
TEXTURE-GENERIC DEEP SHAPE-FROM-TEMPLATE

David Fuentes-Jimenez
Department of Electronics

Universidad de Alcalá (UAH)
E-28871 Alcalá de Henares, Spain

e-mail: d.fuentes@edu.uah.es

Daniel Pizarro
Department of Electronics

Universidad de Alcalá (UAH)
E-28871 Alcalá de Henares, Spain

e-mail: daniel.pizarro@uah.es

David Casillas-Perez
Department of Signal Processing and Communications

Universidad Rey Juan Carlos (URJC)
Fuenlabrada 28933 Spain

e-mail: david.casillas@urjc.es

Toby Collins
IRCAD

Place de l’Hôpital
Strasbourg 67000, France

e-mail: toby.collins@gmail.com

Adrien Bartoli
EnCoV

Clermont-Ferrand 63000, France
e-mail: adrien.bartoli@gmail.com

May 21, 2021

ABSTRACT

Shape-from-Template (SfT) solves the registration and 3D reconstruction of a deformable 3D object,
represented by the template, from a single image. Recently, methods based on deep learning have
been able to solve SfT for the wide-baseline case in real-time, clearly surpassing classical methods.
However, the main limitation of current methods is the need for fine tuning of the neural models to
a specific geometry and appearance represented by the template texture map. We propose the first
texture-generic deep learning SfT method which adapts to new texture maps at run-time, without the
need for texture specific fine tuning. We achieve this by dividing the problem into a segmentation step
and a registration and reconstruction step, both solved with deep learning. We include the template
texture map as one of the neural inputs in both steps, training our models to adapt to different ones. We
show that our method obtains comparable or better results to previous deep learning models, which
are texture specific. It works in challenging imaging conditions, including complex deformations,
occlusions, motion blur and poor textures. Our implementation runs in real-time, with a low-cost
GPU and CPU.

Keywords Monocular, 3D Model, Image registration, 3D reconstruction, Wide-baseline, Dense, Deformable
reconstruction, Shape-from-Template

1 Introduction

Image registration and image-based 3D reconstruction are fundamental problems extensively studied in Computer
Vision. However, solving these problems with deformable objects remains challenges. In Shape-from-Template
(SfT) [1, 2, 3, 4], the objective is to reconstruct the 3D shape of a deformable object from a single image and a reference
3D model of the object, known as the template. The template is a fundamental component of SfT that provides prior
knowledge via three models. The first model is the shape model, typically represented as a triangulated 3D mesh,
which gives the shape of the object in a known position (usually called the reference shape). The second model is the
deformation model that determines how the object may deform from the reference shape. This is used to combat the

https://orcid.org/0000-0001-6424-4782
https://orcid.org/0000-0003-0622-4884
https://orcid.org/0000-0002-5721-1242
https://orcid.org/0000-0002-9441-8306
https://orcid.org/0000-0003-3545-7329

general ill-posedness of 3D reconstruction from a single image, and it restricts the space of possible solutions to ones
that are physically viable. The third model is the appearance model that represents the texture of the object’s surface.
This is required to relate the image with the template’s surface at the pixel level though the object’s texture. By far, the
most common way to implement the appearance model is with texture mapping. This approach assigns each point on
the template’s surface to a pixel colour sampled from a discrete colour map known as the texture map.

The shape model and texture map are usually constructed with an optical acquisition system. There are two main
approaches: The first approach uses an RGBD camera, where the depth information is used to construct the shape
model and the RGB information is used to construct the texture map. The second approach uses several images taken
with an RGB camera of the object in the reference position, which are then used to build the shape model and texture
map using a combination of Structure-from-Motion (to provide the relative poses of the camera images) and multi-view
stereo (to densely reconstruct the shape models and to build the texture map). The second approach is usually preferred
in practice because the same camera can be used for constructing the template and running SfT [2, 5].

Using the template and an image of the deformed object, the general goal of SfT is to infer the 3D deformation of
the template so that it matches the image. All three models in the template (shape, deformation and appearance) are
essential to make SfT accurately solvable. Formally, two challenging and related problems are solved in SfT. The first
challenge is to register the template to the image (i.e. to determine a dense spatial correspondence between the image
and the template shape). The second challenge is to reconstruct the template’s deformed shape (i.e. to determine the
depth of each point on the template’s surface with respect to the camera center).

SfT has numerous practical applications, and an important one is to facilitate Augmented Reality (AR) with deformable
objects. Figure 1 shows the workflow diagram of a standard SfT+AR system. In this application, registration is required
to correctly position virtual objects in the image to align with the deforming object’s surface and reconstruction is
required to correctly orient the virtual objects in 3D.

Figure 1: Principle of SfT and AR for deformable objects.

2

The texture map is necessary as the purpose of SfT is two-fold: to register the template to the image and to reconstruct
it in 3D. Both tasks are strongly interdependent, and only the texture map allows a precise registration at the pixel level
using the specific texture details of the object of interest. Without a texture map, it would be impossible to exploit the
object’s specific texture characteristics, fundamentally preventing accurate registration and reconstruction. In practice,
requiring a texture map is not a limitation because it is obtained as part of template construction using an optical system
as described above.

SfT needs a deformation model to constrain the solution. Multiple deformation models have been studied, such
as isometric [4, 6, 7], conformal [2, 8, 9], equiareal [10] and elastic [11, 12, 13] deformations. The most popular
deformation models to solve SfT are isometry and quasi-isometry, also known as the as-rigid-as-possible (ARAP)
model, which is a widely used relaxation of isometry. These models prevent the object from stretching or shrinking,
and they make SfT well-posed in the general case.

SfT is a challenging problem when facing the conditions of a real application. The challenges are related to: a) the type
and complexity of the object in terms of geometry (volumic or thin shell), deformations (low or high dimensional), and
texture (rich or poor), b) the imaging conditions (including illumination changes, occlusions and motion blur) and c)
the baseline (short or wide). In video sequences, there is temporal continuity between the frames, which corresponds
to the short-baseline case. On the contrary, the wide-baseline case implies that each input image has to be treated
individually, without temporal connection to previous images, due to large camera movements and sudden deformations.
In practice, the wide-baseline conditions are more realistic, since occlusions and fast camera movements that break the
short-baseline assumptions are frequent.

SfT has been extensively studied over the last decade, and only very recently, methods based on Deep Neural Networks
(DNN) have been proposed. We divide classical (i.e., non-DNN) SfT methods into two main categories. The first
category of methods decouple SfT into a registration followed by a reconstruction step. The registration step is based
on robust feature-based matching methods that are not specific to SfT [14, 15, 16]. The reconstruction step is based
on shape inference methods, usually a combination of a non-iterative step [2, 4] followed by iterative refinement [6].
These approaches cope with volumic and thin shell objects and work under wide-baseline conditions. They are limited
because feature-based registration fails under challenging image conditions and poorly textured objects. The second
category of methods perform registration and reconstruction at the same time [3, 17, 18]. Methods in this category use
iterative optimisation and only work in short-baseline conditions, as they require to be initialized close to the solution.
They fail when the short-baseline tracking conditions are violated due to occlusions or fast motion. As in the first
category, these methods also fail under challenging imaging conditions and poorly textured objects.

In recent years, the idea of using learning methods to solve SfT has been explored. These methods learn the mapping
from the input image to the object 3D deformation [19, 20, 21, 22]. They are potentially able to solve SfT in wide-
baseline conditions and without the need to run optimisation at run-time. However, existing DNN-based SfT methods
face four main limitations at the moment. First, some of them only work with a specific template [22], requiring fine
tuning for the specific template shape and texture map. Other works propose to solve SfT for a variety of texture
maps [19, 20, 21], learning invariance to these. However, their results are far from satisfactory, still requiring fine
tuning of the network to a specific template. This is because the templateless problem is highly ambiguous, making
template-invariant methods unreliable. Second, in terms of template geometry, most existing methods tackle the
thin-shell case [19, 20, 21], with the exception of the template-specific method [22]. Third, in terms of template
complexity, most methods require a mesh with a reduced number of vertices (namely, 73× 73 in [20, 21] and 10× 10
in [19]), which is a strong limitation to work with complex templates or deformations. Fourth, they work for a specific
camera configuration, not being able to adapt to dynamical camera parameters at run-time.

To sum up, a general DNN-based SfT solution is still missing, which would work for new templates without the need of
fine tuning. The importance of pursuing such a solution resides in the complexity of generating training data for SfT,
and the computational resources needed for fine tuning a network in a new dataset. It is thus a necessary step towards
making DNN-based SfT methods widely applicable.

We make the following contributions to advance the state-of-the-art of DNN-based SfT. First, we propose the first
DNN-based SfT method that takes the template texture map as a run-time input. This is used to condition the registration
and reconstruction DNNs on the specific texture of the object of interest. Importantly, the texture map supplied at
run-time can be completely novel in the sense that it was not (nor any similar texture map) used in the training data.
Previous DNN-based methods [18 − 21] that exploit the specific texture map of an object require their DNNs to be
retrained for the specific texture map (either from scratch or by fine-tuning), which is highly impractical for real-world
applications such as those running on smartphones. Indeed, the limits of requiring DNN retraining have completely
prevented DNN-based SfT methods from being used in real-world applications. Our method does not suffer this
limitation of texture-specific training, which is a significant advance of state-of-the-art towards practical real-world use
of DNN-based SfT.

3

Second, our proposed architecture is divided into two neural networks, the segmentation network for pixel-based
detection of the template, and the registration-reconstruction network to recover the SfT solution. The segmentation
network is crucial to solve SfT in our generic template approach. We have proposed a new semantic segmentation
architecture that allows us to add the template texture map as one of the inputs, which clearly differs from the classical
category-level semantic segmentation methods, where the semantic categories are learned and fixed during training.
The output of the segmentation network is fed into the registration-reconstruction network.

Third, our DNN models for template segmentation and registration-reconstruction networks are fully-convolutional
encoder-decoder networks, that use residual structures and specific layers, created by us to address SfT. They allow
our method to be computationally efficient. In addition to our base models, we propose a lightweight architecture for
the registration-reconstruction network that can be used to run our method in real-time in low-cost GPUs, CPUs and
embedded systems. It is based on a new custom decoding layer that implements the inverse Block Discrete Cosine
Transform (DCT), which allows us to greatly reduce the number of network parameters, while easily controlling the
loss of information induced by the new decoding layers. Our lightweight architecture requires 21.59% of the total
parameters and is 214.65% faster than the base architecture while being only 19.21% less accurate. This new optimized
architecture based on the DCT can potentially be applied to other problems different from SfT, effectively reducing the
size of encoder-decoder DNN regression and classification models. Fourth, our proposed method works independently
of the camera parameters, recovering the correct depth and scale of the deformed object. This fact eliminates the need to
use the same camera during the training and testing stages, which affects other methods [19, 20, 21]. Finally, we show
that our proposed methods outperform, both qualitatively and quantitatively, the representative state-of-the-art methods
in terms of accuracy, speed and number of parameters. Our results include challenging scenarios in wide-baseline
conditions and effects like motion blur, occlusions, illumination changes and weak texture. All the data and code
presented in this work will be released for public use.

The rest of this paper is organized as follows. Section 2 discusses previous work. Section 3 describes the SfT problem
and the proposed methods with the DNN architectures. Section 4 explains the training process, the loss function, and
the setup carried out. Section 5 explains the setup, datasets and methods used for the experiments before showing
the obtained results, both graphically and numerically, for various experimental settings. Finally, section 6 gives our
conclusions and future work.

2 Previous Work

We divide the SfT state-of-the-art into two main categories, the classical SfT methods, which include the vast majority
of existing work, and the DNN-based SfT methods. Before explaining these two categories, we introduce other vision
problems that are related to SfT. After that we start with the classical methods, dividing them into two sub-categories,
the decoupled and the integrated methods. The former solves registration and reconstruction as two independent
problems and the latter solves registration and reconstruction jointly. Finally, we review the DNN-based methods and
categorize them.

2.1 Vision problems related to SfT

There are several vision problems that relate to SfT and have been recently attempted by DNN methods. These are 1)
optical flow computation [23, 24], 2) scene flow computation [25, 26], 3) monocular depth reconstruction [27, 28, 29, 30],
4) human pose estimation [31, 32] and 5) Shape-from-Shading [33, 34]. None of these methods or their combination
compete with SfT-specific solutions or solve SfT under general conditions. For instance 1) solves registration between
frames in a short-baseline sequence without including depth, 2) solves registration between frames in 3D, mainly from
depth or stereo cameras and thus has not the same inputs as SfT, 3) solves depth for a general scene from a single
image and is limited to selected types of scenes (roads or indoor). Besides, it does not compute the registration with the
template, which is fundamental in SfT, 4) can be seen as a specialisation of SfT for a template that represents the human
body. The deformation model in this case is low-dimensional, parametrized with a few joint angles, favouring the use
of learning methods. In SfT, the number of degrees-of-freedom can be much larger than in the human skeleton, and it
changes with the type of template, which makes it much more challenging than 4). Finally, 5) uses radiometric models
to recover 3D surfaces from shading cues detected in the images. It requires the scene to be lit by highly controlled
light sources and, as in 3), does not include registration to the template.

2.2 Classical decoupled SfT methods

The decoupled methods first obtain registration and then 3D reconstruction as two independent processes. The advantage
of this approach is the reduction of complexity. The main drawback is that it does not include the constraints existing

4

between registration and reconstruction. It usually solves wide-baseline registration using feature-based matching
methods like SURF [35] and SIFT [36], which are then cleaned from mismatches using specific methods for deformable
registration [14, 37]. Feature-based registration methods fail with repetitive or poorly textured objects and challenging
image conditions, such as motion blur, strong viewpoint distortion or low resolution images. As a consequence, these
methods are limited in challenging scenarios. The decoupled methods are usually categorised by the deformation model,
isometry being the most common one. In terms of the solver strategy used in the reconstruction step, these methods
typically follow one of the following approaches: 1) the inextensibility model, a convex relaxation of isometry, and
the maximum depth heuristic [1, 6, 38, 39], 2) local differential geometry [2, 4], and 3) minimisation of a non-convex
cost function [6, 40]. Methods in 3) are computationally expensive and require initialisation. They are mainly used
as refinement methods for approaches in 1) or 2), which are convex but less accurate in general. Other works study
non-isometric deformations, such as non-linear elasticity [10, 41, 42, 43], linear elasticity [11, 12] or angle-preserving
conformal models [2]. The main drawback of all these methods is that they require boundary conditions, usually in the
form of 3D known points, to make the reconstruction problem well posed. Whether these non-isometric models can
solve SfT uniquely without additional cues remains an open question.

2.3 Classical integrated SfT methods

The integrated methods jointly perform registration and reconstruction. The majority of them are restricted to short-
baseline scenarios, which imply the use of video streams [3, 17, 44]. They minimize a non-convex cost function
that jointly aligns the 3D solution with diverse image cues, such as feature point correspondences [3] or by using a
pixel-level photo-consistency model [17, 44]. Integrated methods are effective and can recover complex deformations,
some of them in real-time. However, they fail when the short-baseline conditions are violated, and require initialization
with a wide-baseline method.

2.4 DNN-based SfT methods

DNN-based SfT methods have appeared in the last few years. We establish a difference between monocular recon-
struction methods, that do not use a template but are specialised in deformable objects [30, 45, 46], and methods that
genuinely solve SfT’s registration and reconstruction [19, 20, 21, 22]. We are interested in methods that belong to the
second group. They are divided by type of output representation (dense or discrete) and whether they are specific to a
template or work for a generic category of templates.

Regarding the type of output, the majority of methods represent the SfT solution with the 3D vertex coordinates of
a regular mesh. The mesh vertex count varies between existing methods. [19] uses 10× 10 meshes. Their approach
is based on obtaining 2D belief maps for the image position of each of the mesh vertices, inspired by DNN-based
human pose computation methods. This approach strictly limits the amount of vertices. Other approaches [20, 21] use
three-channel 2D maps to model the coordinates of a regular mesh, reaching 73× 73 vertex counts. We proposed a
different approach [22], by recovering pixel-level depth and registration maps, allowing one to represent 3D objects and
complex shapes of arbitrary topologies. In addition we implemented a post-processing step based on the ARAP model
to recover the hidden parts of the surface, not explicitly reconstructed by the neural network. This paper is an extension
of our previous work [22]. It uses fundamentally new constraints and scope but relies on the same parametrisation.

In terms of template specificity, all existing DNN-based methods are trained for a specific template shape, while they
deal with the template texture map differently. We thus divide existing DNN-based methods in the following categories:
1) Single-texture methods are trained for a specific template texture map. They exploit texture information to accurately
solve SfT, and this information is built-in the DNN weights [22]. 2) Multi-texture methods work similar to 1), but the
DNN is trained for several texture maps. Although there is currently no existing method falling in 2), one could easily
be created by combining object detection with several instances of a method from 1).

3) Texture-agnostic methods are trained with many texture maps. Hence, they learn to solve SfT using general image
cues that are independent of the texture map, such as occlusion boundaries and shading [19, 20, 21]. Methods in 3) are
significantly less accurate than methods in 1) and 2), producing coarse reconstruction, as shown in our experiments.
Strictly speaking, methods in 3) are not SfT methods, since they do not use the template texture map to solve SfT. Our
work exploits the template texture map as in 1) and 2), but using it as an input in the DNN. It can adapt to use new
texture maps unseen during training and thus belongs to a new category of DNN methods, namely 4) Texture-generic
methods. We show in Section 5 that our method is only slightly less accurate than methods in 1) and 2), while being
much more applicable and flexible. Methods in 3), being independent of the texture map, have also high applicability as
in 4). However, they fail to produce accurate reconstructions in general.

Summarizing, solving SfT with DNNs is a promising line of research, but the existing methods show important
limitations. Our proposal can be classified as the first texture map-generic method, and so belongs to a new template-

5

generic category of methods. Unlike existing methods, it exploits the texture map as an additional input to the DNN,
allowing it to adapt to different texture maps at run-time. Our method uses all the available information, similarly to
template-specific methods, thus guaranteeing that the SfT solution is well-posed. In terms of outputs, we use the same
parametrisation as in our previous work [22], which copes with complex deformations and is not limited by the vertex
count of the output mesh. Finally, we standardise the camera used during training by following [22], so that it is not
necessary to use the same camera parameters during training and testing. These advances allow our method to deal with
practical scenarios and contribute significantly to generic DNN-based SfT.

3 Methodology

3.1 Scene geometry

Figure 2 shows the components of the scene geometry in the SfT problem. Template. It is composed of a known 3D

Registration
function

Texture Map

Projection

3D Template

Known

Unknown

Reconstruction

Deformed Surface

P Q

Known

Known

Known

Unknown

p

Known

Input Image

q

Unknown

Figure 2: Geometric model of SfT.

surface T ⊂ R3 and an appearance model represented by a texture map AT = (A, A), where A ⊂ R2 is a 2D subset
and A : A → (r, g, b) is a function that maps A to RGB values. In A normalized coordinates are used. The known
∆ : A 7−→ T parametrisation is a bijection that relates points of the texture map A to the surface T .

Deformation. The template T undergoes an unknown quasi-isometric deformation that results in the unknown surface
S ⊂ R3, represented from T by the unknown map Ψ: T → S.

Camera projection. The input image is defined as a colour intensity function that contains 3 channels I : R2 → (r, g, b),
in a discrete pixel grid. The camera model is represented with the perspective projection:

(x, y, z) 7−→
(x
z
,
y

z

)
= (u, v). (1)

We assume that the camera is intrinsically calibrated, so we know its aspect ratio, focal length and radial distortion,
which in SfT methods is a reasonable and ordinary assumption. The coordinates (u, v) can be easily obtained through
the image coordinates and are known as retinal coordinates.

6

Visible surface region and registration map. The visible surface Svis ⊂ S is represented by all the non-occluded
areas of the camera image plane. Through the projection of this region in the image plane, we define a known
bidimensional region I ⊂ R2. I and Svis are related by a perspective embedding function Xvis : I → Svis with
Xvis(u, v) = ρ(u, v) (u, v, 1). In this embedding function, the function ρ : I → Svis is the unknown depth function
that allows one to obtain the depth of Svis for each pixel in camera coordinates. The registration map η : I → A is an
injective map that associates the points of I to their correspondences in A.

3.2 DNN architecture

Figure 3 shows the general diagram of our SfT solution. It involves two steps. First, we use the Segmentation Network,
that takes as inputs the image and template texture map and produces a pixel-wise binary segmentation map that
classifies each pixel as background or object. Second, we obtain the SfT solution with the Registration-Reconstruction
Network, that takes the image, the template texture map, and the binary mask from the previous step as inputs and
obtains pixel-wise maps that represent the object’s registration and depth with respect to the template. Third, we use an
ARAP post-processing step to recover the occluded surface parts.

Outputs

Inputs

Warp-U Map

Outputs

Depth Map

Warp-V Map

Image

 Texture map

Deformed Template
Segmentation

Inputs

Image

 Texture map

 Mask

Mask

Registration and
Reconstruction

Output

3D Shape

Output

As-Rigid-
As-Possible

postprocessing

DTSNet

RRNet

Figure 3: General diagram of our proposed DNN-based Texture-generic SfT method.

3.2.1 Segmentation Network

We propose a DNN model for the segmentation of the deformed template in the input image, named Deformed Template
Segmentation Network (DTSNet) and defined with the following mathematical function:

γ = DDTS(I, A, θDTS), (2)

where I is the input image, A is the template texture map and θDTS is the weight vector. We resize I and A to match
the input resolution of 135× 240 pixels. The output γ(u, v) represents the deformed template segmentation map, with
the same size as the input image, where:

γ(u, v) =

{
1 (u, v) ∈ I
0 otherwise.

(3)

I is the region of the input image I where the deformed template is visible. Figure 4 and Table 20 of Appendix A show
the proposed architecture for DTSNet. It is based on encoder-decoder blocks with skip connections, such as [47, 48],
that are commonly used in semantic segmentation. The convolutional, identity and deconvolutional blocks are based on
the feed-forward structures in the ResNet50 model [49].

7

Upsampling

Batch Normalization

Convolutional Layer

Encoding Convolutional Block

Decoding Convolutional Block

Activation Relu

Inputs

Output

Image

Texture map

MaxPooling

Activation Sigmoid

Identity Block

Input Layer

Mask

Skip connections

DecoderEncoder

Figure 4: Proposed Deformed Template Segmentation architecture DTSNet.

3.2.2 Registration-Reconstruction Network

The Reconstruction-Registration Network, named RRNet, estimates ρ(u, v) and η(u, v), the main unknowns in SfT,
using as inputs the input image I , the input texture map A and γ̃ provided by DTSnet. The RRNet function is denoted
as DRR:

(ρ̃, η̃) = DRR(I, γ̃, A, θRR), (4)

where the network inputs are resized to 135× 240 pixels and θRR are the network weights. The outputs ρ̃ and η̃ are the
estimates of the depth and registration maps respectively, defined as follows:

ρ̃(u, v) ≈
{
ρ(u, v) (u, v) ∈ I
−1 otherwise

(5)

η̃(u, v) ≈
{
η(u, v) (u, v) ∈ I
(−1,−1) otherwise.

We propose two DNN models to implement the Reconstruction-Registration Network; RRNet is the base model and
RRNet-DCT is a lightweight version that can work efficiently on low-cost devices.

3.2.3 The RRNet architecture

Figure 5 and Table 21 of Appendix A show the proposed network architecture for RRNet. Our proposal uses a single
encoder and two different decoders for registration and reconstruction. We use skip connections between the encoder
and each of the decoders. These connections reinforce the relationship between registration and reconstruction at
several scales. This model uses three types of blocks that are shown in Figure 6 and employs identity, convolutional and
deconvolutional residual feed-forwarding structures based on the ResNet50 model [49].

3.2.4 The RRNet-DCT architecture

Our proposal for the lightweight RRNet-DCT is based on a single encoder that connects to a shallow decoding layer
based on the DCT [50].

The DCT [51] is a linear decomposition of vectors, or matrices in our case, with cosine functions at different frequencies
as basis elements. It is widely used to compress 1D signals [52, 53] and images [54, 55, 56, 57]. In image compression,
the input image is divided into non-overlapping blocks, and the DCT is computed for each block. Given A, an M ×M
block of information (typically M = 8), the 2D DCT of A is given by:

Ω = TAT>, (6)

8

Encoder

Upsampling

Batch Normalization

Convolutional Layer

Encoding Convolutional Block

Decoding Convolutional Block

Activation Relu

Outputs

Inputs

Warp-U Map

Outputs

Depth Map

Warp-V Map

Image

Mask

Texture map

MaxPooling

Activation Sigmoid

Identity Block

Input Layer

Decoders

Skip connections

Figure 5: Proposed Registration and Reconstruction RRNet architecture.

1x1
conv,f

3x3
conv,f

1x1
conv,4f

+BNReLuBN
ReLuReLuBN

1x1
dconv,f

3x3
conv,f

1x1
conv,4f

1x1
dconv,4f

+BN
ReLu

ReLuBN ReLuBN

BN

1x1
conv,f

3x3
conv,f

1x1
conv,4f

1x1
conv,4f

+ReLuBN ReLuBN ReLuBN

BN

Figure 6: Identity, convolutional and deconvolutional residual blocks.

9

where Ω is M ×M and T ∈ O(M) is the following DCT transformation matrix:

Tuv =

{ 1√
M

u = 1, 1 ≤ v ≤M√
2
M cos π(2v−1)(u−1)2M 2 ≤ u ≤M, 1 ≤ v ≤M.

(7)

Conversely, the inverse DCT (iDCT) of Ω is given by A = T>ΩT . The principle behind DCT compression is to
truncate Ω, resulting in Ω̃, and then recover an approximate value of A with the iDCT, namely Ã = T>Ω̃T . In natural
images one can recover Ã ≈ A with a small number of non-zero values in Ω̃. Intuitively, coefficients in Ω associated to
low frequencies (top-left corner of Ω) are more important than high frequencies (bottom-right corner of Ω). One of the
most common truncation policies is based on sorting Ω from low to high frequencies, by traversing it in zig-zag as
Figure 7 shows. In our case, we express the DNN outputs, that is the depth and registration maps, in terms of DCT
blocks of size M = 8 whose coefficients have been truncated. This way, we can compress the amount of information
handled by the DNN, and consequently its parameters. It is thus crucial to design which elements of Ω̃ are set to zero,
so that our DNN outputs are sufficiently accurate to represent the solutions. To do so, we select 20000 depth and
registration maps from our datasets, described in Section 4.1, and divide them into blocks of size 8× 8. We transform
these blocks with the DCT, truncate the resulting coefficients and then recover them back with the iDCT. We evaluate
the mean recovery error for registration and reconstruction separately for different numbers of non-zero elements in Ω̃.
Assuming we collect Nb blocks from the 20000 dataset examples, the average compression error is computed as:

ε[Mb] =
1

Nb64

Nb∑
i=1

‖Ai − T>Ω̃[Mb]T‖F , (8)

where Mb is the number of non-zero elements in Ω̃, following the zig-zag order from low to high frequencies. Figure 7
shows ε for both registration and reconstruction maps in function of the percentage of non-zero elements in Ω̃, computed
as 100Mb

64 . The number of parameters selected in the DCT was fixed to Mb = 18 (around 28% of coefficients are
non-zero). With this number we obtain an average error of 2 pixels in registration and 3 mm in reconstruction, which is
a fair trade-off between accuracy and compression ratio, which is of 70%.

Our RRNet-DCT model uses an encoder stage, similar to the encoder used in RRNet, but without including the skip
connections. The output of this encoder is directly the Mb non-zero coefficients in Ω̃ for each 8 × 8 block in the
output maps. The encoder output size is (bHM e, b

W
M e,MbNc)→ (16, 30, 18 · 3), where H and W are the height and

width of the input images, M is the size of the DCT block, and Nc corresponds to the number of RRNet-DCT output
channels (one for ρ̃ and two for η̃). The decoder is a single layer that computes the block iDCT of the encoder outputs
to produce η̃ and ρ̃. This decoder layer does not add trainable parameters and it is based on the transformation matrix
T , which is hard-coded in the layer parameters. The decoder uses zero-padding to complete the vertical dimension of
the output, since H

M is not an integer. Figure 8 and Table 22 of Appendix A show the RRNet-DCT diagram and its
layer architecture respectively. The types of blocks used in the encoder are similar to the ones used in RRNet, and are
presented in Figure 6.

3.2.5 Recovering occluded surface regions with ARAP shape completion

Our RRNet and RRNet-DCT models recover the SfT solution of the surface’s visible part Svis, encoded in η̂ and ρ̂.
Given that external or self-occlusions can represent an important part of the object, we use a post-processing stage,
described in our template-specific method [22], that recovers the whole surface Sh using the As-Rigid-As-Possible
(ARAP) prior. This is a very well known technique in mesh editing [58], and does not require training [7, 59]. Our
ARAP post-processing step requires a mesh representation and involves minimizing a non-convex cost function with
Gauss-Newton, an iterative second-order optimisation method. In general the algorithm converges after a few number
of iterations (less than 10) and can efficiently handle meshes with a high vertex count, that can represent very complex
deformations.

4 DNN Training

4.1 Datasets

4.1.1 Templates

We use 28 texture maps, shown in Table 1. We refer to these templates as DSX, with X the number of the texture map.
The template shape is a rectangular flat shape. We train with 24 of the 28 different template texture maps and test our
methods with 28 different template texture maps (dividing the test on seen and unseen template texture maps).

10

(mm)
(px)

R
e
co

v
e
ry

 e
rr

o
r

Zig-Zag Criterion

Registration error

Percentage of DCT coefficients used (%)

1 2 3

1

2

3

Figure 7: DCT parameters selection criterion. The y axis is the depth error in mm and the registration error in px.

Encoder

Upsampling

Batch Normalization

Convolutional Layer

Encoding Convolutional Block

Outputs

Inputs

Warp-U Map

Outputs

Depth Map

Warp-V Map

Image

Mask

Texture map

MaxPooling

Activation Sigmoid

Identity Block

Input Layer

Activation ReLu

Inverse DCT
Transform Layer

Figure 8: Proposed registration and reconstruction architecture RRNet-DCT.

11

Templates

Synthetic images

Real images

Table 1: Visualisation of templates and input images. Rows 1 to 4 show the 28 texture maps used. Row 5 shows
synthetically generated images with simulated deformations. Row 6 shows deformations of the real objects.

4.1.2 Synthetic datasets

We generate 25000 RGB images, depth and registration maps for each of the 28 template texture maps, for a rectangular
flat shape of 210 × 297 mm. The images are generated with random quasi-isometric deformations of the template
under random camera viewpoints. We used Blender [60], that uses physics-based simulation engines to create synthetic
deformations with different stiffness levels using position-based dynamics. We randomly defined anchor points and
tensile and compressive forces in randomized 3D directions to generate the deformations. All the simulation parameters
will be provided in the supplementary material. The camera pose is generated with a random rotation around the camera
optical axis within the interval of [−π4 ,

π
4] radians and random translations within the intervals tx ∈ [−150, 150] mm,

ty ∈ [−150, 150] mm and tz ∈ [100, 600] mm. We use a distant light model whose illumination angles are parametrised
with spherical coordinates drawn randomly in the interval [− π

18 ,
π
18] radians. We model the light reflectance components

using Blender’s Lambertian model for the diffuse component and the Cook-Torrance model for the specular component.
In addition, the image brightness is varied in the range [0.9, 1.1]. We also randomly change the background using
images from [61] and simulate occlusions by adding up to four synthetically generated discs with constant random
colours and random diameters in the range of [1, 10] pixels at random locations.

4.1.3 Real datasets

We include four real datasets, that correspond to the DS25, DS26, DS27 and DS28 texture maps. We thus have both
real data and synthetic data for these templates and we mainly used them for testing our methods. DS25 and DS26
are extracted from [22], that uses a Kinect V2 for the recordings. The data for DS28 was provided by [62], commonly
used for testing deformable methods. Finally, the data for DS27 was recorded using an Intel Real sense D435 depth
camera. Depth ground-truth is available for these datasets, as all of them used depth sensors to capture data. All the
recorded depth maps were aligned with the RGB images and resized to 135× 240 pixels. Registration ground-truth is
not available in these datasets. We show the intrinsic parameters of the depth cameras used in Table 3. All the real data
were generated using videos with different viewpoints and deformations.

12

4.1.4 Training and testing data splits

We train our DNN models using mainly synthetic data due to the impossibility of obtaining registration labels in real
data. Our synthetic dataset is composed of 25000 samples for each texture map (DS1S-DS28S). We save 80% of the
samples for training on each texture map, leaving the remaining 20% for testing. When training template-generic
approaches, like ours, we use the training set from the first 24 texture maps (i.e., DS1S to DS24S) to train the model,
and save templates DS25 to DS28 as unseen textures only for testing the systems and their generalization capacity. We
then evaluate their results on synthetic data (i.e., from DS1S to DS28S) and real data examples (i.e., DS25R to DS28R).
We train our template-specific method DeepSfT [22] individually for each texture map from DS25 to DS28. We train it
with synthetic data and then fine-tune it with real data using a semi-supervised training approach.

Sequence Samples Train Test

DS1S-DS28S 25000 · 28 20000 · 24 5000 · 28
DS25R 3100 2727 373
DS26R 2116 1884 232
DS27R 1285 975 310
DS28R 193 143 50

Table 2: Train and test split for each image sequence. ‘S’ stands for synthetically generated sequences and ‘R’ stands
for real sequences obtained with depth cameras.

4.2 Training Process Overview

We train the DTSNet model separately from RRNet and RRNet-DCT. In both cases we use synthetic data for training
the DNNs and both synthetic and real data for testing.

4.2.1 Template Segmentation Loss

DTSnet is trained end-to-end using the binary cross-entropy loss for each pixel, as is common in semantic segmentation.
The segmentation loss Lseg is defined as:

Lseg(θDTS) =−
B∑
i=1

H×W∑
u,v

(γi(u, v) log(γ̃i(u, v))+

(1− γi(u, v)) log(1− γ̃i(u, v))) ,

(9)

where γi(u, v) and γ̃i(u, v) represent respectively the ground-truth and estimated labels of pixel (u, v) in image i, and
B is the number of synthetic images used in the training batch.

4.2.2 Registration and Reconstruction Loss

The registration and reconstruction models RRNet and RRNet-DCT use the following compound loss for training:

L(θRR) = Lreg(θRR) + Lrec(θRR), (10)

where Lreg and Lrec are the registration and reconstruction losses respectively. The registration loss is:

Lreg(θRR) =
1

B H W

B∑
i=1

H×W∑
u,v

‖η̃i(u, v)− ηi(u, v)‖2, (11)

where η̂i is the estimated registration map, ηi is the labeled registration map, and B is the number of synthetic images
in the training batch. The reconstruction loss Lrec has three main terms:

Lrec(θRR) = Ld(θRR) + Ln(θRR) + λLs(θRR), (12)

where Ld corresponds to the depth error, Ln is a normal error and Ls is the total-variation smoothing prior. The depth
error Ld is the depth Mean Absolute Error (MAE):

Ld(θRR) =
1

B H W

B∑
i=1

H×W∑
u,v

|ρ̃i(u, v)− ρi(u, v)|, (13)

13

where ρ̂i is the estimated depth, ρi is the ground-truth depth and B is the batch number of image.

The term Ln computes the error between the estimated normal map and the ground-truth normal map:

Ln(θRR) =
1

B H W

B∑
i=1

H×W∑
u,v

|ñi(u, v)− ni(u, v)|, (14)

where n and ñ are the normals1 at pixel (u, v) for ground-truth and estimation respectively. Given ρ (or alternatively ρ̃),
the normal in equation (14) is:

n =
1√

ρ2u + ρ2v + 1
(ρu ρv 1)

>
, (15)

where ρu and ρv are the first-order derivatives of ρ with respect to u, v. We use finite difference approximations to
compute ρu and ρv with 3× 3 Sobel filter masks Su and Sv in directions u and v respectively:

ρu ≈ Su ∗ ρ ρv ≈ Sv ∗ ρ, (16)
where ∗ is 2D convolution. The approximation in (16) is necessary to make Ln fully differentiable with respect to θRR.

Finally, for the smoothing term Ls, we use total variation [63] to reduce the high frequency noise [64] of the reconstruc-
tion map:

Ls(θRR) =

B∑
i=1

‖∇ρ̃i‖21. (17)

The smoothing term influence is balanced by a hyper-parameter λ, which is empirically set to 10−9 in our experiments.

4.3 Training parameters and implementation details

We choose Adaptive Moment Estimation (ADAM) [65] as the training optimizer. To train the RRNet and RRNet-DCT
models, we choose the learning rate lr = 20−4, β1 = β2 = 0.9, 60 epochs and a batch size of 15 images. For DTSNet,
we configure the training with a learning rate of lr = 10−6, β1 = β2 = 0.9, 30 epochs and a batch size of 30. In both
cases all the weights are initialized with random uniform sampling [66]. We use Tensorflow [67] for the implementation
on an Nvidia GTX1080 GPU. The training of RRNet takes approximately 27 hours, while RRNet-DCT’s takes 13
hours.

4.4 Camera intrinsics standardisation

Our proposed system can cope with different cameras at testing, without the need of fine tuning the network weights.
This is achieved through the standardisation of camera parameters, as we previously showed in [22]. It is important to
highlight that RRNet (or RRNet-DCT) is trained with synthetically generated images with fixed camera intrinsics. After
training the network, the test images are adapted before being introduced in the network if the test camera intrinsic
parameters differ from those used during training. Otherwise, the network cannot recover the correct depth. We can
safely assume that the intrinsic parameters of the input image are known and reliable. This is a very common assumption
in state-of-the-art SfT methods. For some sensors, such as those on smartphones or industrial cameras, e.g., Kinect v1,
v2 and Intel Real Sense D435, the intrinsic parameters are provided by an application programming interface (API),
and this is also accurate. For all other cameras, intrinsic parameter estimation, also called camera calibration, is a very
stable, streamlined and reliable process, widely used in SfT [2, 68]. It is important to highlight that if the true intrinsics
and the calibration estimated ones are very different, it could produce some degradation in the system’s behaviour, but
in general, calibrations are sufficiently accurate to not cause any degradation. We emphasize that all prior DNN-based
SfT methods require a calibrated camera. Not only that, they also require the same intrinsics for training their networks
and testing their networks, which is strongly limiting. We have eliminated this requirement because our method handles
different camera intrinsics for training and inference. Our proposal to cope with this problem is to apply an affine
transform to the test images to adapt them to the intrinsics in the training camera. The affine transform is represented by
the homogeneous affine matrix A = KtrainK

−1
test, where Ktrain and Ktest are the intrinsic matrices of the training

and test cameras respectively. Once we obtain the converted test images, we clip them about their principal point and
use zero padding if needed. This allows us to obtain the input image resolution of the DTSNet and RRNet, which
is 135 × 240. Tables 3 and 4 show examples of intrinsics adaptation with three different cameras and their camera
intrinsic parameters.

1We compute the normal assuming the camera is weak-perspective and thus the 3D surface is recovered as (u, v, ρ(u, v)). The
exact normal in the perspective case involves a more complex expression. However, the weak-perspective approximation produces
similar results in terms of training the DNN.

14

Camera Resolution fu fv cu cv

Kinect V2 1920× 1080 1057.8 1064.0 947.6 530.4

Kinect V1 640× 480 589.3 589.8 321.1 235.5

Intel Real sense D435 1270× 720 915.5 915.5 645.5 366.3
Table 3: Camera intrinsics of the different real cameras used in our experiments. We use Kinect V2 for training and all
three cameras for testing.

Kinect V2 Kinect V1 Realsense D435

Corrected
Image

Reconstruction

RMSE 7.27 mm RMSE 3.37 mm RMSE 5.78 mm
0 20 mm

Registration (u)

Registration (v)

0 1 n.u.
Table 4: Experimental results with different camera models. n.u. stands for normalised units in the template texture
map.

5 Experimental Results

5.1 Compared methods and evaluation metrics

We compare our method with both classical and DNN-based state-of-the-art SfT methods.

5.1.1 Classical methods

We compare our SfT solution with three state-of-the-art classical SfT techniques. The first method [8] is referred to
as NGO15. It requires to be initialized close to the solution, and was mainly conceived for short-baseline scenarios.
NGO15’s code is provided by [8]. The second and third methods [4], CH17 and CH17R, have publicly available code.
CH17 is a classical SfT method that requires a known texture map to compute the registration between the template and
the input image using classical image features. CH17 is based on the analytical local SfT solution and CH17R includes
a refinement step based on non-convex iterative optimisation. These methods have important limitations, because they
are feature-based, thus requiring a high level of texture detail and requiring a method to match the texture, in this case
using SIFT [36] and KAZE [69] features. Additionally, they do not run in real-time and could only reconstruct the
visible textured region of the objects. Hence, they could not reconstruct the whole object if it has textureless or occluded
regions.

5.1.2 DNN-based methods

We test three state-of-the-art DNN-based SfT methods for comparison. The first method [20] is referred to as HDM-net.
This approach is a DNN-based method that does not require the object’s specific texture map to be known a priori.

15

However, it also cannot exploit the object’s specific texture for more accurate registration and reconstruction. It is also
limited by requiring the template’s shape model to be flat and represented by a regular mesh. We have reimplemened
this method as its code is not publicly available. We have adapted the input image size and the output mesh size to
match the size and complexity of our templates to train with each one of them. The second method [21] is an evolution
of [20] and is referred to as IsMo-GAN. It includes an adversarial approach for training. IsMo-GAN’s code is provided
by [21] and is trained with synthetic examples. The third method is our previous work, DeepSfT [22], which is a
template-specific SfT method that requires to be retrained for each template. We trained DeepSfT using both synthetic
and real training sets from Table 2, for the templates DS25, DS26, DS27 and DS28. We use the Root Mean Square
Error (RMSE) metric to evaluate reconstruction (in mm) and registration (in px).

5.2 Template segmentation test

We compare DTSNet with a classic semantic segmentation method based on U-Net [48], where the template texture
map is not included in the inputs. We train both DTSNet and U-Net with the training examples of our synthetic datasets
(DS1S-DS24S) of the seen template texture maps. Table 5 and Table 6 show the segmentation results with unseen
texture maps during training (DS25S-DS28S). We report the Intersection-Over-Union (IOU) for both models. Table 7
also shows qualitative segmentation results with real data (DS25R-DS28R), since we do not have segmentation labels
in these datasets.

Dataset Input Image DTSNet Segmentation UNET Segmentation DTSNet IOU U-Net IOU

DS26S 0.979 0.577

DS28S 0.961 0.635

DS25S 0.970 0.759

DS27S 0.976 0.793

Table 5: Synthetic data, unseen texture maps.

Sequence Samples DTSNet IOU U-Net IOU

DS25S 5000 0.931 0.732
DS26S 5000 0.946 0.810
DS27S 5000 0.925 0.724
DS28S 5000 0.938 0.693
Total 20000 0.935 0.739

Table 6: Quantitative evaluation on synthetic test data with rectangular templates.

The results show that DTSNet performs significantly better than the classic U-Net model, both qualitatively and
quantitatively. This indicates that the problem of segmenting the template is greatly simplified by allowing the

16

segmentation model to adapt to the texture map, as in DTSNet. It can be observed in Table 7 that the DTSNet

Dataset Input Image DTSNet Segmentation

DS25R

DS26R

DS27R

DS28R

Table 7: Qualitative evaluation of DTSNet using real data and unseen texture maps.

performance worsens with real data, possibly because of the render gap between our synthetic data and the real images,
yet being reasonably good, in any case much better than U-Net on synthetic data. Templates DS26 and DS28 show a
better segmentation, qualitatively very close to ground-truth. Templates DS25 and DS27 show poorer segmentations,
especially DS27. This is explained by the template’s poor texture, the occlusions produced by the hands, and the
illumination conditions.

5.3 Testing on trained textures

We show in Tables 8 and 9 the quantitative and qualitative results obtained with four randomly selected templates
(DS1, DS6, DS15, DS19) and the average accuracy for all the datasets. It is important to highlight that the methods
CH17 and CH17R use registration as an input to solve SfT, and in this case the registration comes from labelled data
(GTR), giving an advantage to these methods over the others. After analyzing Table 8, we can see that without using
registration labelled data, as in the case of CH17+GTR and CH17R+GTR, RRNet is the best method both in registration
and reconstruction error, with a mean error of 3.11 mm in reconstruction and 2.26 pixels in registration. It is followed
by its DCT approximation (RRNet-DCT), that logically reduces its performance because of the DCT compression and
the smaller model. The third method is the IsMo-GAN with a mean error of 7.25 mm. In this case NGO15, obtains the
worst results with a mean error of 19.82 mm, which is expected because it is here tested in a wide-baseline scenario for
which it was not originally designed.

In Table 9 we can observe the qualitative results obtained with RRNet and RRNet-DCT over the four randomly selected
textures DS1, DS6, DS15 and DS19. In the third, four and fifth columns we visualize the error maps both in registration
and reconstruction, decoupled in their u and v components. As can be seen, RRNet performs better than the RRNet-DCT
in all cases, which is logical because of the DCT approximation. In particular, it shows larger errors towards the edges
of the template, where more high frequencies are filtered with the DCT transformation. In spite of this, RRNet-DCT
obtains better results than many state-of-the-art methods and is several orders faster than RRNet and the other methods,
as shown in the experiments of section 5.7.

17

Registration RMSE (px) Reconstruction RMSE (mm)

Sequence Samples RRNet-DCT RRNet CH17+GTR CH17R+GTR NGO15 HDM-net IsMo-GAN RRNet-DCT RRNet

DS1S 5000 2.96 2.15 2.14 1.82 21.43 8.67 6.34 4.23 3.41
DS6S 5000 3.24 2.56 2.14 1.82 15.78 7.45 7.03 4.46 2.74
DS15S 5000 3.41 1.93 2.14 1.82 18.65 9.89 7.21 3.86 3.32
DS19S 5000 3.74 2.41 2.14 1.82 23.45 11.72 8.43 4.36 2.98
Total 120000 3.33 2.26 2.14 1.82 19.82 9.43 7.25 4.22 3.11

Table 8: Quantitative evaluation on synthetic data with trained rectangular templates. The results of CH17+GTR and
CH17R+GTR have the same error because they use the labelled registration, which is the same for all the databases, as
only texture changes.

Dataset Network Input Image Depth error Registration error (u) Registration error (v) Depth RMSE (mm) Warp u RMSE (px) Warp v RMSE (px)

DS1S RRNet 3.13 2.40 1.75

DS1S RRNet-DCT 5.75 3.24 3.08

DS6S RRNet 2.91 2.69 2.23

DS6S RRNet-DCT 5.78 4.52 2.32

DS15S RRNet 2.07 2.95 1.32

DS15S RRNet-DCT 4.07 4.32 2.36

DS19S RRNet 3.54 3.60 2.53

DS19S RRNet-DCT 5.02 3.96 5.53

Depth error colormap(mm) 0 20 mm
Registration error colormap(mm) 0 20 px

Table 9: Qualitative and quantitative evaluation examples on synthetic seen texture maps.

5.4 Testing on unseen texture maps

In this experiment we test and compare the proposed systems on the datasets using texture maps not seen during training.
These are DS25, DS26, DS27 and DS28, which correspond to different types of textures with a high variety in texture
content and colour. DS25, DS26 and DS28 are known from previous SfT works [22, 62]. We show in Tables 11, 10, 13,
and 14 the quantitative and qualitative results with real and synthetic data in the four proposed datasets.

Excluding CH17+GTR and CH17R+GTR, which are tested using registration ground-truth, Tables 11 and 10 show that
DeepSfT obtains the best results. We recall that this method is trained separately on each dataset and is thus expected to
perform well on them. Among the rest of DNN-based SfT methods, RRNet and RRNet-DCT obtain the best results
with registration and reconstruction errors around 3-4 px and 4-5 mm respectively. This is an excellent result, taking
into account that they have not seen the texture maps during training and they have to adapt to them at run-time. The
other methods are at least 30% less accurate than our models in this experiment. Again, NGO15 obtains the worst
results in this experiment. Table 12 shows the registration and reconstruction results for a related representative input
image.

We show the registration and reconstruction results with real data in Tables 13 and 14. Since registration ground-truth is
not available, we do not provide registration error with real data. In terms of reconstruction, DeepSfT is the best method

18

Dataset Network Input Image Depth error Registration error (u) Registration error (v) Depth RMSE (mm) Warp u RMSE (px) Warp v RMSE (px)

DS25S RRNet 4.61 4.82 2.21

DS25S RRNet-DCT 5.93 4.69 6.07

DS26S RRNet 1.96 3.14 1.98

DS26S RRNet-DCT 4.77 4.02 4.71

DS27S RRNet 1.71 2.51 1.68

DS27S RRNet-DCT 5.87 3.99 5.79

DS28S RRNet 2.63 3.72 1.61

DS28S RRNet-DCT 5.92 4.80 5.39

Depth error colormap(mm) 0 20 mm
Registration error colormap(mm) 0 20 px

Table 10: Qualitative and quantitative evaluation examples on synthetic unseen texture maps.

Registration RMSE (px) Reconstruction RMSE (mm)

Sequence Samples RRNet RRNet-DCT DeepSfT CH17+GTR CH17R+GTR NGO15 HDM-net IsMo-GAN DeepSfT RRNet RRNet-DCT

DS25S 5000 3.27 3.76 1.60 2.14 1.82 17.23 9.42 8.66 1.93 3.93 4.33
DS26S 5000 2.89 3.52 1.92 2.14 1.82 15.45 10.21 8.98 1.67 4.11 4.63
DS27S 5000 2.45 3.81 2.31 2.14 1.82 21.11 8.54 7.21 2.76 4.53 4.82
DS28S 5000 3.87 4.43 1.54 2.14 1.82 14.54 7.61 7.43 2.10 3.68 4.71
Total 20000 3.12 3.88 1.84 2.14 1.82 17.08 8.94 8.07 2.12 4.06 4.62

Table 11: Quantitative evaluation on synthetic test data with rectangular templates. The results of CH17+GTR and
CH17R+GTR have the same error because they use the labelled registration, which is the same for all the databases, as
only texture changes.

with a mean error of 7.32 mm, taking into account that it has been trained on each of the templates, including fine-tuning
with real data. In the second and third places we find RRNet and RRNet-DCT, with a mean error of 9.47 mm for RRNet.
The next places are occupied by DNN-based methods, the next best being IsMo-GAN followed by HDM-net. The last
places are occupied by the classical methods CH17+DOF, CH17R+DOF and NGO15, which obtains errors larger than
15 mm, that is a high error in terms of reconstruction. Although the reconstruction errors have increased with respect to
the ones in synthetic data, our methods achieve accurate reconstructions, similar to DeepSfT, in unseen templates. We
can see that the DNN-based SfT methods that do not exploit the texture map as an input (i.e. IsMo-GAN and HDM-net)
obtain rougher reconstructions compared to the proposed methods RRNet and RRNet-DCT, which use the texture maps.
By not exploiting the texture map, these methods can only use visual cues that are not specific to the object’s texture (in
particular shading effects and geometric contours). Those cues are certainly important, but they are not sufficient to
precisely register and reconstruct strongly deforming objects.

In terms of segmentation results, we can observe qualitatively that the segmentation masks obtained by DTSNet fit
both in shape and location with the deformed template of the input image. In terms of registration both RRNet and
RRNet-DCT obtain registration maps in the u and v axes that are qualitatively correct. In the case of RRNet-DCT,
higher variations are observed near the edges of the template, indicating a higher error. These variations are probably
due to the existence of high frequencies near the edges of the template. We highlight two remarkable cases, the first one

19

Ground-truth 3D surface DS1 Input Image

Method 3D Reconstruction & RMSE colormap Registration ROI & RMSE colormap

CH17+GTR

CH17R+GTR

CH17+DOF

CH17R+DOF

NGO15

HDM-net

IsMo-GAN

DeepSft

RRNet

DCT-RRNet

RMSE colormap 0 30 mm 0 1 n.u.
Table 12: Visual comparison of results computed from RRNet and other classical and DNN-based SfT methods. The
reconstructions are colored according to RMSE with heat maps (middle column). The registration results are visualised
with an overlay of the predicted template shape projected onto the input image. Registration errors are visualised with
heat maps (right column). n.u. stands for normalised texture map units.

20

Dataset Network Input Image Segmentation Registration map (u) Registration map (v) Depth error Depth RMSE (mm)

DS25R RRNet 7.61

DS25R RRNet-DCT 8.09

DS26R RRNet 7.27

DS26R RRNet-DCT 8.79

DS27R RRNet 5.78

DS27R RRNet-DCT 6.14

DS28R RRNet 3.37

DS28R RRNet-DCT 5.21

Error colormap mm 0 20 mm

Table 13: Qualitative and quantitative evaluation examples on real unseen texture maps.

Reconstruction RMSE (mm)
Sequence Samples CH17+DOF CH17R+DOF NGO15 HDM-net IsMo-GAN DeepSfT RRNet RRNet-DCT

DS25R 373 16.17 15.45 17.43 16.44 13.15 7.37 10.13 12.34
DS26R 232 20.34 19.24 23.54 15.87 11.72 9.51 11.20 13.01
DS27R 310 27.25 23.17 21.56 13.46 14.53 5.46 7.94 10.31
DS28R 50 17.21 16.94 27.43 17.92 15.91 6.97 8.63 9.52
Total 965 20.26 18.70 22.49 15.92 13.82 7.32 9.47 11.29

Table 14: Quantitative evaluation on real test data with rectangular templates.

is DS27R segmentation, which is worst than DS25, DS26 and DS28, possibly due to the template poor texture and the
lighting conditions. The second case is about DS26R with RRNet-DCT, where the registration map in the v axis looks
smooth but is incorrect.

5.5 Testing template specific methods on unseen templates

This experiment test non-generic methods like [22] on unseen templates, checking the response of this type of system
to different templates than the trained one. We show in Table 15, the results of [22] trained on the template DS26 and
evaluated on 2 examples of templates DS25 and DS27.

As can be seen, the system does not respond correctly to the provided inputs, obtaining noise maps with activations.
These maps show the raw activations of the network, with values that usually are filtered out thanks to their smaller
values, being lower than zero or part of the background.

21

Dataset Input Image Depth map Depth error (mm)

DS25R 437.25

DS25R 349.32

Table 15: DeepSfT evalued on non-trained templates.

5.6 Shape completion evaluation

Table 16 shows results of the DNN reconstruction and the ARAP shape completion post-processing in the templates
DS26, DS27 and DS28. We can see in the table from the left to right columns, the input image, the ground-truth, the
reconstruction provided by the DNN, the ground-truth and the DNN solution in the same space and finally the shape
completion results. The ground-truth and DNN results are provided by coloured point clouds, with the ground-truth in
red and the DNN prediction in blue. It is important to highlight that the ground-truth is provided in DS27 by a synthetic
simulation and in cases DS26 and DS28 by the ground-truth obtained using Kinect V2 and Kinect V1. The RMSE
errors are evaluated over the visible surface regions of the ground-truth after and before using shape completion and
denoted by DNN RMSE and ARAP RMSE respectively. The obtained errors are very similar, which means that the
shape completion is not hardly affected by the DNN predictions and is recovering the occluded areas according to
the visible reconstruction correctly. We highlight the DS27S case which is a very difficult case in which the shape
completion provides an approximate representation of the hard occluded regions near the edges, which makes the error
rise more than in the DS26R and DS28R cases. We see qualitatively in the last column that the provided 3D shapes are
representative of the ground-truth deformations of the object.

5.7 Timing experiments

In these experiments, we compare the frame rate and the number of trainable parameters among all the compared
methods. All the compared methods are benchmarked using a desktop PC with a single NVIDIA GTX-1080 GPU.
Tables 17 and 18 show the results in terms of frame rate and number of trainable parameters. The frame rate results
are evaluated in CPU and GPU, which makes an important difference for the classical methods and shows the level
of implementability of the system on low-cost platforms. In terms of speed, it is important to recall that none of the
classical methods evaluated (i.e. CH17, CH17R, and NGO15) achieve real-time, while in the case of the DNN-based
SfT methods DeepSfT, HDM-net, RRNet and RRNet-DCT achieve real-time in GPU, and only RRNet-DCT in CPU. In
terms of trainable parameters we only show the DNN-based methods, where we can show that the methods that use
less parameters are IsMo-GAN and HDM-net, followed in third place by RRNet-DCT. The most parameter intensive
methods are DeepSfT, R50F and RRNet. We recall that RRNet-DCT uses only 21.16% of the RRNet parameters, which
in terms of memory is a great improvement.

We conclude that the proposed methods RRNet and RRNet-DCT are faster than the classical and DNN-based methods,
without using a high quantity of trainable parameters, especially in RRNet-DCT. These speed monitoring results and
lower parameter count show the ability of RRNet-DCT to run on low-cost or embedded devices.

5.8 Monocular depth estimation comparison

We carried out experiments that tries to compare monocular reconstruction methods with RRNet. We propose two
state-of-the-art DNN-based monocular reconstruction methods, DenseDepth [30] and BTS [70]. We tested their
accuracy in recovering the object’s depth map with two types of experiments:

• The first experiment tested the two state-of-the-art methods trained previously in NYUDepth dataset [61],
which contains indoor scenes RGB-D images with different types of objects. The depth error is computed

22

Dataset Input Image Ground-truth DNN reconstruction DNN reconstruction Shape completion
output output vs GT

DS27S

300

-50
0150 50

100
150

100

250

50

0

-50

-100

200

300

-50
0150 50

100
150

100

250

50

0

-50

-100

200

300

-50
0150 50

100
150

100

250

50

0

-50

-100

200

DNN RMSE (mm)
4.12

ARAP RMSE (mm)
5.43

DS26R

450

-150
-100

-50100
0

400

50
100

50

350

0

-50

300

-100

-150

250

450

-150
-100

100 -50

400

0
50

100

50

350

0

-50

300

-100

-150

250

450

-150
-100

100 -50

400

0
50

100

50

350

0

-50

300

-100

-150

250

DNN RMSE (mm)
6.23

ARAP RMSE (mm)
6.41

DS28R
770

250

760

100200

750

150

740

100

730

50
50

720

0

710

0
700

-50

-100

-150

800

250

780

100200
150

760

100 50

740

50

720

0
0

700
-50

-100

-150

800

250

780

100200
150

760

100 50

740

50

720

0
0

700
-50

-100

-150

DNN RMSE (mm)
8.51

ARAP RMSE
9.12(mm) -

Table 16: Examples of RRNet results before and after shape completion.

DeepSfT CH17 CH17R DOF NGO15 HDM-net IsMo-GAN RRNet RRNet-DCT

GPU Time (fps) 20.40 - - 8.84 - 25.12 10.47 62.12 133.34
CPU Time (fps) 0.33 0.75 0.19 0.42 0.03 4.89 1.26 17.34 32.67

Table 17: Average framerate of the evaluated methods.

DeepSfT RRNet RRNet-DCT HDM-net IsMo-GAN

Training parameters 95,282,765 56,907,651 12,291,510 10,079,171 9,009,022
Table 18: Number of parameters of the DNN methods.

exclusively on the visible regions of the images and our images are adapted to match the intrinsics of [61],
making a fairer comparison. We can observe that the two monocular reconstruction methods have higher errors
than RRNet.

• The second experiment is to fine-tune the monocular reconstruction methods with all the real training data,
constraining these methods to detect only the real objects of the real dataset.

All the obtained results can be observed in Table 19 where the state-of-the-art fine-tuned versions are named as BTS+FT
and DenseDepth+FT. This second case shows an evident reduction of the error, but despite this, it is still several orders
higher than RRNet. With these two experiments, we show that BTS and Densedepth achieve a fairly accurate average
shape, but are not able to obtain results comparable to RRNet, despite training with only the objects of interest.

6 Conclusions

We have proposed RRNet, the first real-time (CPU and GPU), dense, wide-baseline and texture generic DNN-based SfT
solution. No previous DNN-based SfT method adapts to new textures without retraining, which makes our method a
step closer to a generic DNN-based SfT method, enabling it for real applications. Future work will aim to generalize
RRNet to multiple template shapes, volumetric and thin-shell, by feeding a shape representation as a new DNN input.

23

Sequence DenseDepth RMSE DenseDepth+FT RMSE BTS RMSE BTS+FT RMSE RRNet RMSE RRNet-DCT RMSE

DS25 78.12 26.72 69.94 22.61 10.13 12.34
DS26 93.87 51.25 89.22 14.76 11.20 13.01
DS27 101.65 74.38 121.48 65.40 7.94 10.31
DS28 395.53 22.47 84.45 12.34 8.63 9.52

Table 19: Monocular depth reconstruction methods comparison with RRNet and RRNet-DCT. All the errors are
measured in mm.

We will also research non-supervised approaches that do not require labelled data. We will use priors on the temporal
information, the spatial smoothness, the deformation model and the texture information of the deformed object. We will
study how to deal with uncalibrated cameras and how to self-calibrate at run-time.

References
[1] M. Salzmann, F. Moreno-Noguer, V. Lepetit, and P. Fua, “Closed-form solution to non-rigid 3d surface registration,”

European Conference on Computer Vision, pp. 581–594, 2008.

[2] A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D. Pizarro, “Shape-from-template,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 10, pp. 2099–2118, 2015.

[3] D. T. Ngo, J. Östlund, and P. Fua, “Template-based monocular 3d shape recovery using laplacian meshes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp. 172–187, 2016.

[4] A. Chhatkuli, D. Pizarro, A. Bartoli, and T. Collins, “A stable analytical framework for isometric shape-from-
template by surface integration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 5,
pp. 833–850, 2017.

[5] D. Casillas-Perez, D. Pizarro, D. Fuentes-Jimenez, M. Mazo, and A. Bartoli, “The isowarp: The template-based
visual geometry of isometric surfaces,” International Journal of Computer Vision, May 2021.

[6] F. Brunet, A. Bartoli, and R. I. Hartley, “Monocular template-based 3d surface reconstruction: Convex inextensible
and nonconvex isometric methods,” Computer Vision and Image Understanding, vol. 125, pp. 138–154, 2014.

[7] T. Collins and A. Bartoli, “Realtime shape-from-template: System and applications.” in International Symposium
on Mixed and Augmented Reality, 2015, pp. 116–119.

[8] D. T. Ngo, S. Park, A. Jorstad, A. Crivellaro, C. D. Yoo, and P. Fua, “Dense image registration and deformable
surface reconstruction in presence of occlusions and minimal texture,” in IEEE International Conference on
Computer Vision, 2015, pp. 2273–2281.

[9] A. Malti, A. Bartoli, and T. Collins, “A pixel-based approach to template-based monocular 3d reconstruction of
deformable surfaces,” in Proceedings of the IEEE International Conference on Computer Vision, 11 2011, pp.
1650–1657.

[10] D. Casillas-Perez, D. Pizarro, D. Fuentes-Jimenez, M. Mazo, and A. Bartoli, “Equiareal shape-from-template,”
Journal of Mathematical Imaging and Vision, vol. 61, no. 5, pp. 607–626, 2019.

[11] A. Malti, R. Hartley, A. Bartoli, and J.-H. Kim, “Monocular template-based 3d reconstruction of extensible
surfaces with local linear elasticity,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 1522–1529.

[12] A. Malti, A. Bartoli, and R. Hartley, “A linear least-squares solution to elastic shape-from-template,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1629–1637.

[13] B. Koo, E. Ozgur, B. L. Roy, E. Buc, and A. Bartoli, “Deformable registration of a preoperative 3d liver volume
to a laparoscopy image using contour and shading cues,” in Medical Image Computing and Computer Assisted
Intervention. Springer International Publishing, 2017, pp. 326–334.

[14] D. Pizarro and A. Bartoli, “Feature-based deformable surface detection with self-occlusion reasoning,” Interna-
tional Journal of Computer Vision, vol. 97, no. 1, pp. 54–70, 2012.

[15] V. Gay-Bellile, A. Bartoli, and P. Sayd, “Direct estimation of nonrigid registrations with image-based self-occlusion
reasoning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 87–104, Jan 2010.

[16] T. Collins, P. Mesejo, and A. Bartoli, “An analysis of errors in graph-based keypoint matching and proposed
solutions,” in European Conference on Computer Vision. Springer, 2014, pp. 138–153.

24

[17] T. Collins, A. Bartoli, N. Bourdel, and M. Canis, “Robust, real-time, dense and deformable 3d organ tracking
in laparoscopic videos,” in International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2016, pp. 404–412.

[18] A. Agudo, F. Moreno-Noguer, B. Calvo, and J. M. M. Montiel, “Sequential non-rigid structure from motion using
physical priors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 5, pp. 979–994,
2016.

[19] A. Pumarola, A. Agudo, L. Porzi, A. Sanfeliu, V. Lepetit, and F. Moreno-Noguer, “Geometry-aware network for
non-rigid shape prediction from a single view,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4681–4690.

[20] V. Golyanik, S. Shimada, K. Varanasi, and D. Stricker, “Hdm-net: Monocular non-rigid 3d
reconstruction with learned deformation model,” CoRR, vol. abs/1803.10193, 2018. [Online]. Available:
http://arxiv.org/abs/1803.10193

[21] S. Shimada, V. Golyanik, C. Theobalt, and D. Stricker, “IsMo-GAN: Adversarial learning for monocular non-rigid
3d reconstruction,” in Computer Vision and Pattern Recognition Workshops, 2019.

[22] D. Fuentes-Jimenez, D. Casillas-Perez, D. Pizarro, T. Collins, and A. Bartoli, “Deep shape-from-template:
Wide-baseline, dense and fast registration and deformable reconstruction from a single image,” 2018.

[23] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolution of optical flow
estimation with deep networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2462–2470.

[24] A. Dosovitskiy, P. Fischery, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and
T. Brox, “Flownet: Learning optical flow with convolutional networks,” in Proceedings of the IEEE International
Conference on Computer Vision. IEEE Computer Society, 2015, pp. 2758–2766.

[25] X. Liu, C. Qi, and L. Guibas, “Flownet3d: Learning scene flow in 3d point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 06 2019, pp. 529–537.

[26] W. Wu, Z. Y. Wang, Z. Li, W. Liu, and L. Fuxin, “Pointpwc-net: Cost volume on point clouds for (self-) supervised
scene flow estimation,” in European Conference on Computer Vision. Springer, 2020, pp. 88–107.

[27] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with a common multi-scale
convolutional architecture,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.
2650–2658.

[28] R. Garg, V. K. B.G., G. Carneiro, and I. Reid, “Unsupervised cnn for single view depth estimation: Geometry to
the rescue,” in European Conference on Computer Vision. Springer International Publishing, 2016, pp. 740–756.

[29] F. Liu, C. Shen, G. Lin, and I. D. Reid, “Learning depth from single monocular images using deep convolutional
neural fields.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 10, pp. 2024–2039,
2016.

[30] I. Alhashim and P. Wonka, “High quality monocular depth estimation via transfer learning,” arXiv e-prints, vol.
abs/1812.11941, 2018. [Online]. Available: https://arxiv.org/abs/1812.11941

[31] R. Alp Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose estimation in the wild,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7297–7306.

[32] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural networks,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 1653–1660.

[33] J. Bednarik, P. Fua, and M. Salzmann, “Learning to reconstruct texture-less deformable surfaces from a single
view,” in International Conference on 3D Vision, 2018, pp. 606–615.

[34] D. Yang and J. Deng, “Shape from shading through shape evolution,” 2017.

[35] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in European Conference on Computer
Vision, vol. 3951, 07 2006, pp. 404–417.

[36] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 91–110, 2004.

[37] J. Pilet, V. Lepetit, and P. Fua, “Fast non-rigid surface detection, registration and realistic augmentation,” Interna-
tional Journal on Computer Vision, vol. 76, no. 2, pp. 109–122, February 2008.

[38] M. Salzmann and P. Fua, “Reconstructing sharply folding surfaces: A convex formulation,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 1054–1061.

25

http://arxiv.org/abs/1803.10193
https://arxiv.org/abs/1812.11941

[39] M. Perriollat, R. Hartley, and A. Bartoli, “Monocular template-based reconstruction of inextensible surfaces,”
International Journal of Computer Vision, vol. 95, no. 2, pp. 124–137, 2011.

[40] E. Özgür and A. Bartoli, “Particle-sft: A provably-convergent, fast shape-from-template algorithm,” International
Journal of Computer Vision, vol. 123, no. 2, pp. 184–205, 2017.

[41] N. Haouchine and S. Cotin, “Template-based monocular 3D recovery of elastic shapes using lagrangian multipliers,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, July 2017.

[42] N. Haouchine, J. Dequidt, M.-O. Berger, and S. Cotin, “Single view augmentation of 3D elastic objects,” in
International Symposium on Mixed and Augmented Reality. IEEE, 2014, pp. 229–236.

[43] A. Agudo and F. Moreno-Noguer, “Simultaneous pose and non-rigid shape with particle dynamics,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2179–2187.

[44] Q. Liu-Yin, R. Yu, L. Agapito, A. Fitzgibbon, and C. Russell, “Better together: Joint reasoning for non-rigid 3d
reconstruction with specularities and shading,” British Machine Vision Conference, pp. 42.1–42.12, 2016.

[45] A. Tsoli and A. A. Argyros, “Patch-based reconstruction of a textureless deformable 3d surface from a single rgb
image,” in IEEE/CVF International Conference on Computer Vision Workshop, 2019, pp. 4034–4043.

[46] J. Bednarik, P. Fua, and M. Salzmann, “Learning to reconstruct texture-less deformable surfaces from a single
view,” in 2018 International Conference on 3D Vision, 2018, pp. 606–615.

[47] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for
image segmentation.” CoRR, vol. abs/1511.00561, 2015.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in
Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015,
pp. 234–241.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[50] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Transactions on Computers, vol. C-23,
no. 1, pp. 90–93, 1974.

[51] N.Ahmed, T.Natarajan, and K.R.Rao, “Discrete cosine transform,” IEEE Transactions on Computers, vol. C-23,
no. 1, pp. 90–93, 1974.

[52] I. Ito, “A new pseudo-spectral method using the discrete cosine transform,” Journal of Imaging, vol. 6, no. 4,
p. 15, Mar. 2020. [Online]. Available: https://doi.org/10.3390/jimaging6040015

[53] L. George, “Audio compression based on discrete cosine transform, run length and high order shift encoding,”
International Journal of Engineering and Innovative Technology, vol. 4, pp. 45–51, 07 2014.

[54] A. Raid, W. Khedr, M. El-dosuky, and W. Ahmed, “Jpeg image compression using discrete cosine transform - a
survey,” International Journal of Computer Science and Engineering Survey, vol. 5, 05 2014.

[55] M. Servais and G. de Jager, “Video compression using the three dimensional discrete cosine transform (3d-dct),”
Proceedings of the South African Symposium on Communications and Signal Processing, pp. 27–32, 1997.

[56] M. Alsayyh, D. Mohamad, and W. Abu-Ulbeh, “Image compression using discrete cosine transform and discrete
wavelet transform,” Journal of Information Engineering and Applications, vol. 3, pp. 54–58, 01 2013.

[57] V. P. Vishwakarma, S. Pandey, and M. N. Gupta, “A novel approach for face recognition using dct coefficients re-
scaling for illumination normalization,” in International Conference on Advanced Computing and Communications,
2007, pp. 535–539.

[58] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in Proceedings of the fifth Eurographics
symposium on Geometry processing, 2007, pp. 109–116.

[59] S. Parashar, D. Pizarro, A. Bartoli, and T. Collins, “As-rigid-as-possible volumetric shape-from-template,” in The
IEEE International Conference on Computer Vision, December 2015.

[60] Blender Online Community, Blender - a 3D modelling and rendering package, Blender Foundation, Blender
Institute, Amsterdam. [Online]. Available: http://www.blender.org

[61] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation and support inference from rgbd
images,” in European Conference on Computer Vision, 2012.

[62] Computer Vision Laboratory, Deformable Surface ReconstructionDatabase, Computer Vision Laboratory, Ecole
Polytechnique Federale de Lausanne–EPFL. [Online]. Available: https://cvlab.epfl.ch/data/data-dsr-index-php/

26

https://doi.org/10.3390/jimaging6040015
http://www.blender.org
https://cvlab.epfl.ch/data/data-dsr-index-php/

[63] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D:
Nonlinear Phenomena, vol. 60, no. 1, pp. 259 – 268, 1992.

[64] D. Strong and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse
Problems, vol. 19, no. 6, pp. S165–S187, nov 2003.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference on Learning
Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[66] Y. B. Xavier Glorot, Antoine Bordes, “Understanding the difficulty of training deep feedforward neural networks,”
Procedings of Machine Learning Research, 2010.

[67] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, and et al., “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[68] A. Bartoli, D. Pizarro, and T. Collins, “A robust analytical solution to isometric shape-from-template with focal
length calibration,” in 2013 IEEE International Conference on Computer Vision, 2013, pp. 961–968.

[69] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in Proceedings of European Conference on
Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 214–227.

[70] J. H. Lee, M. Han, D. W. Ko, and I. H. Suh, “From big to small: Multi-scale local planar guidance for monocular
depth estimation,” CoRR, vol. abs/1907.10326, 2019.

A Detailed architecture

27

http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/

Layer num Type Output size Kernels/Activation

1 Input (135,240,3) –

2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Leaky Relu(alpha=0.1)

5 Max Pooling 2D (45,80,64) (3,3)

6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3) stride=(1,1)

7 Encoding identity Block (45,80,[64, 64, 256]) (3,3)

8 Encoding Convolutional Block (23,40,[128, 128, 512]) (3,3)

9-10 Encoding identity Block x 2 (23,40,[128, 128, 512]) (3,3)

11 Encoding Convolutional Block (12,20,[256, 256, 1024]) (3,3)

12-14 Encoding identity Block x 3 (12,20,[256, 256, 1024]) (3,3)

15 Decoding Convolutional Block (24,40,[1024, 1024, 256]) (3,3)

16 Cropping 2D (23,40,128) (1,0)

17-18 Encoding identity Block x 2 (23,40,[1024, 1024, 256]) (3,3)

19 Concatenate Layer (23,40,768)

20 Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)

21 Cropping 2D (45,80,128) (1,0)

22-23 Encoding identity Block x 2 (45,80,[512, 512, 128]) (3,3)

24 Concatenate Layer (45,80,384)

25 Decoding Convolutional Block (90,160,[256, 256, 64]) (3,3)

26-27 Encoding identity Block x 2 (90,160,[256, 256, 64]) (3,3)

28 Bilinear resize Layer (135,240,64)

29 Concatenate Layer (135,240,128)

30 Convolution 2D (135,240,64) (3,3)
31 Batch Normalisation (135,240,64) –
32 Activation (135,240,64) Leaky Relu(alpha=0.1)

33 Convolution 2D (135,240,2) (3,3)
34 Activation (135,240,2) Linear
20 Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)

21 Cropping 2D (45,80,128) (1,0)

22-23 Encoding identity Block x 2 (45,80,[512, 512, 128]) (3,3)

24 Concatenate Layer (45,80,384)

Number of parameters 56,907,651
Table 20: Proposed segmentation architecture for DTSNet.

28

Layer num Type Output size Kernels/Activation

1 Input (135,240,3) –

2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Leaky Relu(alpha=0.1)

5 Max Pooling 2D (45,80,64) (3,3)

6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3) stride=(1,1)

7 Encoding identity Block (45,80,[64, 64, 256]) (3,3)

8 Encoding Convolutional Block (23,40,[128, 128, 512]) (3,3)

9-10 Encoding identity Block x 2 (23,40,[128, 128, 512]) (3,3)

11 Encoding Convolutional Block (12,20,[256, 256, 1024]) (3,3)

12-14 Encoding identity Block x 3 (12,20,[256, 256, 1024]) (3,3)

15 Decoding Convolutional Block (24,40,[1024, 1024, 256]) (3,3)

16 Cropping 2D (23,40,128) (1,0)

17-18 Encoding identity Block x 2 (23,40,[1024, 1024, 256]) (3,3)

19 Concatenate Layer (23,40,768)

20-A Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)

21-A Cropping 2D (45,80,128) (1,0)

22-23-A Encoding identity Block x 2 (45,80,[512, 512, 128]) (3,3)

24-A Concatenate Layer (45,80,384)

25-A Decoding Convolutional Block (90,160,[256, 256, 64]) (3,3)

26-27-A Encoding identity Block x 2 (90,160,[256, 256, 64]) (3,3)

28-A Bilinear resize Layer (135,240,64)

29-A Concatenate Layer (135,240,128)

30-A Convolution 2D (135,240,64) (3,3)
31-A Batch Normalisation (135,240,64) –
32-A Activation (135,240,64) Leaky Relu(alpha=0.1)

33-A Convolution 2D (135,240,2) (3,3)
34-A Activation (135,240,2) Linear
20-A Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)

21-A Cropping 2D (45,80,128) (1,0)

22-23-A Encoding identity Block x 2 (45,80,[512, 512, 128]) (3,3)

24-A Concatenate Layer (45,80,384)

25-B Decoding Convolutional Block (90,160,[256, 256, 64]) (3,3)

26-27-B Encoding identity Block x 2 (90,160,[256, 256, 64]) (3,3)

28-B Bilinear resize Layer (135,240,64)

29-B Concatenate Layer (135,240,128)

30-B Convolution 2D (135,240,64) (3,3)
31-B Batch Normalisation (135,240,64) –
32-B Activation (135,240,64) Leaky Relu(alpha=0.1)

33-B Convolution 2D (135,240,2) (3,3)
34-B Activation (135,240,2) Linear

Number of parameters 56,907,651
Table 21: Proposed registration and reconstruction architecture RRNet.

29

Layer num Type Output size Kernels/Activation

1 Input (135,240,3) –

2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Leaky Relu(alpha=0.1)

5 Max Pooling 2D (45,80,64) (3,3)

6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3) stride=(1,1)

7 Zero Padding (49,86,256) (2,3) stride=(1,1)

8 Encoding identity Block (49,86,[64, 64, 256]) (3,3)

9 Encoding Convolutional Block (25,43,[128, 128, 512]) (3,3)

10 Zero Padding (27,47,512) (1,2) stride=(1,1)

11-12 Encoding identity Block x 2 (27,47,[128, 128, 512]) (3,3)

13 Encoding Convolutional Block (14,24,[256, 256, 1024]) (3,3)

14 Zero Padding (16,30,1024) (1,3)

15-17 Encoding identity Block x 3 (16,30,[256, 256, 1024]) (3,3)

18 Convolution 2D (16,30,512) (3,3) Leaky Relu(alpha=0.1)

19 Convolution 2D (16,30,256) (3,3) Leaky Relu(alpha=0.1)

20 Convolution 2D (16,30,128) (3,3) Leaky Relu(alpha=0.1)

21 Convolution 2D (16,30,64) (3,3) Leaky Relu(alpha=0.1)

18 Convolution 2D (16,30,18 · 3) (3,3) Linear
11 Inverse DCT Transform (135,240,3)

Number of parameters 12,291,510
Table 22: Proposed registration and reconstruction architecture RRNet-DCT.

30

	Introduction
	Previous Work
	Vision problems related to SfT
	Classical decoupled SfT methods
	Classical integrated SfT methods
	DNN-based SfT methods

	Methodology
	Scene geometry
	DNN architecture
	Segmentation Network
	Registration-Reconstruction Network
	The RRNet architecture
	The RRNet-DCT architecture
	Recovering occluded surface regions with ARAP shape completion

	DNN Training
	Datasets
	Templates
	Synthetic datasets
	Real datasets
	Training and testing data splits

	Training Process Overview
	Template Segmentation Loss
	Registration and Reconstruction Loss

	Training parameters and implementation details
	Camera intrinsics standardisation

	Experimental Results
	Compared methods and evaluation metrics
	Classical methods
	DNN-based methods

	Template segmentation test
	Testing on trained textures
	Testing on unseen texture maps
	Testing template specific methods on unseen templates
	Shape completion evaluation
	Timing experiments
	Monocular depth estimation comparison

	Conclusions
	Detailed architecture

