means that hy-

perparameter selection is feasible and meaningful.

6.2.4 The Effect of Noise

We evaluate the behavior of the different algorithms

against measurement noise. We vary the noise standard

deviation linearly between 0 and 5 pixels in 10 steps.

Fig. 13.a) shows the results for the rigid case. BS-

Schwarp achieves the best performance in both 2D error

and first and second-order derivative error, followed by

BS-Isowarp. Note that in this case, the surface is planar

and thus the BS-Schwarp is an exact model. However,

in terms of reconstruction error BS-Isowarp obtains
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Fig. 10 Registration results in the deformable case. a), b) and c) are the warps obtained with BS-warp, BS-Schwarp and
BS-Isowarp respectively. d) shows a comparison of the behaviour of each method in a corner. e), f) and g) represent a 2D
error heat map for each warp. See Section 6.2.2 for more details.

slightly better results than BS-Schwarp. This example

shows that the isowarp is able to properly integrate

the 3D geometry, which leads to better reconstructions

even if it does not achieve the best registration results.

BS-warp is consistently worse than the other methods

in both registration and reconstruction. BS-warp+Ref

achieves good results closed to BS-Isowarp and BS-

Schwarp. TPS-Chhatkuli17 outperforms BS-warp but

is not on par with the other methods.

Fig. 13.b) shows the results for the deformable case.

BS-Isowarp clearly outperforms BS-Schwarp and BS-

warp in terms of registration. It reduces by at least half

the 2D error. BS-Isowarp also produces the best recon-

structions, closely followed by BS-warp+Ref. It achieves

strikingly better reconstruction results than the other

non-refinement methods, reducing by about 20 times

the 3D error, even when no noise is added to the cor-

respondences. TPS-Chhatkuli17 obtains worse results

than BS-warp. This is caused by the factors explained

in Section 6.2.2. Finally, BS-Schwarp obtains the worst

results in 3D reconstruction. This is probably due to

the overly constraining local planarity assumption.

6.2.5 The Effect of Curvature

We evaluate the effect of surface curvature on warp es-

timation. We proceed by increasing the radius of the

cylinder between 1 m to 16 m. The higher the radius

the lower the curvature. We add Gaussian noise with 5

pixels standard deviation. Fig. 14 shows the behavior of

the evaluated methods with the amount of curvature.

As expected, BS-Schwarp obtains better registration

results with lower curvature. BS-Isowarp achieves sim-

ilar registration results than BS-Schwarp and BS-warp

obtains the worst results in all cases.

In 3D reconstruction, BS-warp, BS-Schwarp and

TPS-Chhatkuli17 are very sensitive to curvature, show-

ing worse results with higher curvature. BS-Isowarp

and BS-warp+Ref show resistance against curvature

variation. Besides, BS-Isowarp has better reconstruc-

tion results than the refinement method BS-warp+Ref.

This shows that our isowarp equations are exact irre-

spective of the surface curvature.

6.2.6 Shoe Experiment

We tested the BS-Isowarp with a hyperrealistic recre-

ation of a shoe, the Shoe dataset, from a volumic tem-

plate introduced in [16]. The shoe template was built

with a triangular mesh (around 5200 mesh faces) using

dense SfM (Agisoft Photoscan [1]). The Shoe dataset is

composed of random quasi-isometric deformations sim-

ulated by Blender [7], together with the corresponding

rendered images with a resolution of 960 × 540 pixels

and a focal length of 530 pixels. Approximately 5000

point correspondences are drawn between the template

and the input image.

For the shoe experiment, we choose 850 point cor-

respondences to build warps. The other available cor-

respondences are used to compute 2D and 3D errors.

Fig. 15 shows the results of isometric SfT for different

warp models and reconstruction methods. All the eval-

uated methods present similar behavior in terms of 2D

error. In reconstruction, BS-Isowarp achieves the best



The Isowarp: the Template-based Visual Geometry of Isometric Surfaces 17

-500400

500

600

400

700

-250

800

900

200 0
0 250

-200 500

-500

400

500

400

600

700

800

-250

900

1000

1100

200 00 250-200
500-400

-500400

500

600

700

400 -250

800

900

1000

200 00 250-200
-400 500

-500

400

500

400

600

700

800

-250

900

1000

1100

200 00 250-200
500-400

-500400

500

600

700

800

400

900

-250

1000

1100

200 00 250-200
-400 500

-500400

500

600

700

800

-250400

900

1000

1100

200 00 250-200
500-400

-500400

500

600

700

800

400 -250

900

1000

1100

200 00 250-200
-400 500

Ground truth

Salzmann11

-500

400

500

400

600

700

800

-250

900

1000

1100

200 00 250-200
500-400

Ground truth

BS-warp+Ref

-500400

500

600

700

800

400 -250

900

1000

1100

200 00 250-200
-400 500

Ground truth

TPS-Chhatkuli17

-500400

500

600

700

800

400

900

-250

1000

1100

200 00
250-200

-400 500

Ground truth

BS-Schwarp

-500400

500

600

700

800

-250400

900

1000

1100

200 00 250-200
500-400

Ground truth

BS-warp

-500

400

500

400

600

700

800

-250

900

1000

1100

200 00
250-200

500-400

Ground truth

BS-Isowarp

0 20 40 60 80 100 120 140 160 180 200 220

Fig. 11 Reconstructions achieved in the deformable case. a), b), c), d), e) and f) show the 3D reconstruction results of
BS-warp, BS-Schwarp, BS-Isowarp, TPS-Chhatkuli17, BS-warp+Ref and Salzmann11 respectively. g), h), i), j), k) and l)
show a heat map for each warp that shows the 3D error at each point, see Section 6.2.2 for more details.

results, see Fig. 15g). It fits the surface shape better

than any other evaluated methods. TPS-Chhatkuli17

and the 3D refinement method BS-warp+Ref achieve

good results in 3D reconstruction but still far from BS-

Isowarp, see Fig. 15h) and Fig. 15j). The refinement

method gets stuck in a local minimum, which prevents

it from providing a better surface reconstruction. BS-

warp, Salzmann11 and BS-Schwarp give worse recon-

structions (see Fig. 15e), Fig. 15i) and Fig. 15f)). The

BS-warp and BS-Schwarp solutions present strong rip-

ples while Salzmann11 obtains a smooth surfaces but

far from the ground truth.

6.3 Real Data Experiments

We propose experiments with three real datasets.

The Zooming dataset [12] consists of several de-

formations of a folded A4 piece of paper from differ-

ent viewpoints and focal lengths. Specifically, the focal

length varies between 1348 and 3937 pixels in 9 different

values. The image resolution is 1728× 1552 pixels. The

dataset provides between 7 to 10 different images for

each zoom level. Feature correspondences between the

template and the image are computed using SIFT [21],

eliminating possible mismatches with [30]. We obtain

around 1200 point correspondences for each view. The
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Fig. 12 Sensitivity of the evaluated warps to their main hyperparameter, see Table 6. The first row shows 2D error mean and
standard deviation against hyperparameter value for a 1 pixel noise. The second row shows 2D error for a noise from 1 to 5
pixels with a 1 pixel step. See Section 6.2.3 for details.

template and groundtruth shapes are computed using

dense Structure-from-Motion (SfM) [1].

The Cushion dataset [12] uses a non-developable

template that deforms isometrically. Image resolution is

3456× 2304 pixels and feature correspondences are ex-

tracted using SURF [6] eliminating possible mismatches

with [30]. We obtain around 1800 point correspondences

for each view in this experiment. The camera focal

length is 2700 pixels. As in the previous dataset, tem-

plates and reconstruction ground truth are obtained

with dense SfM [1].

The Can dataset [12] also uses a non-developable

template, a can made of cardboard deforming isometri-

cally. In this experiment, a 3D template model is thus

considered. The image resolution is 4800× 3200 pixels

with a focal length of 11000 pixels. Keypoint correspon-

dences are extracted by combining SIFT and KAZE,

giving around 7000 correspondences. The template and

reconstruction ground truth were obtained with dense

SfM [1].

6.3.1 Zooming Experiment

We select one image from each zoom level of the dataset

with a similar viewpoint. We choose 100 point cor-

respondences from each image to compute the warp.

The other correspondences are used as the test set to

compute the 2D error and 3D error. Fig. 16 shows the

warps computed from each selected frame. We show the

original image, and the results obtained with BS-warp,

BS-Schwarp and BS-Isowarp. We include the 2D error

in pixels. All methods achieve similar results in terms

of 2D error, which is consistent with the experiments

using synthetic data. Fig. 17 shows the reconstruc-

tion results. Our BS-Isowarp achieves the best results

followed by the 3D refinement method BS-warp+Ref.

TPS-Chhatkuli17 is third in reconstruction quality and

the obtained error is coherent with the results given

in [12]. BS-Schwarp obtains worse reconstruction re-

sults than BS-warp. We point out that BS-warp, TPS-

Chhatkuli17 and BS-warp+Ref obtain similar 3D error

results than the ones reported in [12]. However, as ex-

plained in Section 6, we report generalization 2D and

3D errors by using a set of point correspondences dif-

ferent from the one used to compute the warp (sim-

ilarly to the training and test sets used in machine

learning). On the contrary, the results in [12] (TPS-

Chhatkuli17) use all the available correspondences for

computing the warps and report reconstruction errors

at those same correspondences (in the analogy with ma-

chine learning, they use the exact same training and

test sets). This can lead to discrepancies between our

results and theirs. Nevertheless, despite these method-

ological differences, our results do not differ that much

from the reported values in the literature. In some re-

constructions, such as Zooms 8 and 9, there might be
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Fig. 13 Effect of noise. The registration and reconstruction results are given for the rigid case (first row) and the deformable
case (second row). The first three columns show the 2D error, including 1st and 2nd derivatives error. The last column shows
the reconstruction 3D error.
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Fig. 14 Sensitivity to curvature. a), b) and c) show 2D error
and relative first and second-order derivatives errors respec-
tively. d) shows 3D error.

noticeable qualitative differences between the recon-

structed surface and the provided 3D error, especially

in corners (see BS-warp+Ref ). Although qualitative as-

sessments are highly debatable, we have observed that

TPS-Chhatkuli17 often misreconstructs the corners of

the surface and generally oversmoothes the reconstruc-

tion. Although it might look good at first glance, it

does not fit the ground-truth surface properly. Con-

cerning 3D refinement results, we have observed that it

has offset errors, which are visible in the last two rows,

and fails to recover the surface curvature well. The BS-

Isowarp looks slightly less smooth in the last two cases.

Still, it does not suffer offset errors and correctly esti-

mates the curvature, especially in the problematic cor-

ners. This explains why the BS-Isowarp obtains better

reconstruction error than the other methods.

Fig. 18 presents the results of 2D and 3D error av-

eraged over the set of all different viewpoints provided

by the Zooming dataset. All methods obtain good re-

sults in 2D error, which is under 1.2 pixels. In 3D recon-

struction, BS-Isowarp achieves the best results followed

by BS-warp+Ref. TPS-Chhatkuli17 is consistently bet-

ter than BS-warp, Salzmann11 and BS-Schwarp. Salz-

mann11 overestimates the depth due to the inextensi-

bility relaxation of isometry.

6.3.2 Cushion Experiment

We choose 100 point correspondences to build warps.

The other available correspondences from the database

are used to compute the 2D error and 3D error. Fig-

ure 2 presents the results achieved in this dataset. All

evaluated methods present similar behavior in terms of

2D error, the same behavior than in the previous ex-

periments. In reconstruction, BS-Isowarp achieves the

best results, see Fig. 2g) followed by the 3D refine-

ment method BS-warp+Ref presented in Fig. 2j). TPS-

Chhatkuli17 achieves good results in 3D reconstruction
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Fig. 15 Results of isometric SfT for different warp models and reconstruction methods on the shoe dataset. a), b) and c) are
the warps obtained with BS-warp, BS-Schwarp and BS-Isowarp respectively; e), f), g), h), i) and j) show the 3D reconstruction
results of BS-warp, BS-Schwarp, BS-Isowarp, TPS-Chhatkuli17, Salzmann11 and BS-warp+Ref. The reconstruction ground
truth in k) is obtained using dense SfM from multiple images [1].

but is still far from BS-Isowarp or BS-warp+Ref, see

Fig. 2h). Both BS-warp, Salzmann11 and BS-Schwarp

give worse reconstructions (see Fig. 2e), Fig. 2i) and

Fig. 2f)).

6.3.3 Can Experiment

In this experiment, we use 850 point correspondences

to build the warps. The other available correspon-

dences are used to compute the 2D error and 3D error.

Fig. 19 shows the results achieved in this dataset. As

in the Cushion or Zooming dataset experiments, all the

evaluated methods present similar behavior in terms

of 2D error. In reconstruction, BS-Isowarp achieves

the best results, see Fig. 19h), closely followed by

the 3D refinement method BS-warp+Ref presented in

Fig. 19k). TPS-Chhatkuli17 achieves very good results

in 3D reconstruction but with a larger error than BS-

Isowarp and BS-warp+Ref, especially in the top cor-

ners, see Fig. 19i). Their reconstructions deteriorate in

the edges and corners. Both BS-warp, Salzmann11 and

BS-Schwarp give worse reconstructions (see Fig. 19f),

Fig. 19j) and Fig. 19g)). Salzmann11 especially suffers

the non-developable template of this experiment.

We also test the BS-Isowarp against occlusions us-

ing the Can dataset. The simulated occlusion consists

of a circular object placed at the image center. We in-

crease its radius from 100 to 1000 pixels removing the

correspondences in the occlusion area. Table 7 shows

the number of feature correspondences and the 3D er-

ror obtained by our method. Fig 20 shows specific 3D

reconstructions corresponding to the occlusion with ra-

dius 300, 600 and 900 pixels.

We observe that BS-Isowarp is robust against occlu-

sions when the occlusion radius varies between 100 and

700 pixels. The 3D error increases but the reconstructed

shape does not substantially changes. The smoothing

term and the remaining sparse correspondences are
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Radius (pixels) 100 200 300 400 500 600 700 800 900 1000
Nb. corresp. 836 803 754 693 656 606 525 427 288 199

3D Error (mm) 3.48 3.53 3.64 3.67 3.79 3.96 4.51 7.20 18.43 20.1

Table 7 3D error obtained by BS-Isowarp for the occlusion
experiment in the Can dataset.

enough to obtain a suitable warp, which results in a

good reconstruction. However, with more severe occlu-

sions, the isowarp degenerates and BS-Isowarp fails to

correctly reconstruct the surface.

6.3.4 Comparison with DNN-based Methods

We compare BS-Isowarp with recent DNN-based SfT

methods: DeformNet [33], DeepSfT [16], and IsMo-

GAN [36]. DeformNet and DeepSfT are object-specific

SfT methods, meaning that they are trained to recon-

struct a specific template, both in shape and in tex-

ture map. In contrast, IsMo-GAN is an object-generic

method trained with a dataset of thin-shell deformable

objects with varying texture. In terms of object rep-

resentation, DeformNet and IsMo-GAN use a regular

mesh to represent the object’s shape, and DeepSfT re-

covers a pixel-based depth map.

We compare these methods using the publicly avail-

able Kinect paper dataset [38], commonly used as a

baseline in SfT methods. Briefly, the dataset comprises

191 images of a deforming paper acquired with the

Kinect sensor. It provides ground-truth for both regis-

tration and reconstruction with point correspondences

and their 3D coordinates. The implementation of De-

formNet [33] is not publicly available, but it provides

error metrics in this dataset. We reproduced the same

training conditions as reported in DeformNet, where

15% of the frames were used to fine tune the neural net-

work, to adapt DeepSfT and DeformNet to this dataset.

Although IsMo-GAN does not need in principle to be

retrained, we fine-tuned it with the same training set

to produce a fair comparison between all DNN-based

SfT methods. We use 250 correspondences in our BS-

Isowarp and BS-warp+Ref methods and leave the rest

as ground truth to compute 3D errors. Importantly, De-

formNet [33] uses a Procrustes step, which computes

the best 3D similarity transformation, to align the re-

construction with the ground-truth shape. This step

should not be necessary for isometric SfT since it re-

covers the surface without ambiguities in the camera

reference frame. In our understanding, this reveals some

DNN methods’ inability to precisely recover the scale,

rotation, and translation of the object. Nevertheless, we

have included the Procrustes step in our experiments

to give a fair comparison with their reported results on

this dataset.

Table 8 summarizes the obtained 3D error for

each method. BS-Isowarp obtains the best result with

Method IsMo-GAN DeepSfT DeformNet BS-Isowarp BS-warp+Ref
K. Paper 10.21 6.18 4.79 1.78 1.79

Table 8 Comparison of DNN-based SfT method with BS-
Isowarp in the Kinect paper dataset. The 3D error is given in
millimeters.

1.78 mm of 3D error closely followed by the refinement

method BS-warp+Ref 1.79 mm. Both methods retrieve

quite similar reconstruction surfaces. DeformNet is the

DNN-based SfT method with the best result 4.79 mm,

far from the previous ones. The object-generic method

IsMo-GAN obtains the worst result. Without the fi-

nal Procrustes step, our BS-Isowarp obtains a 3D error

of 5.48 mm which is still comparable with the results

reported by DeformNet. Unfortunately, the authors of

DeformNet do not report the 3D error without the Pro-

crustes step, which will naturally increase this 3D er-

ror. We point out that retrieving the scale and distance

to the image plane to the surface is not an ambiguous

problem with isometric deformations and a perspective

camera model [4], hence, it should not be necessary to

use the Procrustes step.

Figure 21 shows the reconstruction of two different

frames (frames 140 and 155 specifically) of the Kinect

paper dataset, which presents strong deformation. BS-

Isowarp and BS-warp+Ref obtains similar 3D errors,

see Figs 21.c), d), g) and h). DeepSfT and IsMo-GAN

obtain worse reconstructions compared with the previ-

ous one. IsMo-GAN struggles in corners and edges of

the reconstruction, see Figs 21.a) and f). DeepSfT suf-

fers from high-frequency noise which is a known prob-

lem in dense methods, see Figs 21.b) and d).

Overall, our BS-Isowarp method outperforms the

aforementioned DNN-based methods in the Kinect pa-

per dataset, without requiring training. A critical as-

sessment of these results however leads to the obser-

vation that a direct comparison between classical and

DNN-based methods is not entirely fair for two oppo-

site reason. The first reason is that DNN-based methods

use all the image data, whereas many classical meth-

ods, including the BS-Isowarp, depend on the quality

and quantity of the point correspondences they use as

input. In that regard, our results with the so-called clas-

sical methods could be improved with better point cor-

respondences or registration strategy. The second rea-

son is that DNN-based methods strongly depend on

the amount and type of training data. Yet, it is im-

portant to realise that there does not exist a universal

DNN-based SfT method that can operate without fine-
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tuning on frames extracted from the test dataset, which

currently represents a major issue.

7 Conclusion

We have studied the theoretical properties of warps in

isometric SfT, finding differential constraints they must

fulfill. This is a theoretical breakthrough in our under-

standing of the problem. On the practical side, this al-

lows us to find a warp, called the isowarp, that is 3D

consistent with the physics of the problem. This is a

change of paradigm in isometric SfT as we have shown

that with the isowarp, one outperforms the best exist-

ing reconstruction methods by using the analytic direct

depth solution [4]. Besides, computing the isowarp has

several practical advantages over the other reconstruc-

tion methods based on iterative refinement, namely

lower complexity, higher accuracy, convex initialization,

and automatic hyperparameter tuning. Isowarp initi-

ates a new line of reconstruction methods which im-

poses 3D geometric constraints on the warps. We expect

the isowarp to be an essential component in future SfT

methods.

A Derivation of the Image Embedding

We assume that the image plane is at z = 1 in camera coor-
dinates, which is achieved by working in retinal coordinates.
The perspective projection of a point (x, y, z) is then given
by:

Πp : R3 \
{

(x, y, z) ∈ R3 | z = 0
}
→ R2

(x, y, z)> 7→
(
x

z
,
y

z

)>
. (25)

The inverse of the restriction Πp|S : S → R2 of Πp is the
image embedding. It forms a depth based parametrization of
the surface (I, Xi) expressed in terms of the depth function
ρ : R2 → R:

Xi(u
′, v′) = ρ(u′, v′) (u′, v′, 1)> , (26)

where u′ and v′ represent the image coordinates. Alterna-
tively to ρ, we define the Euclidean distance between the cam-
era’s projection origin and the surface point as ρ̃ : R2 → R:

ρ̃(u′, v′) = ρ(u′, v′)ζ(u′, v′), (27)

where ζ(u′, v′) =
√

1 + u′2 + v′2. The perspective parametri-
zation (I, Xi) can be then expressed in terms of ρ̃ as:

Xi(u
′, v′) =

ρ̃(u′, v′)

ζ(u′, v′)
(u′, v′, 1)> . (28)

Now, we can define the surface S from the template
parametrization domain U by composing the previous
parametrization Xi and the warp function η as follows:

X̄i(u, v) = Xi ◦ η =
ρ̃(η(u, v))

ζ(η(u, v))
(η(u, v), 1)> , (29)

where u and v are template domain coordinates.

Defining the depth function ρ̄ : R2 → R as the depth
function ρ̃ in u, v coordinates by the composition ρ̄ = ρ̃ ◦ η,
we obtain:

X̄i(u, v) = Xi ◦ η =
ρ̄(u, v)

ζ(η(u, v))
(η(u, v), 1)> . (30)

Working with the parametrization (U , X̄i) of S has two prin-
cipal advantages. First, it allows us to compute the first fun-
damental form, also known as the metric tensor, over the
same parametrization domain as the template, which is es-
sential to obtain the isowarp equations. Second, it greatly
simplifies these equations.

B Derivation of the Isowarp Equations

We give Matlab code to establish the Isowarp equations (11).
These equations are too lengthy to be reproduced fully ex-
panded. However we recall that, importantly, they depend
on the known template and the unknown warp η only. More
specifically, they are quadratic of the second-order in η.

1 %% Isowarp Equations Matlab Code
2 c l c ; c l e a r a l l ;
3

4 syms u v % Var iab l e s
5 syms W1(u , v ) W2(u , v ) % Warp
6 % Template ’ s F i r s t Fundamental Form
7 syms U11(u , v ) U12(u , v ) U22(u , v )
8

9 U = [ U11 , U12 ; U12 , U22 ] ;
10

11 W1u = d i f f (W1, u) ; W2u = d i f f (W2, u) ;
12 W1v = d i f f (W1, v ) ; W2v = d i f f (W2, v ) ;
13

14 Jw = [W1u, W1v;W2u, W2v ] ;
15 JtJ = transpose (Jw) *Jw ;
16 wrpMod2 = (1 + W1ˆ2 + W2ˆ2) ;
17 JwTW = transpose (Jw) * ( [W1;W2] ) ;
18 JwTW = JwTW * t ranspose (JwTW) ;
19 H = (1/wrpMod2) * ( JtJ = (1/wrpMod2) *JwTW) ;
20

21 S = U* inv (H) ; St = t ra c e (S) ; Sd = det (S) ;
22 rho = s q r t ( St/2= s q r t ( Stˆ2/4=Sd) ) ;
23 rho u = d i f f ( rho , u) ;
24 rho v = d i f f ( rho , v ) ;
25

26 L = (U = H* rho ˆ2) ; L = L(u , v ) ;
27 L11 = L(1 , 1 ) ; L12 = L(1 , 2 ) ; L22 = L(2 , 2 ) ;
28

29 di sp ( ’ Ca l cu l a t ing EQs . . . ’ )
30 EQ1 = s i m p l i f y ( rho u ˆ2 = L11 ) ;
31 EQ2 = s i m p l i f y ( rho u * rho v = L12 ) ;
32 EQ3 = s i m p l i f y ( rho v ˆ2 = L22 ) ;
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Fig. 16 Registration results for the Zooming experiment. BS-warp, BS-Schwarp and BS-Isowarp are evaluated. Each row
show one view from the dataset with different values of focal length. The 2D error is given under each warp in pixels.
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Fig. 17 3D reconstruction results from all evaluated methods in the Zooming experiment. Salzmann11, BS-warp, BS-Schwarp,
BS-Isowarp, TPS-Chhatkuli17 and BS-warp-Ref are compared with nine images from the Zooming dataset with different values
of focal length. Ground truth and reconstructed point correspondences are also shown. The 3D error is given under each 3D
reconstruction in millimeters.
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Fig. 18 Zooming dataset average registration and recon-
struction errors. a) average 2D error for each zoom level. b)
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Fig. 19 Results of isometric SfT for different warp models and reconstruction methods on a real example of a can. b), c)
and d) are the warps obtained with BS-warp, BS-Schwarp and BS-Isowarp respectively; and f), g), h), i), j) and k) show
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340

350

360

370

380

40

390

400

410

20

0 3020100-10-20-30-40

360

370

380

390

400

40

410

420

430

20

0 40
20

0
-20

-40

340

350

360

370

380

40

390

400

410

20

0
3020100-10-20-30-40

340

350

360

370

380

390

40

400

410

20

0 403020100-10-20-30

Fig. 20 Robustness of BS-Isowarp against occlusions for the Can dataset. b), c) and d) show the simulated circular occlusion
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Fig. 21 Frame reconstructed from the Kinect paper dataset. The 3D error is given under each 3D reconstruction in millimeters.
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