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Abstract Purpose. The visual examination of colonoscopic images fails to
extract precise geometric information of the colonic surface. Reconstructing
the 3D surface of the colon from colonoscopic image sequences may thus add
valuable clinical information. We address this problem of extracting precise
spatio-temporal 3D structure information from colonoscopic images.
Methods. Using just the intrinsically calibrated monocular image stream, we
develop a technique to compute the depth of certain feature points that have
been tracked across images. Our method uses the prior knowledge of an ap-
proximate geometry of the colon, called the Tubular Topology Prior (TTP).
It works by fitting a deformable cylindrical model to points reconstructed
independently by Non-Rigid Structure-from-Motion (NRSfM), compromising
between the data term and a novel tubular smoothing prior. Our method
represents the first method ever to exploit a very weak topological prior to im-
prove NRSfM. As such, it lies in-between standard NRSfM, which does not use
a topological prior beyond the mere plane, and Shape-from-Template (SfT),
which uses a very strong prior as a full deformable 3D object model.
Results. We validate our method on both synthetic images of tubular struc-
tures and real colonoscopic data. Our method improves the results obtained by
existing NRSfM methods by 71.74% on average on synthetic data and succeeds
in obtaining 3D reconstruction from a real colonoscopic sequence defeating the
existing methods.
Conclusion. Colonoscopic 3D reconstruction is a difficult problem, which is
yet unresolved by the existing methods from computer vision. Our proposed
dedicated NRSfM method and experiments show that the visual motion might
be the right visual cue to use in colonoscopy.
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1 Introduction

Reconstructing the 3D colonic surface and localising the colonoscope’s distal
end from the video stream would aid the spatial understanding of lesions and
hence diagnosis. Using NRSfM [4] is thus an appealing idea. Although low-
rank NRSfM was attempted on a short beating heart sequence [8], general
NRSfM methods have not been applied to endoscopy data in the literature.
Modern isometric methods [5,11,6] performed poorly or failed in our exper-
iments, even in simple cases. Stronger template-based methods such as [13]
can unfortunately not be used, because a matchable template is not available.
Many recent techniques estimate depth from a single or a stream of monocular
images using deep learning [14]. The use of these methods in endoscopy is un-
der development. The main problem is the unavailability of labeled data, which
prevents conventional supervised learning. Promising attempts were made to
train with synthetic data, for which there is a domain adaptation problem, and
with self-supervised learning [9]. Unfortunately, there is yet no publicly avail-
able monocular 3D reconstruction network for endoscopy. Shape-from-Shading
(SfS) methods use a single image to reconstruct the 3D shape of a surface [15,
1]. Endoscopy is a special case for SfS because the attached light source is
approximately colocated with the camera and can be calibrated. SfS methods
have been applied in laparoscopy [7], which showed that ambiguities remained
on the reconstructed surface. In addition, the colon surface typically presents
strong specular reflections, which may substantially degrade SfS results. SfS
is thus not adapted to the problem of 3D reconstruction in colonoscopy.

Overall, NRSfM thus seems to be a promising and well adapted approach
to the problem, but the existing techniques are not ready to cope with the
difficulties posed by colonoscopy. Colonoscopic images are particularly diffi-
cult with NRSfM, because the camera tends to move mainly along its optical
axis, creating unstable geometric configurations, and the spreading of the cor-
respondences is often uneven within the images, because of the locally weak
texture. We propose to strengthen NRSfM by exploiting the known topology of
the surface. Topological information has not been used in NRSfM. We specif-
ically study the TTP. Combined with surface smoothness, TTP forms a de-
formable geometric model, which is tube-shaped in some reference coordinate
system. We provide the first isometric NRSfM method for a tubular surface
as a monocular camera moves through its inner volume, as in colonoscopy.

2 Proposed Tubular 3D Reconstruction Method

As all NRSfM methods, ours takes M point correspondences over N images
and the camera’s intrinsic parameters as inputs. It computes a set of N surfaces
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Fig. 1 Summary of the proposed four-step framework for parameterised deformable surface
reconstruction of tubular objects, illustrated on synthetically generated data. We use this
framework to reconstruct the structure of the colon from colonoscopic images.

corresponding to a deformed tube in camera coordinates. It works in four steps,
as illustrated in Fog. 1.

Step 1: depth initialisation. We use the NRSfM method [6] to bootstrap our
pipeline, by finding an initial coarse reconstruction. We use the public imple-
mentation of [6]. As shown in Sec. 3, this provides an approximate estimate
of the scene structure and suffers from inaccuracies. The next steps of our
pipeline considerably improve the reconstruction results.

Step 2: initial unconstrained reconstruction. The initial unconstrained recon-
struction is an intermediate step, whose result is a set of N 3D point clouds.
It follows the principle of isometric NRSfM. Specifically, it is a zeroth-order
method, because differential correspondences are unstable in colonoscopy. In
other words, it exploits the raw point correspondences without additional in-
formation. Isometry is modeled by preserving the distance between neighbour-
ing 3D points across the point clouds. The inter-point distances are however
unknown. Our method thus alternates between computing the depth of all im-
age points and the inter-point distances. The two steps are repeated until the
estimates converge. The notion of point neighbourhood is defined by a Nearest-
Neighbour Graph (NNG), whose nodes are the points and whose edges define
the neighbours [6]. The NNG depends on the user-chosen number of neigh-
bours, which we chose using a specific experiment given below. The alternate
computation of depth and inter-point distance weakly enforces the concept of
Maximum Depth Heuristics (MDH), proposed by [12] and later extended to
NRSfM by [6], by accepting depth updates that push the current estimate of
depth away from the camera centre and rejecting every other possible update.
Convergence is achieved when the average update on the inter-point distances
falls below a predefined threshold t = 10−4 or exceeds a maximum number of
iterations h = 14 in our experiments.

Step 3: alignment of TTP. We align each of the N reconstructed 3D point
clouds from Step 2 to the TTP. This is a problem of finding the rigid transfor-
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mation between a tubular surface and a point cloud, which we solve with the
Iterative Closest Point (ICP) algorithm. The TTP is defined as a unit circular
cylinder in fix world coordinates. We sample it semi-densely using O(1000)
points and run a conventional point-to-point ICP [2].

Step 4: tubular parameterisation. The tubular parameterisation upgrades the
reconstructed 3D point clouds to smooth surfaces of tubular topology. We
represent such a surface by the composition of two maps. The first map, from
2D to 3D, is fixed. It embeds a planar template to a circular cylinder with
unit radius. The second map, from 3D to 3D, deforms the cylinder and is
represented by a harmonic spline, the 3D equivalent of the classical Thin-Plate
Spline, for which we use as many control points as reconstructed 3D points.
We fit the maps to the 3D point clouds by minimising the Euclidean distance
between the control points and the corresponding reconstructed 3D points
and the bending of the unit-circular cylinder, with the Levenberg-Marquardt
algorithm.

3 Experimental Results

Synthetic sequences. We simulated two sequences, NR-Synth-1 and NR-Synth-
2, using Blender. They contain 69 and 79 frames respectively and 160 3D points
each. Our proposed NRSfM method (second step of our pipeline) is denoted
IsoSfM0-Alt (for 0-th order, Alternation). We compare it with the authors’s
implementation of IsoSfMH [5] (for homography based), IsoSfM2 [11] (for
2-nd order) and IsoSfM0-SOCP [6] (for 0-th order using Second-Order Cone
Programming [3]). We use the mean Euclidean distance ep between the recon-
structed 3D points and the groundtruth as primary evaluation metric and the
Euclidean distance ec between the reconstructed 3D points and the nearest 3D
points on the groundtruth shape for error visualisation. A visual comparison
of some random representative frames are shown in figure 2. For NR-Synth-
1, IsoSfM0-Alt is 72.76%, 72.75% and 59.93% better in ep than IsoSfMH,
IsoSfM2 and IsoSfM0-SOCP respectively. IsoSfM2 fails to complete the
reconstruction of NR-Synth-2 (the authors’ Matlab code crashed while solving
for the depth of 3D points), but IsoSfM0-Alt is 80.09% and 73.16% better
in ep than IsoSfMH and IsoSfM0-SOCP respectively. This is a significant
improvement. As shown in figure 2, all three compared state-of-the-art meth-
ods fail to recover the cylindrical shape of the data and reconstruct a nearly
planar surface instead. It must be noted that the boot-strapping of depth us-
ing IsoSfM0-SOCP, as proposed in step 1 of our pipeline, although making
the results precisely reproducible, does not constitute a necessary requirement
for NRSfM using step 2. To highlight this aspect, we present a variant of our
proposed method by replacing the depth initialisation of step 1 by random
initialisation of depth (denoted by IsoSfM0-Alt-II). The results of compari-
son between IsoSfM0-SOCP and IsoSfM0-Alt-II are given in figure 4 for a
varying number of neighbourhood points of the NNG. This shows that using at
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Fig. 2 Comparison of initial unconstrained reconstruction (step 2) results, synthetic se-
quences. Top row: simulation setup and sample frames. Other parts: reconstruction results
from some randomly sampled representative frames; the green and red dots are the recon-
structed and groundtruth points respectively.

least 3 neighbours gives a satisfying result. The parameterised reconstruction
using TTP (step 4 of our pipeline) is shown in figure 3.

Real sequence. We extracted a short sequence of 36 frames from the endoscopy
image database for research and training, approval UK IRAS Project ID 236056,
which was kindly provided to us by UCL, and manually annotated 50 points
across the sequence. The points are unevenly spread owing to the lack of tex-
ture. We ran all four methods. IsoSfMH and IsoSfM2 failed to complete
the reconstruction (similarly to NR-Synth-2 ). IsoSfM0-SOCP produced a
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Fig. 3 Final reconstructed surface using tubular parameterisation (step 4), for the proposed
framework on synthetic sequences.
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Fig. 4 Comparison of IsoSfM0-SOCP with IsoSfM0-Alt-II across a varying number of
neighbours of the NNG for NR-Synth-1 (a) and NR-Synth-2 (b).

3D reconstruction flatter than IsoSfM0-Alt’s, as shown in figure 5. The pa-
rameterised reconstruction using TTP is shown in figure 5.

4 Conclusion

By developing a new method exploiting the tubular topology, we have been
able to give initial results of NRSfM in colonoscopy. These results are very
encouraging. Using NRSfM is important: as opposed to deep learning, which
extrapolates from the training process, NRSfM uses geometric reasoning and
can thus obtain a quantitatively certified result with an uncertainty charac-
terisation. The results of NRSfM may also be used to produce training data
for deep learning. Future work will involve using automatic correspondences,
developing an initialisation and a refinement method exploiting the topology

Input 
Image

Input 
Image

Front View

Side View

Front View

Side View

IsoSfM0-SOCP
IsoSfM0-Alt

IsoSfM0-SOCP
IsoSfM0-Alt

Principal axis

Reconstructed 
3D points

C
am

er
a 

ce
nt

er
 to

 th
e 

le
ft 

of
 

ev
er

y 
im

ag
e 

of
 th

e 
si

de
-v

ie
w

Reconstructed 
3D points

Fr
am

e 
#1

Fr
am

e 
#3

6

Prin
cip

al a
xis

Reconstructed mesh Reconstructed mesh

Reconstructed 
3D points

Reconstructed 
3D points

Fitting the TTP to 
reconstructed 3D points

Fitting the TTP to 
reconstructed 3D points

Reconstruction for Frame #1 Reconstruction for Frame #36

Fig. 5 Comparison of 3D reconstruction results, real sequence, with the final reconstructed
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prior and comparing to deep learning methods such as [10] on public bench-
marks.
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