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Abstract.
Purpose. Laparoscopic liver resection is a challenging procedure because
of the difficulty to localise inner structures such as tumours and vessels.
Augmented reality overcomes this problem by overlaying preoperative
3D models on the laparoscopic views. It requires deformable registration
of the preoperative 3D models to the laparoscopic views, which is a
challenging task due to the liver flexibility and partial visibility.
Methods. We propose several multi-view registration methods exploit-
ing information from multiple views simultaneously in order to improve
registration accuracy. They are designed to work on two scenarios: on
rigidly related views and on non-rigidly related views. These methods
exploit the liver’s anatomical landmarks and texture information avail-
able in all the views to constrain registration.
Results. We evaluated the registration accuracy of our methods quan-
titatively on synthetic and phantom data, and qualitatively on patient
data. We measured 3D target registration errors (TRE) in mm for the
whole liver for the quantitative case, and 2D reprojection errors in pixels
for the qualitative case.
Conclusion. The proposed rigidly related multi-view methods improve
registration accuracy compared to the baseline single-view method. They
comply with the 1 cm oncologic resection margin advised for hepatocel-
lular carcinoma interventions, depending on the available registration
constraints. The non-rigidly related multi-view method does not provide
a noticeable improvement. This means that using multiple views with
the rigidity assumption achieves the best overall registration error.

Keywords: Laparoscopy · Liver · Registration · Augmented Reality.

1 Introduction

Laparoscopy of liver is a surgical procedure that is becoming increasingly pop-
ular thanks to the reduced trauma and faster patient recovery times compared
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to open surgery. However, the reduced intra-abdominal space and the lack of
hand palpation make it difficult for surgeons to localise inner structures such as
tumours and vessels. Surgeons often use laparoscopic ultrasound to find these
structures; this is a complex technique, whose artefacts commonly impairs vis-
ibility and precise localisation. This can be a source of inaccurate tumour re-
sections and undesired damage to the organ. Augmented Reality (AR) helps to
solve this problem by overlaying a preoperative 3D model onto the intraopera-
tive laparoscopic views. In this way, surgeons can see the real locations of the
inner structures at any time, and guide the resection accordingly. The preop-
erative 3D model is reconstructed from CT or MRI data prior to the surgery,
and is usually composed of the liver’s parenchyma, tumours and vessels. From
the moment such a 3D model is generated (preoperative stage) until the surgery
day (intraoperative stage), the liver can deform significantly. Thus, a 3D-2D de-
formable registration is required to correctly align the preoperative 3D model
to the views. This is a difficult problem in monocular laparoscopy, owing to the
liver’s strong deformations and partial visibility in the views.

Existing approaches make use of the liver’s texture and anatomical land-
marks to constrain registration. They can be classified as monocular [1–3] and
non-monocular approaches [4–7, 9, 11, 12, 15], and their usage depends on the
available equipment in the surgery room. We focus on the monocular case as
it forms the standard in many surgical rooms. Among the existing monocular
methods, some of them perform registration on a single view using anatomical
landmarks [1, 2], while others use multiple views simultaneously using landmarks
and keypoint correspondences [3]. A common issue with single-view approaches
is the partial visibility of the liver in the image, owing to its large size and the
reduced field of view of the endoscope. This reduces landmark visibility and
negatively impacts registration accuracy. Regarding the multi-view approaches,
they usually reconstruct an intraoperative 3D shape and use it as a target for
registration. This reconstruction is usually done through SfM or SLAM. How-
ever, getting a reliable intra-operative shape is difficult and requires very good
imaging conditions. Consequently, there is a need for monocular registration
methods that are compatible with the clinical constraints and the desired clini-
cal outcomes, such as improved positive resection margins and reduced adverse
effects to the patient [16].

We propose several deformable registration methods that use multiple views
simultaneously from standard monocular endoscopic systems. They bring the
preoperative 3D models of the liver and its internal structures to camera co-
ordinates, with the right shape deformation state. After registration is done,
the 3D models of the inner structures are projected on and composed with the
laparoscopic views. Our methods may assume that the liver does not deform
between the laparoscopic views, which is the rigidly related view case, or that it
may deform, which is the non-rigidly related view case, as illustrated by figure
1. We assume the views show the liver from multiple viewpoints. Our methods
are based in [1], a method we refer to as Single-View (SV) in this article. SV
combines visual cues with a biomechanical model to register the preoperative
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3D model to a laparoscopic view. The visual cues consist of three different land-
marks, namely the ridge, falciform ligament, and silhouette contours, as shown
in Figure 1. The biomechanical properties are modeled using position-based dy-
namics with a Neo-Hookean elastic model [18]. For the rigidly related view case
we propose 3 methods. The first one, named MV-B (for Multi-View Base), uses
the liver landmarks and the inter-image rigidity as constraints for registration.
The second one, named MV-B* (for Multi-View Base Improved), uses the same
constraints as MV-B but, instead of computing the camera poses through ICP,
it does so with Structure-from-Motion (SfM). The third one, named MV-C (for
Multi-View Correspondences), uses available texture information via inter-image
keypoint correspondences to constrain registration. These 3 methods produce a
single deformed shape as output. For the non-rigidly related view case, we pro-
pose 1 method. It differs from the rigidly related ones in that it doesn’t use
the inter-image rigidity to solve registration. This method is named MV-D (for
Multi-View Deformable) and uses the landmarks and keypoint correspondences
as constraints, producing several deformed shapes according to the number of
views. We illustrate and classify our methods, along with the constraints they
use in figure 2.

We evaluated our methods quantitatively on phantom data and qualitatively
on patient data. For the quantitative evaluation, target registration errors (TRE)
were measured on uniformly-distributed control points inside the liver models.
For the qualitative evaluation, the 2D reprojection errors of the registered livers
were measured on control views. Our goal is to have a TRE of less than 1 cm,
which is the safety resection margin advised for resection of Hepato-Cellular Car-
cinoma (HCC) [19]. We do not measure TRE on patient data due to the difficulty
of having a reliable groundtruth with the available devices in the surgery room.
We found that our multi-view methods are able to improve registration accu-
racy compared to the single-view case, being a step forward in AR for monocular
laparoscopy of liver.

Fig. 1: Rigidly related (top) and non-rigidly related (bottom) laparoscopic views
of the liver. The liver does not undergo noticeable deformations between the
rigidly related views and may do between the non-rigidly related views.
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Fig. 2: Characteristics of the state-of-the-art and proposed registration methods.

2 Previous work

2.1 Monocular methods

The existing monocular approaches can use one or multiple views simultane-
ously to solve registration. They can be used with every monocular endoscopic
system, being the standard in most surgery rooms. They use the available visual
information to register the preoperative 3D models into the views in a rigid or
a deformable fashion. Among the single-view methods, the one proposed in [2]
uses the liver’s silhouette contours along with a biomechanical model to per-
form 3D-2D deformable registration. Even if this method is able to fit the liver
shape in the image, the use of generic silhouette landmarks gives the possibility
of having multiple solutions for a single set of contours, and makes the method
more sensible to initial rigid alignments. In an attempt to solve this issue, the
method in [1] uses several types of landmarks that, combined together, are able
to converge to an unique solution despite the initial alignment. Due to the partial
visibility of the liver in the views, such single-view methods can only perform
registration partially, leaving large regions of the preoperative 3D model uncon-
strained. Multiple-view methods try to solve this issue by combining the visual
information coming from several views simultaneously, reconstructing an intra-
operative shape through Structure-from-Motion (SfM) or SLAM. An example of
multi-view registration with SfM is presented in [3], where the reconstructed in-
traoperative liver shape is used as a target for deformable registration. However,
obtaining a reliable dense reconstruction requires very good imaging conditions
that are not commonly available in laparoscopic liver surgery. Another exam-
ple is found in [4], where a SLAM-based approach is used to reconstruct an
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intraoperative shape and perform AR with it, with the possibility of making
measurements and annotations on top of it. However, SLAM also requires good
imaging conditions and a rigid scene to work properly.

2.2 Non-monocular methods

The non-monocular approaches are mainly used with stereoscopic endoscopes,
sometimes including external tracking devices. A first example of intraopera-
tive reconstruction using stereoscopic methods is found in [8], where a real-time
stereo-matching algorithm is used to recover the liver intraoperative shape for
registration purposes. However, no registration experiments are performed in
this case. Another example is found in [7], where a rigid registration is made
between the preoperative 3D models and a stereoscopically reconstructed set of
patches. In order to localise the patches in 3D, an extra optical tracking sys-
tem is required. A rigid registration method is also presented in [6], in which
the preoperative models are aligned to the reconstructed intraoperative shape
by minimizing the distance between multiple sets of 3D correspondences. They
include automatically detected 3D features and manually annotated ridge con-
tours in both shapes. A method that performs deformable registration is shown
in [5], where an intraoperative shape obtained from stereoscopic techniques is
used as a registration target. This method also uses the liver’s boundaries and a
biomechanical model as constraints for registration. A similar approach is pre-
sented in [9], where the preoperative 3D model is registered to an intraoperative
shape using different types of landmarks, like the umbilical notch, the liver’s
anterior margin, and the vena cava. A deformable registration approach using
deep learning is proposed in [10], where a CNN is trained and used to predict the
deformation required to match a preoperative 3D model with an intraoperative
shape. However, this method is highly sensible to initial rigid alignments.

3 Background

SV is a method that performs deformable registration of a preoperative 3D
model M0 into a single laparoscopic view I. It uses a Position Based Dynamics
(PBD) approach with an isotropic Neo-Hookean elastic model [18] to obtain a
deformed model M such that it approximates a set of constraints {CB , CC},
where CB is the set of biomechanical constraints and Cc is the set of contour
constraints [1]. The algorithm works in a Gauss-Seidel fashion, where each set
of constraints {CB , CC} is solved in an alternate way. The Neo-Hookean model
works well for large deformations while being computationally inexpensive, and
has also been validated for hepatic tissue [13, 14]. SV uses three types of contour
landmarks: the ridge contour, located at the bottom of the liver’s anterior side;
the falciform ligament contour; and the silhouette contour corresponding to the
occluding boundaries of the liver. They are illustrated in figure 2. These contours
are marked on both the laparoscopic view and the preoperative 3D model prior
to registration.
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The algorithm of alternating biomechanical and contour projections used by
SV is shown in Appendix 1 of the supplementary material. It takes as inputs
the preoperative 3D model {M0} and the set of 2D and 3D contours CC . Then,
a main loop progressively deforms M by solving the biomechanical and contour
constraints separately. The function SolveBiomechanicalConstraints follows
the PBD approach from [18] to deform M in such a way that it complies with the
volumetric constraints given by CB . The function SolveContourConstraints
projects the 3D contour vertices stored in CC to their 2D counterparts and de-
forms M using PBD while keeping the projected vertices fixed. The loop iterates
until the difference between the models of two consecutive iterations becomes
lower than a threshold ϵ, or until a maximum number of iterations has passed.

4 Methodology

The main goal of our methods is to solve registration by using multiple laparo-
scopic views simultaneously. There should be a noticeable change of movement
between the views, while keeping some overlap. This can be done by tilting
and panning the laparoscope. Views from different trocars can also be used as
long as there is overlapping between them. Using multiple views helps to over-
come the partial visibility issue that is common in liver laparoscopy, improving
the precision of registration compared to single-view methods. These methods
perform registration for the rigidly related and non-rigidly related view cases.
The former case involves making an additional assumption compared to the
latter case, which is thus more general. Both cases are common; the former
occurs primarily during the exploratory phase of surgery and the latter when
the liver is mobilised during surgery. In the rigidly related case, MV-B, MV-B*
and MV-C use the liver’s rigidity to constrain registration. They all produce a
single deformed shape, along with the corresponding camera poses for each of
the views. In order to have suitable views for this case, the surgeon can pause
the artificial ventilation system for a short period of time (about 10 seconds),
while the scene is filmed. On top of the rigidity constraint, MV-B* and MV-C
also use the inter-image keypoint correspondences as constraints for registration.
MV-B* uses these correspondences to reconstruct an intraoperative pointcloud
through Structure-from-Motion (SfM), while MV-C computes inter-image warp
functions. Thus, the SfM reconstruction and the warp functions are used to con-
strain registration. For the non rigidly related view case, MV-D also computes
inter-image warp functions from the keypoint correspondences, but does not use
the rigidity constraint.

4.1 Multi-View Rigid Base (MV-B)

MV-B extends SV to solve registration on N rigidly related laparoscopic views.
At each iteration, an SV refinement is done on every view and then, an aver-
age model is computed from all the views. To obtain this average model, all
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the individual models from views N > 1 are transformed into the first view us-
ing transformation matrices computed through Absolute Orientation (ABSOR).
Then, the average model is transformed back into all the views and a rigid ICP
refinement is done in every view. The rigidity constraint comes thus from the
averaging step, which produces a single deformed model.

The MV-B algorithm is shown in Appendix 2. The main functionMVBReg-
istration takes as inputs the preoperative 3D model M0 and the sets of 2D and
3D contours CC = {CC1, ..., CCN} for every view I. A main loop performs SV reg-
istration on every view using the SVRegistration algorithm, computes the av-
erage modelM from all the views using theComputeAverageModel function,
and rigidly registers M in every view using ICP through the RigidICPReg-
istration function. ComputeAverageModel first transforms all the models
{Mv2, ...,MvN} into the first view using ABSOR and then proceeds to compute
the average model M . The main loop iterates until the difference between the
models of two consecutive iterations becomes lower than a threshold ϵ, or until
a maximum number of iterations max iter has passed. We have set ϵ = 10−3

and max iter = 100 after running our methods for a large number of iterations
on multiple phantom and patient cases.

4.2 Variant of Multi-View Rigid Base (MV-B*)

MV-B* is a variant of MV-B that, instead of computing inter-image rigid trans-
formations using ABSOR, which may be inaccurate, directly uses the camera
poses recovered by Structure-from-Motion (SfM). As such, SfM is firstly run on
the keypoint correspondences extracted from SIFT, from which we obtain an
intraoperative pointcloud P along with the camera poses. However, these SfM
reconstructions are up to a scale factor s, which should be recovered in a precise
way during the registration process. Obtaining a precise s can be a difficult task
especially if we want to keep the process fully automatic. To achieve this, we
rely on anisometry to find a metric that can indicate when a registration is done
using the right s. Anisometry is a measure of shape variation that reflects to
which extent a shape has stretched or shrunk locally, by integrating the local
measures to form a global statistic. An anisometry measure vanishes if and only
if the pair of shapes it is measured on are identical. Therefore, it is sensitive to
scale changes, reaching its minimum value at the right scale. There are several
ways of measuring anisometry on a discrete mesh model. The simplest way is to
measure the Euclidean or geodesic distance between pairs of points chosen as the
mesh vertices. We use three types of vertices to measure anisometry: the vertices
defining the ridge landmark, the vertices forming the liver surface, and the ver-
tices within the liver inner volume. We search for a suitable metric using both
types of Euclidean and geodesic distances on the liver ridge, the liver surface
and the liver inner volume, as shown in Appendix 3. The near anisometry mea-
sures are computed from connected pairs of vertex points and the far anisometry
measures are computed from non-connected pairs of vertex points. The vertex
pairs are selected randomly and the mean and median anisometry from all pairs
are then used. Concretely, we have compared a total of 24 anisometry measures
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on the phantom data (Euclidean vs geodesic, ridge vs surface vs volume, near
vs far, mean vs median). To measure anisometry, we first look for an interval
around a correct s for which MV-B* has a better registration accuracy than SV.
Then, we run MV-B* by varying s around the previously defined interval and
measure the aforementioned anisometry measures between the preoperative and
the registered models. We did these experiments on M = 2 different phantoms,
using L = 10 combinations of views per phantom. Finally, we compute a global
mean anisometry A from all the phantoms and all the view combinations, as:

A =

∑M
i=1 δm
M

. (1)

We use δm, the mean of the anisometry measures for phantom m, computed as:

δ =

∑L
l=1 αl

L
. (2)

We use αl as either the mean or median of the anisometry measures for view
combination l, computed as:

αmean =

∑P
p=1 |DFp

−DIp |
P

(3)

αmedian = medp∈[1,P ](|DFp
−DIp |), (4)

where P is the number of vertex pairs and {DIp , DFp} are the initial preoperative
and final registered distances for the point pair p. These distances can be either
Euclidean or geodesic.

After running MV-B* on the 2 phantoms by varying s within ±12% around
the ground-truth, we found that the Euclidean near volume anisometry shows
the desired convex behavior with its minimum value at the ground-truth. The
behavior of all the 24 anisometry measures is shown in Appendix 4. Using this
metric, we run MV-B* starting from an initial s and look for the minimum ani-
sometry through a bisection search strategy. In the end, the resulting deformed
model M is the product of a registration using the right s.

The algorithm for MV-B* is shown in Appendix 5. The main function MV-
B*Registration uses bisection search to search for a local minimum in ani-
sometry and perform registration with the correct scale s. It starts by doing
single-view registration using the SVRegistration function to obtain an initial
middle scale sM . This scale is computed as the depth ratio of the closest points
between the registered 3D model M and the SfM pointcloud P . From the ini-
tial sM , a lower and upper pair of interval bounds {sL, sU} is set as ±30% of
sM . Then, multi-view registration is done on {sL, sU} by scaling the SfM cam-
era poses T and calling the DeformableRegistration function. The respective
anisometries DL, DU are then computed. A main loop then compares DL against
DU and selects the sub-interval sL, sM or sM , sU that has the lowest anisometry.
The new middle scale sM is thus computed, multi-view registration is run on
sM and the new interval bound DL or DU will correspond to the anisometry of
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sM depending on the chosen sub-interval. The loop iterates until the difference
between the lower and upper bounds becomes lower than ϵ and deems the scale
to be found. The resulting model M is thus the one obtained using the last
middle scale sM .

4.3 Multi-View Rigid with Correspondences (MV-C)

MV-C is an extension of MV-B that uses the inter-image keypoint correspon-
dences to constrain registration. This strengthens the contour correspondences
with the more reliable keypoint correspondences in the ICP refinement stage.
The keypoint correspondences are obtained using SIFT and the mismatches are
filtered out using FBDSD [20]. They are used to compute inter-image warp
transformation functions ηji, which are based on the Rigid-Perspective Thin-
Plate Spline [17]. The image warp ηji allow one to transfer any point from view
j to view i. It is used to iteratively minimise the Euclidean distance between
the projected particles, transferred to a common reference view i. This allows
one to estimate an average, optimal camera pose, by ensuring that the P model
particles xp, p ∈ [1, P ], are projected to the same location of the liver surface
in all the views. First, each visible model particle xp in the reference view i is
projected in every view j wherever it is visible. Second, these 2D particle projec-
tions are transferred from all views j into the reference view i using ηji. Third, a
barycenter point b is computed in view i as the average of the transferred points.
Fourth, b is used as the 2D correspondence of the model point xp to refine cam-
era pose. Fifth, the four steps are repeated, choosing each view as the reference
view in turn, so as to refine its camera pose. In the end, MV-C generates a single
deformed model M from the contour, the inter-image correspondence and the
rigidity constraints given by all the views.

The MV-C algorithm is shown in Appendix 6. As a first step, the keypoint
correspondences KC are extracted from the views using SIFT and the warp func-
tions η are computed. Then, a main loop progressively deforms M in 4 stages:
First, SV registration is done on every view using the SVRegistration algo-
rithm. Second, the average model M is computed from all the views using the
ComputeAverageModel function. Third, the inter-image projection distances
of the model particles xp are minimised by transferring the 2D projections of
the particles from view m to n using the warp function ηmn, and then by com-
puting a set barycentric points bn from the transferred particles xpmn using
the BarycentersFromTransferredParticles function. Fourth, the barycen-
tric points bn and the 2D-3D contours CC are used to rigidly register M in every
view through the RigidICPRegistration function. The loop iterates until the
difference between the models of two consecutive iterations becomes lower than
a threshold ϵ = 10−3, or until a maximum number of iterations max iter = 100
has passed.
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4.4 Multi-View Deformable with Correspondences (MV-D)

MV-D is a variant of MV-C that does not use the inter-image rigidity to solve
registration, but keeps the inter-image correspondences and the contours CC
as constraints for registration. Compared to MV-C, MV-D produces multiple
shapes MN according to the number of views used and the liver deformations
in each of them. This is particularly useful in cases where the liver is being
manipulated by tools or other external forces.

The algorithm for MV-D is shown in Appendix 7. The procedure is similar to
MV-C with the difference that no average model is computed from all the views.
Instead, the individually deformed models {Mv1, ...,MvN} are rigidly register
with ICP in every view using the correspondences between the 2D projections
of the visible particles and their corresponding barycenters b, along with the set
of contour landmarks CC . Barycenters b are also obtained after transferring the
particles from other views using the warp functions η.

5 Experimental results

5.1 Rigidly related views

Phantom data. We reconstructed a 3D liver mesh from a patient’s CT and
generated 10 virtual deformations using Abaqus [21], by simulating gravity,
pneumoperitoneum and manipulations with surgical instruments. We added
randomly-spaced carved markers in the model’s surface to simulate keypoints.
We 3D printed these deformations using PLA (Polylactic Acid). Then, we used
a surgical laparoscope and a pelvitrainer box to take 10 views of every printed
model. Laparoscopic views of the 10 phantoms are shown in Appendix 8. We
implemented our methods using Qt and unoptimized C++ code, and they were
run on a PC with a processor AMD Ryzen 7 3700x, a graphics card NVIDIA
RTX 2080 Ti, 32 GB of RAM, and with Ubuntu 20.04. We estimated regis-
tration for every phantom by varying the number of views, going from 1 to 8,
and measured TRE as the average prediction error for uniformly sampled points
within the virtual 3D liver. The contour marking is done manually in less than
5 minutes for all the 8 views. We use 8 views as a maximum to keep the com-
putation time reasonable. The results are shown in figure 3(a). We observe that
the TRE for SV is steady around (11.89 ± 7.77)mm, that for MV-B it varies
with the number of views from (10.21 ± 5.87)mm to (12.08 ± 12.46)mm, that
for MV-B* it remains steady around (10.77 ± 6.26)mm, that for MV-C it con-
sistently decreases until (8.32±4.58)mm, and that for MV-D it has a maximum
at (14.14 ± 7.24)mm for 2 views and a final value of (12.58 ± 6.69)mm. MV-
B* estimated SfM scales close to the groundtruth, with differences comprised
between -13% and +7%. In order to better observe the performance of MV-B*
using a sufficiently good scale, we computed TRE for phantoms with lower than
5% scale variation. This corresponds to 7 out of 10 phantoms, with performance
shown in figure 3(b). In this case, MV-B* has better performance than SV, with
a TRE of (9.86± 6.36)mm vs (10.91± 6.41)mm. The total running time using
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8 views, after marking the contours, was of 2’48” for MV-B, 5’37” for MV-B*,
4’52” for MV-C, and 4’28” for MV-D.

Patient data. We collected CT and laparoscopic data from 5 patients. We
reconstructed the preoperative 3D models from the CT data and selected 9
random representative laparoscopic views for each patient. Out of these views,
one was singled out to serve as control view. The control view is not used to
perform registration but rather to verify registration, measuring the landmark
prediction error expressed in pixels, using the registration computed on other
views and rigidly adapted to the control view. Examples of these rigidly related
patient views are shown in Appendix 9. We measure the reprojection errors due
to the difficulty of having a reliable groundtruth to compute TRE in 3D. We
only run MV-B, MV-C and MV-D for the 8 views. MV-B* failed to obtain a
reliable SfM reconstruction. The results are is shown in figure 4(a). We observe
a clear benefit of using multiple views for registration, especially for the rigidly
related methods.

5.2 Non-rigidly related views

Phantom data. We ran all methods on the generated phantom data, on 10
combinations of 8 views, with every view corresponding to a different deforma-
tion. MV-B* was excluded, as SfM could not be ran in the absence of rigidity.
TRE results for a varying number of views are shown in figure 3(c). For the exper-
iments using 8 views, SV has a TRE of (11.59± 6.95)mm on the control points,
MV-B has a TRE of (13.34± 9.51)mm, MV-C has a TRE of (11.03± 9.45)mm,
and MV-D has a TRE of (10.71± 6.35)mm.

Patient data. We selected 9 random representative views per patient from the
previously described data with significant liver deformation across the views. As
for the rigidly related view case, we singled out one view to serve as control view.
Examples of such non-rigidly related patient views are shown in Appendix 10.
Landmark prediction error is computed on the control views and expressed in
pixels. The results are shown in figure 4(b). We ran MV-B, MV-C and MV-D
for the 8 views. We observed a 1 mm improvement when using multiple views
to solve registration.

6 Conclusions

The proposed multi-view methods improve registration accuracy compared to
the single-view method, especially for rigidly related views. The MV-C method
is the best performing one in this case, with an improvement of 2.45 mm over SV
on the phantom data. In comparison, MV-D is the worst performing method in
the rigidly related case. These results were confirmed on the patient data, where
MV-C improves the reprojection error by 15 px over SV. Its performance also
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Fig. 3: Mean TRE and standard deviations using all the methods on the rigidly
related views from all the 10 phantoms (a) and on phantoms with estimated
scale with less than 5% of deviation (b), and using all the methods on the non-
rigidly related views from all the phantoms (c).

Patient SV MV-B MV-C MV-D

1 26.07 21.98 19.49 28.61

2 58.40 10.28 09.49 42.73

3 42.78 32.24 29.75 44.15

4 17.13 21.72 21.13 23.79

5 26.71 15.46 16.95 24.28

average 34.28 20.33 19.36 32.71

Patient SV MV-B MV-C MV-D

1 32.47 36.82 30.49 30.14

2 63.08 69.37 66.48 57.62

3 46.24 54.41 49.91 49.79

4 25.07 36.44 29.79 21.31

5 31.85 36.82 32.15 29.75

average 39.74 46.77 41.76 37.73

(a) (b)

Fig. 4: Control view errors (px) on patient data for (a) rigidly related methods
with best results in bold and second best underlined and (b) non-rigidly related
methods with best results in bold.

varies with the number of views, although it becomes steady beyond 6 views. The
MV-B* method also works better than SV if a sufficiently good scale is found.
However, it is difficult to obtain a reliable SfM reconstruction on patient data,
which limits the usage of this method. When using non-rigidly related views,
MV-D behaves similarly to SV and MV-C, with a slight improvement of 1 mm.
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Visual inspection on the error distribution shows that TRE follows a unimodal
distribution with positive skewness. As future work, we plan to work on (i) im-
proving registration accuracy in the non-rigidly related view case, (ii) reducing
the registration time by automatically detecting the anatomical landmarks, and
(iii) using additional information to improve in both the rigidly and non-rigidly
related view cases, such as probing liver points with the tip of the surgical tools.
As part of the second goal, we are currently running the Preoperative to Intra-
operative Laparoscopic Fusion challenge (P2ILF) [22] in MICCAI 2022, with the
objective of automatically detecting the landmark correspondences between the
laparoscopic views and the preoperative 3D models.
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