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Abstract

Cameras on portable devices are manufactured with a

rolling-shutter (RS) mechanism, where the image rows (aka.

scanlines) are read out sequentially. The unknown cam-

era motions during the imaging process cause the so-called

RS effects which are solved by motion assumptions in the

literature. In this work, we give a solution to the abso-

lute pose problem free of motion assumptions. We cate-

gorically demonstrate that the only requirement is motion

smoothness instead of stronger constraints on the camera

motion. To this end, we propose a novel mathematical ab-

straction for RS cameras observing a planar scene, called

the scanline-homography, a 3× 2 matrix with 5 DOFs. We

establish the relationship between a scanline-homography

and the corresponding plane-homography, a 3 × 3 ma-

trix with 6 DOFs assuming the camera is calibrated. We

estimate the scanline-homographies of an RS frame us-

ing a smooth image warp powered by B-Splines, and re-

cover the plane-homographies afterwards to obtain the

scanline-poses based on motion smoothness. We back our

claims with various experiments. Code and new datasets:

https://bitbucket.org/clermontferrand/

planarscanlinehomography/src/master/.

1. Introduction

Many portable devices use cameras based on CMOS sen-

sors equipped with a rolling-shutter (RS) mechanism, ow-

ing to its low-power consumption, low-price and high frame

rate. In RS cameras, each scanline is exposed and read out

sequentially [14] during imaging. This is different from

cameras based on CCD sensors which mostly use a global-

shutter (GS) mechanism that reads out all pixel rows at the

same time. The RS mechanism becomes troublesome when

imaging highly dynamic environments or when the camera

itself undergoes high-speed motions when reading out those

scanlines. In general, the effects are two-folds:

1) An RS camera violates the conventional pinhole cam-
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Figure 1. RS image rectification using a GS image as the template.

era model used in most vision algorithms [17], as most

of them are derived based on the GS and the pinhole

camera model [16].

2) An RS camera can generate images with unintended

artefacts, e.g., distortion and blur.

The first effect leads to research in RS geometry [9, 14,

26, 43] and the second effect to methods for RS image

rectification [15, 27, 38, 40]; see section 2 for a review.

All these works, with a few exceptions [28], are based

on certain types of motion assumptions, e.g., kinematic

models [6, 9, 26, 43, 45], trajectory fitting with polynomi-

als [35,37,40] and B-Splines [13,21,30,33,34], pose inter-

polation [12, 17, 38], or homography mixtures [15].

In this paper, we tackle the RS absolute pose problem,

that is to estimate all the scanline poses from a single RS

image given a template and RS image rectification. We

specifically consider the case of planar objects, where the

template is a 2D Euclidean object model [1, 2, 4, 6, 23, 31].

This problem admits a closed-form solution by using a con-

stant kinematic motion model [1]. However, as we shall

show in this paper, it is not trivial at all to solve the problem

without motion assumptions. In this work, we only require

the camera motion to be smooth; this stems from the RS im-

age being a time-coherent set of scanlines rather than jagged

fragments. Aside from this, we do not impose any assump-

tion on the actual type of motion the camera undergoes, i.e.,

https://bitbucket.org/clermontferrand/planarscanlinehomography/src/master/
https://bitbucket.org/clermontferrand/planarscanlinehomography/src/master/


the motion can be simple kinematics, complicated dynam-

ics, or even random movements as arbitrary as noise. In

addition, we extend the template class to include the case

of a GS image photoed by a camera whose principal axis is

orthogonal to the planar scene (see Fig. 1) which is easy to

obtain in practice.

Recently, there has been work [28] attempting to explain

an RS image as a deformed GS image, based on isomet-

ric and conformal shape-from-template (SfT) methods [8].

The underlying idea is that as the RS goes along a certain

direction, say the y-direction from top to bottom, the de-

formation along the x-direction preserves relative distances,

resulting in a conformal deformation constraint along the x-

direction. However, a general (isometric or conformal) SfT

method constrains both x- and y-directions, causing the RS

motion to be overconstrained.

To address the above issues, we propose a novel geomet-

ric concept for RS cameras, termed scanline homography.

The set of scanline homographies of an RS image defines an

image warp, with arbitrary flexibility along the y-direction

(the RS direction) which admits all possible camera mo-

tions. The x-direction of the warp is constrained by the only

admissible geometry, that the y-th scanline is imaged from

a line in the template plane. The main contribution of this

work is to establish the theory of scanline homographies

with the following keypoints:

• We propose the scanline homography, a novel RS geo-

metric concept given as a 3 × 2 matrix, which maps

points on one RS scanline to a line in the template

plane.

• We establish the fundamental homography equation

between a scanline homography and its corresponding

plane homography defined from the template to the RS

image.

• We estimate scanline homographies parameterised by

B-Splines along the RS direction to accommodate flex-

ible camera motions by solving a convex minimisation

in closed-form.

• We propose a method to solve the ambiguous fun-

damental homography equation to recover scanline

poses, using an articulated plane homography parame-

terisation and a GS homography initialisation inspired

from motion smoothness.

• We design various experiments to demonstrate the va-

lidity of the proposed theory, ranging from absolute

pose estimation to image rectification.

2. Related work

RS geometry. Starting from the first attempt on RS geomet-

ric modeling by Geyer et al. [14], various works have been

carried out to extend the classical GS multiple-view geo-

metric techniques to the RS case, e.g., the RS epipolar con-

straint [9], the RS homography constraint [26, 44], the RS

optical flow equation [43], the RS bundle adjustment [17],

the RS stereo-rig [5, 39] and the triangulation from an RS

stereo-rig [3].

RS absolute pose. The RS absolute pose problem is to

estimate scanline poses from a single RS image given a

known template. When the template is a Euclidean point-

cloud and the camera calibration is known, the problem

is termed as the RS perspective-n-point (RS-PnP) problem

[1, 2, 4, 6, 23, 31]. Typically, work in this regard assumes

that the RS camera moves with constant linear and angular

velocity during image acquisition. Ait-Aider et al. [1] pro-

posed a projective RS-PnP formulation by minimizing the

reprojection error using nonlinear least-squares. For pla-

nar objects, a closed-form solution was also given using

homography constraints. An extension to line correspon-

dences was given in [2]. Magerand et al. [31] proposed a

globally optimal solution using a linearized Rodrigues for-

mula for rotation parameterization. A set of polynomial

equations are constructed and minimized by the Gloptipoly

solver. There has been work to derive effective minimal RS-

PnP solutions to be used in a RANSAC scheme. In specific,

Albl et al. [6] proposed R6P, the first non-iterative minimal

RS-PnP solver, using a double linearized RS model and the

Gröbner basis solver to solve the polynomial equations. The

efficiency of R6P is further improved in [23]. The Cayley

parameterization for rotations was studied in [4]. Recently,

the RS-PnP with an unknown focal length and radial distor-

tion was considered in [24].

RS image rectification. There is a body of work dedicated

specially to remove RS distortions, see [7,29] for early work

on translation only camera motions. In the case of photoing

using cellphones, the camera translation is normally negli-

gible with respect to the scene depth, thus inspiring work

based on rotation modeling only [15, 27, 38]. Ringaby et

al. [38] parameterized the camera rotation using a smooth

curve and SLERP (spherical linear interpolation), and es-

timated the parameters using nonlinear least-squares. An-

other representative work came from Grundmann et al. [15]

who proposed a calibration-free method using a mixture

of homographies. Su et al. [40] used image blur to re-

cover both the latent GS image and camera motions which

were parameterized with polynomials, in a unified formula-

tion. Geometric information on the scene, e.g., straightness

of lines [37] and orthogonal vanishing directions [35] in a

Manhattan world has been exploited. Lao et al. [27] im-

proves over [35,37] by first fitting parametric curves gener-

ated from a constant velocity model, then extracting the mo-

tion parameters from fitted curves in an RANSAC scheme.

Occlusions were considered in [41] based on a multilayer

3D scene model. Data driven methods were proposed to
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Figure 2. Scanline geometry for RS plane absolute pose.

learn motion kinematics [36], or depth as well to handle am-

biguities [45] using a conventional neural network. These

methods work on trained scenes but do not generalize to all

scenarios. Recently, Albl et al. [5] showed how to obtain

an undistorted GS image from an RS rig with different RS

directions.

3. The Scanline Homography Model

3.1. General Points, Plane Homography

We consider the case where the object is planar, see fig-

ure 2. Our template can be both the planar Euclidean object

or its image in a GS camera whose principal axis is orthogo-

nal to the object plane. In both cases, a point in the template

plane can be written as [X; Y ] ∈ R
2 and parameterized in

the homogeneous form as p = [X; Y ; 1] ∈ R
3. We denote

the corresponding point in the RS image plane by [x; y] and

its homogeneous representation as q = [x; y; 1] ∈ R
3.

Without loss of generality, we stipulate the RS direction

to be the y-axis. Thus, for each y-coordinate, the pixels

along the x-coordinate are read out at the same time, which

are subject to the same camera pose, termed the y-th scan-

line pose. For an RS image point q on the y-th RS scanline,

q is related to its corresponding template point p by a plane

homography [16]:

q ∝ H(y)p, (1)

where ∝ means equality up to a non-zero scale. The plane-

homography H(y) is defined as a mapping from the tem-

plate frame to the RS image frame, thus can be decomposed

to obtain the y-th scanline pose. Equation (1) is valid for all

q on the y-th RS scanline, and is only valid for the y-th

scanline.

3.2. Scanline Homography

Derivation. We examine the y-th scanline in the RS im-

age, which is made of points imaged by the RS camera

at the same time. The set of points in the template corre-

sponding to this scanline is p ∝ H−1(y)q. As each q

has the same y-coordinate because it lies on the y-th scan-

line, we parameterize q with its x-coordinate only. For

this purpose, we first denote the columns of H−1(y) as

H−1(y) ∝ [a1(y), a2(y), a3(y)], and write:

p ∝ H−1(y)q ∝ xa1(y) + ya2(y) + a3(y). (2)

The above can be written compactly per scanline as:

p ∝ J(y)

[

x

1

]

, (3)

where we introduce a novel matrix J(y), which we term the

scanline homography:

J(y)
def
= [a1(y), ya2(y) + a3(y)]

def
= [j1(y), j2(y)]. (4)

The scanline homography matrix J(y) defines a mapping

that brings an RS image point q on the y-th scanline to its

corresponding point p in the template plane. Obviously,

such a mapping is unique per scanline but varies across dif-

ferent scanlines. We formally denote this mapping, given by

a matrix J(y) ∈ R
3×2 as the scanline homography of the

y-th scanline. It is easy to see that a scanline homography

is defined up to scale, thus has 5 DOFs.

Scanline geometry. The scanline homography J(y) maps

the y-th scanline in the RS image to a line in the template

plane given as ℓ(y) = j1(y) × j2(y), comprising points

xj1(y) + j2(y) parameterized by all x.

The 5 DOFs of a scanline homography. For a calibrated

camera, the 5 DOFs of a scanline homography correspond

to the 5 parameters of the scanline’s partial pose. This can

be understood geometrically. The line ℓ(y) in the template

plane is defined up to a 1-DOF rotational ambiguity, that

is we can rotate ℓ(y) arbitrarily along the line itself before

applying H(y).

3.3. Fundamental Homography Equation

We introduce matrix M(y) = [j1(y), 0, j2(y)], and

rewrite equation (3) as:

J(y)

[

x

1

]

= M(y)q ∝ p. (5)

Combining equations (1) and (5), we obtain:

H(y)M(y)q ∝ q, (6)

which is satisfied for each RS image point q on the y-th

scanline. We rewrite this equation explicitly as:

(H(y)M(y)− sI)q = 0, (7)



where s ̸= 0 is an unknown scalar. Expanding the above

matrix form, we have:

[H(y)j1(y)−se1, −se2, H(y)j2(y)−se3]





x

y

1



 = 0, (8)

which is satisfied for all x given y. This implies that

H(y)j1(y)− se1 = 0. We thus obtain:






H(y)j1(y)− se1 = 0

−yse2 +H(y)j2(y)− se3 = 0.
(9)

By introducing a matrix:

N(y) = [e1, ye2 + e3] =





1 0
0 y

0 1



 , (10)

we arrive at the fundamental homography equation:

H(y)J(y) = sN(y) ⇔ H(y)J(y) ∝ N(y). (11)

This equation connects a scanline homography and the cor-

responding plane homography defined in the opposite direc-

tion. The fundamental homography equation (11) provides

5 constraints as it is defined up to scale.

3.4. Scanline Homography Estimation

A scanline homography J(y) is an element lying in the 5-

dimensional projective space P
5. If the underlying camera

motion is smooth, J(y) changes smoothly across scanlines

parameterized in y, forming a smooth curve in P
5. This

curve defines a smooth nonlinear image warp from the RS

image plane to the template.

There exist many ways to parameterize a curve in the

projective space. Here we present one as follow:

Γ(y) : R → R
5, J(y) =





γ1(y) γ4(y)
γ2(y) γ5(y)
γ3(y) 1



 , (12)

where Γ(y) = [γ1(y), γ2(y), γ3(y), γ4(y), γ5(y)]
⊤ is a

curve defined in R
5, parameterized with respect to y. The

bottom-right elements of J(y) is set to 1 to constrain the

scale. We find it reasonable to do so because if that ele-

ment vanished, an RS image point q = [0; y; 1] would be

mapped to infinity in the template, which is an unfeasible

event. The curve Γ(y) defined in R
5 thus induces a curve

in the projective space P
5.

We parameterize Γ(y) using polynomials and B-

Splines [10,13,21,30,33,34], while other options are possi-

ble, e.g., polynomials [35, 37, 40], interpolation [12, 17, 38]

or mixture models [15] which were all heavily exploited. In

any case, we assume each γj(y) to be written as:

γj(y) = ϕj(y)
⊤wj , (13)

where ϕj(y) ∈ R
m denotes a collection of given basis func-

tions, and wj ∈ R
m the weight parameters to be estimated.

Given a set of point correspondences {p ↔ q}, we esti-

mate Γ(y) from the scanline homography definition given

in equation (3). Based on parameterization (12), we formu-

late the following ‘algebraic’ cost [16]:

min
Γ

∑

p↔q

∥

∥

∥

∥

[

x −xX 1
x −xY 1

]

Γ(y)−

[

X

Y

]
∥

∥

∥

∥

2

. (14)

For Γ(y) in the form of equation (13), problem (14) is

linear least-squares in wj (j = 1, . . . , 5), thus is solved

in closed-form. In practice, we implemented 1) the linear

least-squares solver for input correspondences free of mis-

matches and 2) an M-estimator for input correspondences

potentially contaminated by mismatches.

3.5. Scanline Homographies as an Image Warp

The smooth scanline homographies J(·) across all scan-

lines form a nonlinear image warp W from the RS image

plane to the template plane:

W([x; y; 1])
def
= J(y)

[

x

1

]

for all (x, y) in anRS image.

The warp W captures all possible image distortions caused

by camera motions assuming J(·) is flexible enough in the

RS direction y. Note that so far, we have not imposed any

assumption on the camera motion. This is fundamentally

different from previous works [6,9,12,13,15,17,21,26,30,

33–35, 37, 38, 40, 43, 45], which make explicit assumptions

on the possible motions at this stage.

The scanline geometry asserts that the y-th scanline cor-

responds to the line ℓ(y) = j1(y) × j2(y) in the template

plane. This is the only geometry we can tell in an RS cam-

era imaging process. In fact, any geometry across scanlines

requires additional motion assumptions. This leads to an

obvious flaw in previous isometry and conformity based RS

image warps [28], where the warp is constrained in both

x- and y-directions. Needless to say, the constraint along

y-direction is invalid as it must obviously be motion inde-

pendent.

At last, the RS image warp W induced by scanline ho-

mographies is constrained by the scanline geometry, that a

scanline is photoed from a line. The isometric and confor-

mal constraints are approximations to this scanline geome-

try, thus the warps based on isometry and conformity [8,28]

are as well approximations to W while they limit possible

camera motions.

4. Scanline Pose Estimation

We denote the y-th scanline pose as P(y) =
[R(y), t(y)], where R(y) = [r1(y), r2(y), r3(y)] is the



rotation and t(y) the translation. We assume the camera is

calibrated, thus H(y) is the so-called Euclidean homogra-

phy, with 6 DOFs [11, 32, 42]. We shall give two param-

eterizations of H(y) in section 4.1 from the scanline pose

P(y).
From equation (11), J(y) provides only 5 constraints on

H(y), thus we cannot solve for a unique H(y) from equa-

tion (11). We solve this ambiguity in Section 4.2 in an op-

timization formulation using an approximate GS initializa-

tion. The recovered H(y) satisfies equation (11) exactly,

and lies in the vicinity of the initialization, which ensures

smoothness.

4.1. Plane Homography Parameterization

The template is a Euclidean object. In this case, the scan-

line pose P(y) is defined in the object’s XY Z-Euclidean

coordinate frame. Without loss of generality, we assume

the planar object is defined in the XY -plane (i.e., Z = 0).

The plane homography takes the form:

HObject(y) = [r1(y), r2(y), t(y)]. (15)

The template is a GS image. In this case, the scanline pose

P(y) is defined with respect to the camera pose of the GS

image. We consider the case where the principal axis of

the GS camera is orthogonal to the planar Euclidean object.

The plane homography is:

HFrame(y) = [r1(y), r2(y), r3(y) + t(y)]. (16)

A unified parameterization. By noticing that

r1(y), r2(y), r3(y) constitute a basis of the Euclidean

coordinate frame, we can parameterize the translation t(y)
in this frame and write t(y) = t1r1(y)+ t2r2(y)+ t3r3(y).
Following this idea, both the plane homographies

HObject(y) and HFrame(y) can be written as:

H(y) = [r1(y), r2(y), ar1(y) + br2(y) + cr3(y)]. (17)

The above H(y) has the following structure:

H(y) = R(y)S(y), withS(y) =





1 0 a

0 1 b

0 0 c



 , (18)

which is the product of a rotation matrix and an upper tri-

angular matrix. Given H(y), the rotation component R(y)
and the translation component S(y) can be obtained via the

QR decomposition of H(y).

4.2. Scanline Pose Estimation

Using equation (18) into equation (11), we have:

R(y)S(y)J(y) ∝ N(y), (19)

which is the basic equation for scanline pose estimation.

Unfortunately, equation (19) provides only 5 constraints

while R(y) and S(y) contains 6 parameters in total. As

a consequence, due to the missing 1 DOF, the recovery of

R(y) and S(y) from equation (19) is not unique.

To proceed, we first rewrite the set of solutions of equa-

tion (19) as the optimal solutions to the following optimiza-

tion problem:







mins(y),R(y),S(y) ∥s(y)R(y)S(y)J(y)−N(y)∥2F

s.t. R(y)⊤R(y) = 1, det(R(y)) = 1,

(20)

where s(y) ∈ R is a scale factor to be determined. The

optimal value of problem (20) is always zero, while the op-

timal solution is not unique. At first, it seems nothing has

been achieved from equation (19) to problem (20). How-

ever, it gives us the possibility to apply various optimiza-

tion techniques to further constrain the solution, e.g., via

initialization or regularization. We propose a method based

on initialization, which solves equation (19) exactly in the

vicinity of the initialization. We use the approximate GS

pose as initialization, while other initializations (e.g., those

from constant velocity models) can be trivially used instead.

4.2.1 Approximate Global-Shutter Pose

If we ignore the RS effects, all the scanline poses are the

same, corresponding to the approximate GS pose, where we

denote the related plane homography by HGS = RGSSGS.

In specific, H(y) = HGS for all y in a GS approximation.

In this case, from equation (4), the first column of J(y) is

independent of y, thus can be used to determine the scale.

We assume J(y) has been normalized by its first column

so that ∥j1(y)∥2 = 1. Equation (11) in the GS approxima-

tion then becomes:

HGSJ(y) = N(y), for each y. (21)

Given a set of scanlines y1, y2, . . . , yn, we can estimate

HGS in closed-form as:

HGS = JN †, (22)

with J = [J(y1), . . . ,J(yn)], N = [N(y1), . . . ,N(yn)].
We finally decompose HGS to obtain RGS and SGS.

4.2.2 Scanline Pose from Alternations

Starting from the approximate GS pose given as RGS, SGS,

we alternate the estimation of R(y) and S(y) to find a so-

lution to problem (20). This process involves the resolution

of R(y) given S(y), and vice versa the resolution of S(y)
given R(y). Fortunately both subproblems are solvable in

closed-form.



Estimation of s(y) and R(y) given S(y). This is the scaled

special-orthogonal Procrustes problem [18–20] whose solu-

tion is:

R(y) = V diag(1, 1, det(VU⊤))U⊤, (23)

where S(y)J(y)N(y)⊤ = UΣV⊤ is the Singular Value

Decomposition (SVD) of S(y)J(y)N(y)⊤. The optimal

scale factor s(y) is given as:

s(y) =
tr(R(y)S(y)J(y)N(y)⊤)

tr(S(y)J(y)J(y)⊤S(y)⊤)
. (24)

Estimation of S(y) given s(y) and R(y). This is linear

least-squares whose solution is:

S(y) = I+

(

1

s(y)
R(y)⊤N(y)− J(y)

)

v(y)† [0, 0, 1],

(25)

with v(y) = [0, 0, 1]J(y), and v(y)† its Moore–Penrose

pesudo-inverse.

Algorithm. Starting from RGS, SGS, we alternate between

equations (23, 24) and (25) until convergence to obtain the

y-th scanline pose. Importantly, we achieve the above re-

sults without any motion assumptions, but requiring the RS

image to be similar to the GS image which is always true in

practice by smoothness.

5. Image Rectification

From the previous presentation, we have given a solution

to RS plane absolute pose without motion assumptions. The

computed scanline poses can be used to rectify an RS image

such that all its scanlines are arranged in the same camera

pose. We choose the pose of an arbitrary scanline y0 as the

anchor, and denote its plane homography as H(y0). Then

for each RS image pixel coordinate q on the y-th scanline,

we obtain its rectified image coordinate, denoted by q′, as:

q′ ∝ H(y0)p ∝ H(y0)H(y)−1q. (26)

We process all scanlines using equation (26) to obtain the

rectified image. For images, as q′ is fractional, we use equa-

tion (26) with interpolations based on a bilinear kernel.

6. Experimental Results

6.1. Pose Estimation

We use the synthetic dataset from [12], specifically the

12 RS images from the house trans rot1 B40 sequence.

The facade of the house is planar (see Fig. 1 for samples).

We use the GS image frame09 as the template. This dataset

is simulated by a constant velocity model across scanlines

and provides ground-truth (GT) scanline poses.
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Figure 3. An example of estimated scanline-homography J(y).
We use γ6 to denote the bottom-right corner element in J(y),
where γ6 = 1 in equation (12) as shown on the left. For a cal-

ibrated camera, we know the first column of J(y) has unit norm,

see Section 4.2.1. We thus normalize J(y) by the norm of its first

column and show such normalized J(y) on the right.

The parameterization of scanline homography. For cal-

ibrated cameras, by equations (17) and (4), we know that

the first column of J(y) admits unit norm. We thus first

show in Fig. 3 that how this normalization constraint affects

the complexity of the estimated scanline homography. This

result shows how a simple J(y) parameterization can im-

ply more complex normalized J(y). Therefore we suggest

using simple parameterizations J(y) over advanced ones.

Scanline pose estimation and RS image rectification. We

report the pose estimation error in Fig. 4 over two typical

J(y) prameterizations, i.e., polynomials (denoted by p.....)

and B-splines (denoted by p.....c.....). The sequences after p

indicate the degree of polynomials and c the number of con-

trol points in B-splines, respectively for each curve γj . The

result shows that simple parameterizations e.g., p11111,

p11122, and p11111-c33333 are almost sufficient in most

cases, while other complex parameterizations are prune to

overfitting especially when the number of correspondences

are low. We provide image rectification examples in Fig. 1,

using the polynomial parameterization p11122. Although

the scene is not strictly planar, we see that this does not

substantially violate the planar model, as shown in the im-

age rectification results.

6.2. Image Rectification

We provide additional examples on RS image rectifica-

tion in Fig. 5, using the scanline homography parameteriza-

tions p11122 and p22222-c44444. Since existing researches

are not dedicated to handle a GS image template explicitly,

we use the RS plane relative pose solution [26] based on a

constant velocity model as the benchmark algorithm where

the template is considered as an RS image in [26].

We see that a specific absolute pose problem which han-

dles a GS image template is useful, in particular when the
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Figure 4. Scanline pose estimation error of the sequence house trans rot1 B40 [12] which has 12 frames plotted along the x-axis. We use

relative pose error (RPE) [25] to avoid gauge transformations. The sequence after ‘p’ indicates polynomial-degrees for each curve in Γ(y).
The sequence after ‘c’ indicates the number of control points in the B-spline parameterization. The fitness of the scanline homography

J(y) estimation is computed as the root mean squared error (RMSE) of the optimal cost of equation (14).

GS image template RS image ours:poly:p11122 ours:bs:p22222-c44444 [26]

Figure 5. Rolling-shutter image rectification from a front-view global-shutter image template. We use handcrafted GS images for the first

three rows (images from [17]) and a real GS image for the last row (images from [22]). We compare our RS plane absolute pose solution

with the RS plane relative pose solution [26] based on a constant velocity model. The correspondences are plotted as green dots.

correspondences are sparse, e.g., in the last two rows. With

that being said, while a simple polynomial p11122 seems

to be sufficient in most cases, an advanced B-spline param-

eterization can handle larger distortions, e.g., the wooden

floor in the first row rectified by p22222-c44444.

6.3. Handling Arbitrary Rolling­Shutter Motions

To test the limit of the proposed method, we use syn-

thetic data generated with arbitrary RS camera motions.

Dataset generation. We simulate three challenging RS im-

ages using arbitrary motions in Fig. 6. Three different tex-

tures are mapped to a densely sampled planar surface, re-

sulting in a trivial bijective map from the surface to the

texture. Arbitrary smooth motions, generated in R
3 using

Bézier curves, are used to transform this template plane. A

sequence of images depicting such motions are combined

by each scanline to arrive at the final synthetic RS image.

Pose estimation. We report the scanline pose estimation er-

ror in Fig. 7, using the relative pose error as in Fig. 4. Inter-

estingly, we find that the pose estimation results are strongly

accurate for motion along X and Y axis, while some loss

of accuracy remains for the motion along Z-axis (see the
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Figure 6. Rolling-shutter image rectification using the 3D object template. We simulate arbitrary camera motions and use a set of evenly

distributed fiducial landmarks. The rectification result obtained using GT poses are given in the second column. We report two results of

our method, i.e., poly:p33333 and bs:p33333-c99999. We compare with the standard RS-PnP method [6] based on a linearized motion

model. The RS-PnP method [6] is used within a RANSAC scheme, and the inliers admitted by the RS motion model are plotted in red.
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Figure 7. Scanline pose estimation error across all parameterizations using the same metrics as explained in Fig. 4.

supplementary material). However, this does not strongly

impact image rectification accuracy.

Image rectification. We report image rectification results

in Fig. 6. Despite the complex motions and the ridiculous

RS distortions as a consequence, our method can give al-

most exactly the same rectification result compared with the

GT rectification.

These above results confirm that the proposed method is

capable to handle arbitrary motions, assuming the underly-

ing distortion is captured by the correspondences. We re-

lease our code and the data for future comparisons. More

results are provided in the supplementary material.

7. Conclusion

We have proposed the scanline homography, a novel

mathematical abstraction for planar RS geometry. The

scanline homography maps a scanline in the RS image to

a line in the template plane. Such geometric constraints

induce an image warp, which can be designed to be flex-

ible enough along the RS direction to capture any camera

motion. We establish key equations to recover the under-

lying plane homographies and thus the scanline poses. Ex-

periments on absolute pose estimation and image rectifica-

tion have validated our claims. Future work will extend our

method to non-planar objects and relative pose estimation.



References

[1] Omar Ait-Aider, Nicolas Andreff, Jean Marc Lavest, and

Philippe Martinet. Simultaneous object pose and velocity

computation using a single view from a rolling shutter cam-

era. In European Conference on Computer Vision, pages 56–

68. Springer, 2006. 1, 2

[2] Omar Ait-Aider, Adrien Bartoli, and Nicolas Andreff. Kine-

matics from lines in a single rolling shutter image. In 2007

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–6. IEEE, 2007. 1, 2

[3] Omar Ait-Aider and François Berry. Structure and kinemat-

ics triangulation with a rolling shutter stereo rig. In 2009

IEEE 12th International Conference on Computer Vision,

pages 1835–1840. IEEE, 2009. 2

[4] Cenek Albl, Zuzana Kukelova, Viktor Larsson, and Tomas

Pajdla. Rolling shutter camera absolute pose. IEEE

transactions on pattern analysis and machine intelligence,

42(6):1439–1452, 2019. 1, 2

[5] Cenek Albl, Zuzana Kukelova, Viktor Larsson, Michal Polic,

Tomas Pajdla, and Konrad Schindler. From two rolling shut-

ters to one global shutter. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2505–2513, 2020. 2, 3

[6] Cenek Albl, Zuzana Kukelova, and Tomas Pajdla. R6P-

rolling shutter absolute camera pose. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2292–2300, 2015. 1, 2, 4, 8

[7] Simon Baker, Eric Bennett, Sing Bing Kang, and Richard

Szeliski. Removing rolling shutter wobble. In 2010 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, pages 2392–2399. IEEE, 2010. 2

[8] Adrien Bartoli, Yan Gérard, Francois Chadebecq, Toby

Collins, and Daniel Pizarro. Shape-from-template. IEEE

transactions on pattern analysis and machine intelligence,

37(10):2099–2118, 2015. 2, 4

[9] Yuchao Dai, Hongdong Li, and Laurent Kneip. Rolling shut-

ter camera relative pose: Generalized epipolar geometry. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4132–4140, 2016. 1, 2, 4

[10] Carl De Boor and Carl De Boor. A practical guide to splines,

volume 27. springer-verlag New York, 1978. 4

[11] Olivier D Faugeras and Francis Lustman. Motion and struc-

ture from motion in a piecewise planar environment. Inter-

national Journal of Pattern Recognition and Artificial Intel-

ligence, 2(03):485–508, 1988. 5

[12] Per-Erik Forssén and Erik Ringaby. Rectifying rolling shut-

ter video from hand-held devices. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition, pages 507–514. IEEE, 2010. 1, 4, 6, 7

[13] Paul Furgale, Timothy D Barfoot, and Gabe Sibley.

Continuous-time batch estimation using temporal basis func-

tions. In 2012 IEEE International Conference on Robotics

and Automation, pages 2088–2095. IEEE, 2012. 1, 4

[14] Christopher Geyer, Marci Meingast, and Shankar Sastry. Ge-

ometric models of rolling-shutter cameras. 6th Workshop on

Omnidirectional Vision, 1:4, 2005. 1, 2

[15] Matthias Grundmann, Vivek Kwatra, Daniel Castro, and Ir-

fan Essa. Calibration-free rolling shutter removal. In 2012

IEEE international conference on computational photogra-

phy (ICCP), pages 1–8. IEEE, 2012. 1, 2, 4

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:

0521540518, second edition, 2004. 1, 3, 4

[17] Johan Hedborg, Per-Erik Forssén, Michael Felsberg, and

Erik Ringaby. Rolling shutter bundle adjustment. In 2012

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1434–1441. IEEE, 2012. 1, 2, 4, 7

[18] Berthold KP Horn. Closed-form solution of absolute orien-

tation using unit quaternions. Josa a, 4(4):629–642, 1987.

6

[19] Berthold KP Horn, Hugh M Hilden, and Shahriar Negah-

daripour. Closed-form solution of absolute orientation using

orthonormal matrices. JOSA A, 5(7):1127–1135, 1988. 6

[20] Ken-ichi Kanatani. Analysis of 3-d rotation fitting. IEEE

Transactions on pattern analysis and machine intelligence,

16(5):543–549, 1994. 6

[21] Christian Kerl, Jorg Stuckler, and Daniel Cremers. Dense

continuous-time tracking and mapping with rolling shutter

rgb-d cameras. In Proceedings of the IEEE international

conference on computer vision, pages 2264–2272, 2015. 1,

4

[22] Jae-Hak Kim, Cesar Cadena, and Ian Reid. Direct semi-

dense slam for rolling shutter cameras. In 2016 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 1308–1315. IEEE, 2016. 7

[23] Zuzana Kukelova, Cenek Albl, Akihiro Sugimoto, and

Tomas Pajdla. Linear solution to the minimal absolute pose

rolling shutter problem. In Asian Conference on Computer

Vision, pages 265–280. Springer, 2018. 1, 2

[24] Zuzana Kukelova, Cenek Albl, Akihiro Sugimoto, Konrad

Schindler, and Tomas Pajdla. Minimal rolling shutter abso-

lute pose with unknown focal length and radial distortion. In

European Conference on Computer Vision, pages 698–714.

Springer, 2020. 2
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