Using Multiple Images and Contours for Deformable 3D-2D Registration of a Preoperative CT in Laparoscopic Liver Surgery - Supplementary material -

Yamid Espinel, Lilian Calvet, Karim Botros, Emmanuel Buc, Christophe Tilmant, and Adrien Bartoli

```
until dist(M_{i+1}, M_i) \le \epsilon or i + + \ge \max_{i \in I}
```

Appendix 1. Algorithm for SV registration.

```
{\bf Function}~{\rm MVBRegistration}
     Input: \mathcal{I} = \{I_1, ..., I_N\}, M_0, C_C = \{C_{C1}, ..., C_{CN}\} // Laparoscopic images, Preoperative 3D model, Set of 2D-3D contours
      Output: M // Registered model
      max_iter \leftarrow 100 // Maximum number of iterations
     \epsilon \leftarrow 10^{-3} // Precision threshold
M_i \leftarrow M_0 // Initialise model
i \leftarrow 1 // Current iteration
     repeat
            n \leftarrow 1 // View counter
            repeat
                 M_{vn} \leftarrow \text{SVRegistration}(M_i, C_{Cn}) // Perform single-view registration
            until n + + \geq \operatorname{size}(\mathcal{I})
            M_{i+1} \leftarrow \text{ComputeAverageModel}(\{M_{v1}, ..., M_{vN}\}) // \text{Average model from all views}
            n \leftarrow 1 // View counter
            repeat
              M_{vn} \leftarrow \text{RigidICPRegistration}(M, C_{Cn}) // Perform rigid ICP registration
            until n + + \geq \operatorname{size}(\mathcal{I})
     until dist(M_{i+1}, \overline{M}_i) \leq \epsilon or i + + \geq \max_iter
```

Appendix 2. Algorithm for MV-B registration.

2 Y. Espinel et al.

Appendix 3. Illustration of the measured anisometries in the liver 3D model. The near anisometries are measured in contiguous pairs of points. The far anisometries are measured in non-contiguous pairs of points.

Appendix 4. Behaviors of the 24 anisometry measures for 2 phantoms, using 10 combinations of 8 views per phantom. Two anisometry measures have a convex behavior: the near volume mean euclidean anisometry, and the near volume mean geodesic anisometry.

```
Function MVB * Registration
```

```
Input: \mathcal{I} = \{I_1, ..., I_N\}, M_0, C_C = \{C_{C1}, ..., C_{CN}\}, P, \mathcal{T} = \{T_1, ..., T_N\} // Laparoscopic images, Preoperative 3D model, Set of 2D-3D contours, SfM pointcloud, SfM camera poses
        Output: M // Registered model
       max.iter \leftarrow 20 // Maximum number of iterations \epsilon \leftarrow 0.01 // Minimum interval size parameter
        converged \leftarrow false // Binary convergence indicator
       M \leftarrow \text{SVRegistration}(M_0, C_{C1}) // \text{Perform single-view registration on the first view} s_M \leftarrow \text{computeInitialScale}(M, P) // \text{Middle SfM scale bound} s_L \leftarrow s_M - (0.3 * s_M) // \text{Lower scale bound} s_U \leftarrow s_M + (0.3 * s_M) // \text{Upper scale bound} \mathcal{T}_L \leftarrow \mathcal{T} * s_L // \text{Scale SfM poses for lower scale} \mathcal{T}_U \leftarrow \mathcal{T} * s_L // \text{Scale SfM poses for upper scale} \mathcal{M} \leftarrow M \text{VR} \text{Projection}(\mathcal{T}, M, C_L, \mathcal{T}, \text{more iten}) // \text{Multi view projection on lower}
       M_L \leftarrow MVRegistration(\mathcal{I}, M_0, C_C, \mathcal{T}_L, \max\_iter) // Multi-view registration on lower bound <math>M_U \leftarrow MVRegistration(\mathcal{I}, M_0, C_C, \mathcal{T}_U, \max\_iter) // Multi-view registration on upper bound <math>D_L \leftarrow ComputeAnisometry(M_0, M_L) // Compute anisometry for lower bound <math>D_U \leftarrow ComputeAnisometry(M_0, M_U) // Compute anisometry for upper bound
        repeat
                   / If upper bound has a lower anisometry, choose the sub-interval \{D_M, D_U\}:
                if D_L > D_U and (s_L - s_M) > \epsilon then
                        D_L \leftarrow D_M // Update lower bound anisometry s_L \leftarrow s_M // Update lower bound scale
                        s_M \leftarrow (s_M + s_U)/2 // Compute new middle bound scale
                 // If upper bound has a lower anisometry, choose the sub-interval \{D_L, D_M\}:
                else if D_L < D_U and (s_L - s_M) > \epsilon then
                         \begin{array}{l} \begin{array}{l} & D_L \subset D_M // \ \ Up \ date \ up \ er \ bound \ anisometry \\ s_U \leftarrow s_M // \ \ Up \ date \ up \ er \ bound \ scale \\ s_M \leftarrow (s_L + s_M)/2 \ // \ \ Compute \ new \ middle \ bound \ scale \end{array} 
                 // If the difference between bounds is less than a threshold, we have converged:
                else if (s_L - s_M) \leq \epsilon then

M \leftarrow M_M // The resulting model comes from the last middle bound scale
                        converged \leftarrow true
                \mathbf{end}
                 \mathcal{T}_M \leftarrow \mathcal{T} * s_M // \text{Scale SfM poses}
                M_M \leftarrow \text{MVRegistration}(\mathcal{I}, M_0, C_C, \mathcal{T}_M, \text{max\_iter}) // \text{Multi-view registration on medium}
                      bound
                D_M \leftarrow \text{ComputeAnisometry}(M_0, M_M) // \text{Compute anisometry for medium bound}
       until converged
Function MVRegistration
       Input: \mathcal{I}, M, \mathcal{C}_C, P, \mathcal{T}, \text{max_iter} // Laparoscopic images, Preoperative 3D model, Set of 2D-3D
              contours, SfM pointcloud, SfM camera poses, Maximum number of iterations
        Output: M // Registered model
        i \leftarrow 1 // Current iteration
        repeat
                M \leftarrow SolveBiomechanicalConstraints(M) // Biomechanical optimization
                n \leftarrow 1 // View counter
                repeat
                       M_{vn} \leftarrow \text{SolveContourConstraints}(M, C_{Cn}, T_n) // Contour landmarks optimization
                until n + + \geq \operatorname{size}(\mathcal{I})
                M_{i+1} \leftarrow \text{ComputeAverageModel}(\{M_{v1}, ..., M_{vN}\}, \mathcal{T})
```

until $i + + \ge \max_iter$

Appendix 5. Algorithm for MV-B^{*} registration.

```
Function MVCRegistration
      Input: \mathcal{I} = \{I_1, ..., I_N\}, M_0, C_C = \{C_{C1}, ..., C_{CN}\} // Laparoscopic images, Preoperative 3D
          model, Set of 2D-3D contours
      Output: M // Registered model
      max_iter \leftarrow 100 // Maximum number of iterations
      \epsilon \leftarrow 10^{-3} // Precision threshold M_i \leftarrow M_0 // Initialise model
      i \leftarrow 1 \ // \ \text{Current iteration}
       \{K_C\} \leftarrow \text{DetectKeypointCorrespondences}(\mathcal{I}) // \text{Detect inter-image correspondences} 
\{\eta\} \leftarrow \text{ComputeWarps}(K_C) // \text{Compute warp functions}
      repeat
             n \leftarrow 1 // View counter
             repeat
                   M_{vn} \leftarrow \text{SVRegistration}(M_i, C_{Cn}) // Perform single-view registration
             until n + + \geq \operatorname{size}(\mathcal{I})
             M_{i+1} \leftarrow \text{ComputeAverageModel}(\{M_{v1}, ..., M_{vN}\}) // \text{Average model from all views}
             n \leftarrow 1 // View counter
             repeat
                    m \leftarrow 1 // View counter
                    repeat
                           x_{pm} \leftarrow \text{ProjectVisibleParticlesIn2D}(M_{vm}) // Project model particles in 2D
                           x_{pmn} \leftarrow \text{TransferParticlesUsingWarps}(x_{pm}, \eta_{mn}) // Transfer particles to refer-
                               ence view n
                    \begin{array}{l} \text{until } m+h \geq \text{size}(\mathcal{I}) \\ x_{pn} \leftarrow \text{ProjectVisibleParticlesIn2D}(M_{vn}) \quad // \text{Project model particles in 2D} \\ b_n \leftarrow \text{BarycentersFromTransferredParticles}(x_{pn}, \{x_{p2n}, ..., x_{pNn}\}) \quad // \end{array}
                                                                                                                                        // Compute
                    b_n^r \leftarrow \text{BarycentersFrom transferred particles}
barycenters from transferred particles
                    M_{vn} \leftarrow \text{RigidICPRegistration}(\dot{M}, C_{Cn}, x_{pn}, b_n) // \text{Perform rigid ICP registration}
             until n + + \geq \operatorname{size}(\mathcal{I})
      until dist(M_{i+1}, \overline{M}_i) \leq \epsilon or i + + \geq \max_{i \in I}
```

Appendix 6. Algorithm for MV-C registration.

6 Y. Espinel et al.

```
Function MVDRegistration
       Input: \mathcal{I} = \{I_1, ..., I_N\}, M_0, C_C = \{C_{C1}, ..., C_{CN}\} // Laparoscopic images, Preoperative 3D model, Set of 2D-3D contours
       Output: \{M_{v1}, ..., M_{vN}\} // Registered models max_iter \leftarrow 100 // Maximum number of iterations
       \epsilon \leftarrow 10^{-3} // Precision threshold
M_i \leftarrow M_0 // Initialise model
i \leftarrow 1 // Current iteration
        \{K_C\} \leftarrow \text{DetectKeypointCorrespondences}(\mathcal{I}) // \text{Detect inter-image correspondences} \{\eta\} \leftarrow \text{ComputeWarps}(K_C) // \text{Compute warp functions}
        repeat
                n \leftarrow 1 \ // \ {\rm View \ counter}
               repeat
                       M_{vn} \leftarrow \text{SVRegistration}(M_i, C_{Cn}) // Perform single-view registration
                until n + + \geq \operatorname{size}(\mathcal{I})
                n \leftarrow 1 // View counter
                repeat
                        m \leftarrow 1 // View counter
                        repeat
                                x_{pm} \leftarrow \text{ProjectVisibleParticlesIn2D}(M_{vm}) // Project model particles in 2D
                                x_{pmn} \leftarrow \text{TransferParticlesUsingWarps}(x_{pm}, \eta_{mn}) // Transfer particles to refer-
                                     ence view n
                        \begin{array}{ll} {\color{black} {\rm until} \ m++\geq {\rm size}(\mathcal{I}) \\ {\color{black} {x_{pn}} \leftarrow {\rm ProjectVisibleParticlesIn2D}(M_{vn}) \ \ // \ {\rm Project\ model\ particles\ in\ 2D} \\ {\color{black} {b_n} \leftarrow {\rm BarycentersFromTransferredParticles}(x_{pn}, \{x_{p2n}, ..., x_{pNn}\}) \ \ \ // } \end{array} 
                       b_n \leftarrow \text{Barycenters from transferred particles}
barycenters from transferred particles (M_{\text{rm}}, C_{Cn})
                                                                                                                                                                // Compute
                        M_{vn} \leftarrow \text{RigidICPRegistration}(\hat{M_{vn}}, C_{Cn}, x_{pn}, b_n) // \text{Perform rigid ICP registration}
                until n + + \geq \operatorname{size}(\mathcal{I})
                M_{i+1} \leftarrow M_{v1}
        until dist(M_{i+1}, M_i) \leq \epsilon or i + + \geq \max_{i \in I}
```

Appendix 7. Algorithm for MV-D registration.

Appendix 8. Laparoscopic views of the phantoms used in registration. Each view corresponds to a different deformation.

7

Appendix 9. Example of rigidly-related patient views used in registration. Each row corresponds to a different patient.

8 Y. Espinel et al.

Appendix 10. Example of non-rigidly-related patient views used in registration. Each row corresponds to a different patient.