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Highlights

Deep Shape-from-Template: Single-image Quasi-isometric Deformable Registration and Reconstruction

David Fuentes-Jimenez, Daniel Pizarro, D. Casillas-Pérez, Toby Collins, Adrien Bartoli

• We propose DeepSfT, a novel DNN fully-convolutional
and based on residual encoder-decoder structures with re-
fining blocks. specifically tailored to SfT.

• We propose a semi-supervised end-to-end training proce-
dure, capable of training from synthetic and real data.

• DeepSfT is a solution to cope with multiple imaging ge-
ometries (caused by changing the intrinsics of the physical
camera, typically by zooming in or out, or by using a dif-
ferent camera), at training and inference.

• We propose to combine DeepSfT with a physics-based es-
timation procedure.
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Abstract

Shape-from-Template (SfT) solves 3D vision from a single image and a deformable 3D object model, called a template. Concretely,
SfT computes registration (the correspondence between the template and the image) and reconstruction (the depth in camera frame).
It constrains the object deformation to quasi-isometry. Real-time and automatic SfT represents an open problem for complex ob-
jects and imaging conditions. We present four contributions to address core unmet challenges to realise SfT with a Deep Neural
Network (DNN). First, we propose a novel DNN called DeepSfT, which encodes the template in its weights and hence copes
with highly complex templates. Second, we propose a semi-supervised training procedure to exploit real data. This is a practical
solution to overcome the render gap that occurs when training only with simulated data. Third, we propose a geometry adapta-
tion module to deal with different cameras at training and inference. Fourth, we combine statistical learning with physics-based
reasoning. DeepSfT runs automatically and in real-time and we show with numerous experiments and an ablation study that it
consistently achieves a lower 3D error than previous work. It outperforms in generalisation and achieves great performance in
terms of reconstruction and registration error with wide-baseline, occlusions, illumination changes, weak texture and blur.
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1. Introduction

1.1. Context and the SfT problem
The tasks of image registration (i.e., the computation of cor-

respondences) and image-based reconstruction (i.e., the compu-
tation of depth) are fundamental in computer vision1. Solving
both tasks is required in applications such as 3D object tracking
and augmented reality. To date, there exist mature techniques
for rigid objects, such as Structure-from-Motion (SfM) [1]. The
case of deformable objects is however largely unresolved. The
existing work has considered two main scenarios. In Non-Rigid
SfM (NRSfM) [2, 3, 4, 5], the inputs are a set of images and
the problem is to find correspondences across images (regis-
tration) and depth (reconstruction). In Shape-from-Template
(SfT) [6, 7, 8, 9, 10], the inputs are a single image, a 3D object
model (template) is known, and the problem is to find corre-
spondences between the model and the image (registration) and
depth (reconstruction). Obviously, as the object is deformable,
the image is not a photo of the model under some unknown
pose: rather, it is a photo of the model taken after some un-
known deformation. The most common type of deformation

∗Corresponding author: David Casillas-Pérez. Department of Signal The-
ory and Communications, Universidad Rey Juan Carlos, 28942, Fuenlabrada,
Spain: david.casillas@urjc.es

1By ‘image’, we always mean an RGB image taken by a regular camera.

prior used in NRSfM and SfT is the widely applicable quasi-
isometry, which prevents significant stretching or shrinking of
the object. An illustration of SfT is shown in figure 1. A very
important concept in SfT is the template, which is the known
textured 3D object model. Concretely, the template is a 3D
shape (e.g., a triangulated 3D mesh) and a texture map (e.g.
an image giving colours for the mesh’s facets), which is ac-
quired straightforwardly using a 3D scanner, an RGB-D sensor
or SfM.

SfT is a difficult and unresolved problem. The core chal-
lenges are related to the object (typically, a rich texture and a
flat template shape are easier to deal with), to the imaging con-
ditions (typically, a sharp and well-lit image with strong visi-
bility are easier to deal with) and to the availability of an initial
solution guess. The latter is generally available when the input
image is extracted from a continuous video, where the solu-
tion to the past frame forms a guess for the current frame, and
forms the so-called short-baseline case. In contrast, the wide-
baseline case occurs when the input image is processed individ-
ually, without having a solution guess. The short-baseline con-
dition (that a solution guess is available) is obviously a strong
weakness, as it assumes that camera motion and object defor-
mation are small between frames, and fails if, for instance, the
object goes outside the field of view. The wide-baseline case,
despite its increased difficulty, is thus very important to achieve

Preprint submitted to Image and Vision Computing June 6, 2022



highly robust deformable object registration and reconstruction.
SfT has been widely investigated with non-DNN approaches

for almost two decades and only recently within the DNN
framework. Non-DNN SfT methods fall into two broad cat-
egories. Methods in the first category compute registration
before reconstruction with existing keypoint-based or dense
matching methods [11, 12, 13]. They thus deal with the wide-
baseline case but are tremendously limited by the catastrophic
failure of registration, for many of the challenging object or
imaging conditions (e.g., blur will typically defeat the extrac-
tion of keypoints). Methods in the second category compute
registration and reconstruction simultaneously [8, 14, 15]. They
proceed by numerical optimisation from an initial guess and
hence only work in the short-baseline case. They may catas-
trophically fail for many of the challenging object or imaging
conditions. Using the DNN framework to solve SfT is an attrac-
tive idea. The general concept is to learn a function that maps
the input image to 3D deformation parameters [16, 17, 18]. This
solves registration and reconstruction jointly, without iterative
optimisation at run-time, and copes with the wide-baseline case.
The attempts to develop DNN SfT methods are promising but
also bear three important limitations. First, they are very re-
strictive with the object template, requiring regular rectangu-
lar meshes with a relatively small number of vertices (namely,
73 × 73 in [17, 18] and 10 × 10 in [16]). Second, they require
labelled registration and reconstruction data for training. This
relegates their training to only use synthetic data, affecting their
accuracy in real conditions. Third, they require that training and
inference are done with images coming from the same camera,
which is a strong practical limitation. In spite of the progress
brought by these works, there does not currently exist an SfT
method capable of handling the wide-baseline case robustly for
the challenging object and imaging conditions, densely and in
real-time.

1.2. Related vision problems
SfT is closely related to some other vision problems, namely

optical flow, scene flow, monocular depth reconstruction, pose
estimation and Shape-from-Shading. However, SfT is unique
in its own right as it has specific inputs-outputs and challenges.
As a consequence, existing methods to these related problems
either do not apply or cannot compete with specific SfT solu-
tions.
Optical flow. Optical flow [14, 19, 20, 21, 22] solves registra-
tion between two consecutive images in a video. It differs from
SfT in terms of its inputs (which are two images) and because it
is only solved in the short-baseline configuration. Additionally,
SfT involves reconstruction, while optical flow does not. Ap-
plications in AR, for instance, cannot be realised from optical
flow only.
Scene flow. Scene flow solves registration between consecutive
depth maps in an RGB-D video, obtained from an active sen-
sor [23, 24] or stereo [25, 26]. It differs from SfT in terms of its
inputs and because it is only solved in the short-baseline con-
figuration. In SfT, the sensor at run-time is a regular camera,
whose image cannot be fed to scene flow because of the miss-
ing depth channel. Additionally, DNN-based scene-flow meth-
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Figure 1: The principle of SfT and its application to augmented reality. Results
obtained with DeepSfT proposal over a 2D manifold dinosaur template.

ods [27, 28, 29] have shown limited success using piecewise
rigid motion and self-supervised approaches, with very similar
limitations to optical flow methods.
Monocular depth reconstruction. Monocular depth recon-
struction [30, 31, 32, 33, 34] infers depth from a single im-
age for a scene category, such as rooms and road scenes. It is a
hard problem with ambiguities due to the wide variability of ob-
jects, textures and shapes inside the scene. It is a reconstruction
method, not involving registration, in contrast with SfT which
involves both. Applications in augmented reality, for instance,
cannot be realised from monocular depth reconstruction only.
Pose estimation. Pose estimation [35, 36, 37] computes the
articulated pose of a person, typically defined by a 3D skele-
ton model, from a single image. In this sense it computes both
registration and reconstruction, as the skeleton model is recov-
ered in 3D. In a way, the skeleton model represents a category-
level template. SfT differs from human pose estimation be-
cause its template is object-specific and deformation is of a
much broader dimensionality. Specifically, a skeleton model
typically has about 16 vertices, while an SfT template typically
has several thousand vertices (e.g., 36256 vertices for the di-
nosaur template shown in figure 1).
Shape-from-Shading. Shape-from-Shading (SfS) is a recon-
struction method which estimates depth and normal maps from
an image of a textureless object. SfS does not generally con-
sider a 3D object model and does not solve registration. The
recent DNN methods [38, 39] have however solved SfS for ob-
ject categories, such as pieces of cloth or paper. While [39]
does not use an explicit object model, [38] fits a 31× 31 regular
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rectangular mesh to guide reconstruction. It uses a depth sensor
for labelling real training data. The experimental setup ensures
that the object is easily segmented from a dark background and
the illumination is controlled with at least three light sources.
Both approaches stick to the classical SfS setting where the
object must be mainly textureless, the scene illumination must
produce significant shading, and the object must be segmented
from the background. They are thus not applicable in the gen-
eral AR context.

1.3. Summary of contributions

We present four contributions to advance the state-of-the-art
in SfT within the DNN framework.

First, we propose DeepSfT, a novel DNN specifically tailored
to SfT. Technically, DeepSfT is fully-convolutional and based
on residual encoder-decoder structures with refining blocks.
DeepSfT has an original architecture compared to previous
DNN SfT methods [16, 17, 18]. First, in terms of its inputs:
DeepSfT only takes the image as input, but not the template.
This means that DeepSfT is object-specific, as the template is
encoded in its weights at training time.

Second, in terms of its outputs: while previous methods out-
put 3D vertices, DeepSfT produces a dense optical flow to rep-
resent registration and a dense depth map to represent recon-
struction. If required, the full object shape is then obtained from
a physics-based model a posteriori. These choices have impor-
tant practical consequences. First, DeepSfT is an efficient net-
work with real-time inference capability. Second, it is indepen-
dent of the 3D object model representation, hence capable to ex-
ploit models with fine geometric details, complex topology and
advanced material and illumination parameters. The computa-
tional cost of inference is independent of the number of param-
eters used to represent the object, such as the number of vertices
with a mesh model. It thus solves the problem of limited tem-
plate complexity of previous DNN SfT approaches [16, 17, 18].

Second, we propose a semi-supervised end-to-end training
procedure, capable of training from synthetic and real data.
Training from synthetic data is simple, by synthesising images
from random quasi-isometric deformations of the template,
whose registration and reconstruction parameters are readily
available. Training from real data is however a difficult issue
in SfT, yet is required to achieve good generalisation and to
overcome the so-called render gap. Indeed, while the depth la-
bel can be obtained by acquiring data with a standard RGB-D
sensor, the registration label cannot be obtained. Our proce-
dure first trains DeepSfT from synthetic data with a combina-
tion of supervised loss functions that measures the error of the
predicted registration and depth in different points of the net-
work, forcing it to a coarse initial output. The refining blocks
of the network are then trained from real data, with a combi-
nation of a supervised reconstruction loss function and a self-
supervised registration loss function, based on image colour
photo-consistency. Importantly, the quasi-isometric deforma-
tion of the object is learnt by DeepSfT because the training data,
whether synthetic or real, exhibit quasi-isometric deformations
of the object. Our training procedure thus strongly reduces the

requirement for fully-labelled data of previous DNN SfT ap-
proaches [16, 17, 18].

Third, we propose a solution to cope with multiple imaging
geometries (caused by changing the intrinsics of the physical
camera, typically by zooming in or out, or by using a different
camera), at training and inference. A natural idea is to train the
network with a variety of imaging geometries and possibly to
also have it to output the calibration parameters. This is risky in
at least two respects. First, quasi-isometric SfT has been shown
to have a unique and well-posed solution in the general case for
a calibrated camera, but not for an uncalibrated camera. Sec-
ond, this will increase the size of the network and decrease its
generalisability. Our proposal simply exploits the known cam-
era geometry (intrinsics and distorsion parameters) to warp the
input image to a standard configuration. With this standardisa-
tion, DeepSfT can be trained to a single imaging geometry, and
yet, handles any camera in any configuration. Our solution thus
resolves the need of using the same camera to acquire or sim-
ulate training data and at inference time of previous DNN SfT
approaches [16, 17, 18].

Fourth, we propose to combine DeepSfT with a physically
inspired estimation procedure. This combination is intrinsically
related to the choice of outputs we made for DeepSfT which,
recall, is the optic flow field (registration) and the depth map
(reconstruction). These outputs only solve SfT on the part of
the object visible in the input image. For a 2D manifold ob-
ject such as a shoe, there are always occluded parts, which, for
some applications, may be important to register and reconstruct
too. We propose to use the result of SfT for the visible part to
solve for the occluded part based with the so-called As-Rigid-
As-Possible (ARAP) prior. ARAP is a discrete approximation
of the strain and bending energy of an isotropic elastic material
that does not tear. It is therefore a physically inspired model for
quasi-isometric deformations, which is widely used in graph-
ics. We show how DeepSfT can be directly connected to this
solution to recover the full object solution. Importantly, some
applications such as AR do not require one to resolve the oc-
cluded object part, in which case this last step can be left aside
and computation time saved. Our solution guarantees that the
recovered occluded part of the object fulfills the physics-based
constraints pertaining to the real world. In contrast, in previous
DNN SfT approaches [16, 17, 18], these constraints are learnt
by the network and thus only hold approximately on the solu-
tion.

Table 1 summarises the comparison between DeepSfT, other
SfT methods, and related vision methods. We present quantita-
tive and qualitative experimental results showing that DeepSfT
outperforms the state-of-the-art in accuracy, robustness and
computation time. These results include the wide-baseline case
and severe imaging conditions, with strong occlusions, illumi-
nation changes, weak texture and blur. We release the data cre-
ated by the authors trough the following Kaggle dataset [40].

2. Previous Work

We first review the non-DNN SfT methods, which we call
classical SfT methods, forming the vast majority of existing
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Methods/problems Baseline Accuracy
Number

of
vertices

Needs
rectangular

template
2D manifold

Solves
dense

registration

Training
needs full

supervision

Real
time References

Decoupled methods Wide Med Low No Yes No N/A Yes [8, 41]Classical
SfT Integrated methods Short High High No Yes Yes N/A Yes [42, 43, 44]

Previous methods Wide High Low No No Yes Yes Yes [17, 16, 18]DNN
SfT DeepSfT Wide High High No Yes Yes No Yes Proposed

Optical flow Short High High Yes Yes Yes Yes Yes
[14, 19, 20]

[21, 22]

Scene flow Short High High No Yes Yes Yes Yes
[23, 24, 25]
[27, 28, 29]

[26]
Monocular depth
reconstruction N/A Low Low No No Yes No Yes

[33, 34, 30]
[31, 32]

Related
problems

Pose estimation Wide Med Low No No Yes Yes Yes [36, 37, 35]
Shape-from-Shading N/A Med High No No Yes Yes Yes [38, 39]

Table 1: Characteristics of existing SfT methods and other related problems with state-of-the-art solutions provided by DNNs. Existing SfT methods are divided
into classical (non-DNN) and DNN methods.

work. We start with the decoupled methods, which solve reg-
istration and reconstruction as independent problems, and then
we discuss the integrated methods that solve registration and re-
construction jointly. We finally review the DNN SfT methods.
We have categorised state-of-the-art methods, their properties,
and problems related to SfT in table 1.

2.1. Classical SfT decoupled methods
Decoupled methods first compute registration and then re-

construction as two independent and sequential stages [42, 43,
44]. Their main advantages are simplicity, problem decompo-
sition, and to leverage existing mature registration approaches.
However, they tend to produce sub-optimal solutions because
they do not consider all physical constraints that connect re-
construction and registration. Decoupled methods typically
solve wide-baseline registration with an existing method that
is not specific to SfT, using feature-based matching with key-
points such as SIFT [45], with filtering to reduce the mis-
matches [11, 46]. These approaches inherit the advantages of
wide-baseline registration: they can deal with individual images
and strong deformation without requiring temporal consistency.
However, they are fundamentally limited by feature-based reg-
istration, which fails when the object has a weak or repetitive
texture, or when the imaging conditions are challenging (low
image resolution, blur or strong viewpoint distortion). Further-
more, accurate results demand an expensive optimisation pro-
cess at run-time. Because of these limitations, the existing real-
time wide-baseline decoupled methods require simple objects
with simple deformations, such as bending sheets of paper.

Various reconstruction methods have been considered in de-
coupled methods, and they can be classified according to the
deformation model. The most popular deformation model is
isometry, which approximately preserves geodesic distances.
These methods follow one of three main strategies: i) using
a convex relaxation of isometry called inextensibility [42, 6,
43, 44], ii) using local differential geometry [7, 9] and iii) min-
imising a global non-convex cost [44, 47]. Methods in iii) are
the most accurate but also the most computationally expensive.
They require an initial solution found using a method from i)

or ii). There also exist methods that relax isometry in an at-
tempt to handle elastic deformations. These include the angle-
preserving conformal model [7], or simple mechanical mod-
els with linear [48, 49] or non-linear elasticity [50, 51, 52, 53].
These models all require boundary conditions in the form of
known 3D points, which is a fundamental limitation. The well-
posedness of non-isometric methods remains an open research
question.

2.2. Classical SfT integrated methods

Integrated methods compute both registration and recon-
struction jointly. All existing methods are short-baseline, re-
stricted to video data, and may work in real time [8, 14, 19].
They are based on the iterative minimisation of a non-convex
cost that deforms the template in 3D so that its projection agrees
with the image data. Some methods use keypoint correspon-
dences that can be re-estimated during optimisation [8], and
others use pixel-level information [14, 19] and a data cost based
on template/image photo-consistency. These latter methods
support dense solutions and resolve complex, high-frequency
deformations. Their main limitations are two-fold. First, they
break down with fast deformation or camera motion. Second, at
run-time, they must solve an optimisation process that is highly
non-convex and computationally demanding, requiring careful
hand-crafted design and a correct balance of data and deforma-
tion constraints.

2.3. DNN SfT methods

Several DNN-based methods have been recently pro-
posed [16, 17, 18]. These methods assume a flat template,
described with a regular mesh. We refer to this special type
of template as a rectangular template. They all use encoder-
decoder neural architectures, and differ in the way the mesh ver-
tex coordinates are parameterised and the learning strategy. [16]
first solves registration by regressing many 2D belief maps
(three per vertex), giving their likely 2D coordinates in the im-
age. A depth estimation network is then used to reconstruct ver-
tex depth coordinates. This strategy does not scale well to many
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vertices, limiting its applicability, as shown by the reported ex-
periments with 10 × 10 vertices or fewer. [17, 18] use three-
channel 2D outputs to parameterise the 3D coordinates of the
mesh vertices. This strategy allows [17] and [18] to use a rect-
angular template with a greater number of vertices than [16],
showing results with 73 × 73 vertices in both cases. [17]
use supervised learning that minimises the mean squared er-
ror between the network outputs and reconstruction labels with
a synthetic training data base. [18] uses an adversarial learn-
ing approach, introducing a discriminator network. The meth-
ods of [16, 17, 18] share four important common weaknesses.
First, they only work with rectangular templates, limiting their
application to e.g. paper sheets or rectangular cloth sections.
They cannot be used with non-rectangular templates, such as
2D manifold templates or objects with complex geometries like
the shoe of figure 2. Second, they do not scale well for larger
meshes, as it increases the network size. Third, the camera used
for training and run-time must be the same. Fourth, they are
fully-supervised methods, requiring fully labeled data. Due to
the difficulty of obtaining labels with real data, they rely on
simulated data. This strategy limits prediction accuracy in real
images due to the render gap between simulated and real data
[54]. For instance, [17, 18] use Blender [55] to create synthetic
images of a deforming paper sheet or clothing. In all reported
experiments the simulated images have controlled background
and lighting conditions. In all these previous DNN methods,
the experimental results with real data are mostly qualitative
and with a controlled environment, to mitigate the render gap
between the synthetic and real data.

In summary, the previous DNN SfT methods have shown
that SfT can be learnt by a DNN. However, they have not been
shown to work in real-world challenging conditions, and suffer
four main limitations discussed above. Our proposed approach
DeepSfT does not have these limitations, signifying a consider-
able step forward in SfT research and real-world application.

3. Methodology

3.1. Scene geometry

Template. Figure 2 shows the geometric model of SfT, includ-
ing the camera image and template deformation. The template
is known and represented by a 3D surface T ⊂ R3 jointly with
an appearance model, described as a texture mapAT = (A, A).
The texture map consist of an R2 domain A ⊂ R2 and a func-
tion A : A → (r, g, b) which maps it to the RGB space. The
texture map domain A is represented as a collection of flat-
tened texture charts Ui whose union covers the appearance of
the whole template [56]. We use normalised texture coordinates
forA, drawn from the unit square. In our approach the template
is not restricted to a specific topology, and can be thin-shell or
2D manifold, without requiring modification to our DNN archi-
tecture. Our approach is also not restricted to a specific sur-
face representation. In our experiments section we use mesh
representations because of their generality, but this is not a re-
quirement of the DNN. The bijective map betweenA and T is
known and denoted by ∆ : A → T .
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Projection

Known

Unknown

Reconstruction

Deformed Surface
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Figure 2: Geometric model of Shape from Template, showing the case of a
shoe template. This model show that initially we know the 3D template T , the
Texture map A of the object and the Input image used. What we want to find
using an SfT aproximation is the registration function η and the reconstruction
of the visible part Xvis.

Deformation. We assume that T is deformed with an unknown
quasi-isometric map Ψ : T → S, where S ⊂ R3 denotes the
unknown deformed surface. Quasi-isometric maps permit mild
extension and compression, common with many real world de-
formable objects.
Camera projection. The input image is modeled as a 3-
channel colour intensity function I : R2 → (r, g, b), which is
discretised into a regular grid of pixels. We model the camera
with perspective projection:

(x, y, z) 7−→
( x

z
,

y
z

)
= (u, v). (1)

We assume that the camera is intrinsically calibrated: radial dis-
tortion, focal length and aspect ratio are all known parameters.
This is a very common assumption in SfT. Hence, (u, v) are reti-
nal coordinates that, without loss of generality, can be readily
obtained from the image coordinates.
Visible surface region and registration map. The surface re-
gion that is visible in the camera image (unobstructed by self or
external occlusion) is unknown and denoted by Svis ⊂ S. This
region projects onto the image plane to define an unknown 2D
region I ⊂ R2. We relate Svis and I with a perspective embed-
ding function Xvis : I → Svis with Xvis(u, v) = ρ(u, v) (u, v, 1)
and where the unknown depth function ρ : I → Svis gives the
depth of Svis in camera coordinates at each pixel in I. In the
absence of self-occlusions, Svis = S. 2D manifold templates
always induce self-occlusions. The unknown registration map,
η : I → A is an injective map that relates each point of I to its
corresponding point inA.

3.2. Object-specific approach
Our proposed DNN SfT solution DeepSfT estimates ρ(u, v),

η(u, v) and I directly from the input image I. DeepSfT is
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object-specific, as the template information is encoded from the
training data into the network weights, as [16]. In other words,
the trained network’s weights ‘memorise’ the object shape.
This reduces the difficulty of the learning problem, requiring
a considerably lower amount of training data, and allows us
to propose a compact architecture that runs in real time. The
downside of an object-specific approach such as the one pro-
posed here is that it cannot be directly ported to other templates,
but needs to be retrained with them. Although this factor limits
its usability in certain real cases that do have this requirement,
there are other real use cases such as the 3D reconstruction of
organs or industrial parts in predictive mechanics, in which this
system would work correctly without the need for any retrain-
ing, since the template does not change. DeepSfT is much more
accurate than object-generic methods [17, 18, 33, 34], which
are not mature enough to solve SfT in challenging conditions,
as we show in the experiments section. Importantly, we also
provide a semi-supervised method to train DeepSfT without the
need of manual labelling, which is a main limitation of the state-
of-the-art. It combines synthetic data generated with Blender,
with real data captured with a low-cost commercial RGB-D
sensor. Generating data for a new template is thus done eas-
ily and can be implemented as a highly automatized process.

3.3. DNN architecture
We encode DeepSfT outputs as DNN functions taking I as

input, which is resized to a canonical resolution of 270 × 480
px:

(ρ̂, η̂) = D(I, θW), (2)

where θW are the network weights. We encode I in the network
outputs ρ̂ and η̂ as follows:

ρ̂(u, v) ≈

ρ(u, v) (u, v) ∈ I
−1 otherwise

(3)

η̂(u, v) ≈

η(u, v) (u, v) ∈ I
(−1,−1) otherwise.

Figure 3 shows the proposed network architecture. It uses a
cascaded structure divided into three principal blocks shown in
figure 4. The Main Block is denoted asDM:

(ρ̃, η̃) = DM(I, θM), (4)

where ρ̃ and η̃ are estimates of the depth and registration maps
and θM contains the Main Block network weights. The Depth
Refinement Block DD inputs I, ρ̃ and η̃ and outputs a refined
depth map ρ̂:

ρ̂ = DD(I, ρ̃, η̃, θD), (5)

where θD are the Depth Refinement Block network weights.
The Registration Refinement Block DR inputs I, ρ̃ and η̃ and
outputs a refined registration map η̂:

η̂ = DR(I, ρ̃, η̃, θR), (6)

where θR are the Registration Refinement Block network
weights. The weights of the three blocks define the network’s
total weights θW = (θM, θD, θR).

The refinement blocks play an important role to adapt the
network to real data, as described in §4. The three blocks
use identity, convolutional and deconvolutional residual feed-
forwarding structures based on ResNet50 [57]. They use
encoder-decoder architectures, very similar to those used in se-
mantic segmentation [58]. Each block is composed of two un-
balanced parallel branches with convolutional layers that prop-
agate information to deeper layers, preserving high spatial fre-
quencies.

Table 2 shows the layered decomposition of the Main Block.
It first receives I and performs a first spatial reduction using
a 2D convolutional layer with ReLu activation and Max Pool-
ing. Then, a sequence of three convolutional and identity blocks
is used to encode texture and depth information as deep fea-
tures (figure 4). Image information from I is reduced to a com-

Layer num Type Output size Kernels/Activation

1 Input (270,480,3) –

2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Relu
5 Max Pooling 2D (45,80,64) (3,3)

6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3)

7-8 Encoding identity Block x 2 (45,80,[64, 64, 256]) (3,3)

9 Encoding Convolutional Block (23,40,[128, 128, 512]) (3,3)

10-12 Encoding identity Block x 3 (23,40,[128, 128, 512]) (3,3)

13 Encoding Convolutional Block (12,20,[256, 256, 1024]) (3,3)

14-16 Encoding identity Block x 3 (12,20,[256, 256, 1024]) (3,3)

17-20 Encoding identity Block x 3 (12,20,[1024, 1024, 256]) (3,3)

21 Decoding Convolutional Block (24,40,[512, 512, 128]) (3,3)

22 Cropping 2D (23,39,128) (1,1)

23-25 Encoding identity Block x 3 (23,39,[512, 512, 128]) (3,3)

26 Decoding Convolutional Block (46,78,[256, 256, 64]) (3,3)

27 Zero Padding (46,80,64) (0,1)

28-29 Encoding identity Block x 2 (46,80,[256, 256, 64]) (3,3)

30 Upsampling (138,240,64) (3,3)

31 Cropping 2D (136,240,64) (2,0)

32 Convolution 2D (136,240,64) (7,7)
33 Batch Normalisation (135,240,64) –
34 Activation (136,240,64) Relu
35 Upsampling (272,480,64) (3,3)

36 Cropping 2D (270,480,64) (2,0)

37 Convolution 2D (272,480,3) (3,3)
38 Activation (270,480,1) Linear

Number of parameters 81 664 765

Table 2: Main Block architecture showing from left to right columns, the num-
ber of each layer used, the type of layer used, the output size of the tensor that
inference the layer and the own parameters of each layer.

pressed feature vector in a representation space of dimension
12 × 20 × 1024. Decoding is performed with decoding blocks.
These require upsampling layers to increase the dimensions of
the input features before passing through the convolution lay-
ers, as shown in figure 4. Finally, the last layers have convolu-
tional and cropping layers that adapt the output of the decoding
block to the size of the output maps (270 × 480 × 3). The first
output channel provides the depth estimate ρ̃, and the last two
output channels provide the registration estimate η̃.

The Depth Refinement and Registration Refinement Blocks
share the same structure, shown in table 3, which is a reduced
version of the Main Block using only the first two encoder and
decoder blocks. The Depth Refinement Block takes as input the
concatenation of I, ρ̃, and η̃ (6 channels) and it outputs ρ̂. The
Registration Refinement Block takes as input the concatenation
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Figure 3: DeepSfT architecture. The proposed network architecture is composed of three principal blocks: the Main Block, the Depth Refinement Block and the
Registration Refinement Block. Each block is an encoder-decoder designed for SfT. The Main Block receives an RGB input image I and outputs a first estimate of
the registration and depth maps. The Depth and Registration Refinement Blocks improve the initial estimates, taking as input I and the Main Block outputs, and
producing the final depth and registration maps.
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Figure 4: Identity, convolutional and deconvolutional residual blocks, similar
to the ones used in residual architectures like [59].

of I, ρ̃, and η̃ (6 channels). Its output is added as an offset to η̃
(last two channels) to produce η̂.

3.4. Recovering occluded surface regions

Our DeepSfT network registers and reconstructs Svis by its
outputs ρ̂ and η̂. Due to self or external occlusions, always
occurring with 2D manifold templates, the hidden surface part
Sh = S \ Svis can be large and important. However, learning
to infer Sh from a single image is a very ill-posed problem due
to ambiguities, and can be very difficult to train with real data.
We propose a post-processing step to recover Sh based on min-
imising the As-Rigid-As-Possible (ARAP) cost, widely used in
graphics and mesh processing [60]. ARAP is also the most nat-

Layer num Type Output size Kernels/Activation

1 Input (270,480,6) –

2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Relu
5 Max Pooling 2D (45,80,64) (3,3)

6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3)

7-8 Encoding identity Block x 2 (45,80,[64, 64, 256]) (3,3)

9 Encoding Convolutional Block (23,40,[128, 128, 512]) (3,3)

10-13 Encoding identity Block x 4 (23,40,[128, 128, 512]) (3,3)

14 Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)

15-16 Encoding identity Block x 2 (46,80,[512, 512, 128]) (3,3)

17 Upsampling (92,160,128) (2,2)

18 Cropping 2D (92,160,128) (2,0)

19 Convolution 2D (90,160,64) (3,3)
20 Batch Normalisation (90,160,64) –
21 Activation (90,160,64) Relu
22 Upsampling (270, 480, 64) (3,3)

23 Convolution 2D (270, 480, 32) (3,3)
24 Activation (270, 480, 32) Relu
25 Convolution 2D (272,480,1) (3,3)
26 Activation (270,480,1) Linear

Number of parameters 13 618 689

Table 3: Depth and Registration Refinement Block architectures showing from
left to right columns, the number of each layer used, the type of layer used, the
output size of the tensor that inference the layer and the own parameters of each
layer.
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Sequence Samples Train Test

DS1S 60000 47000 5000
DS2S 60000 47000 5000
DS3S 60000 47000 5000
DS4S 60000 47000 5000
DS1R 2116 1884 232
DS2R 3100 2728 373
DS3R 4800 3500 1300
DS4R 4200 3650 550
DS5R 193 143 50

Table 4: Train and test split for each image sequence. ‘S’ stands for synthetic
generated with Blender and ‘R’ stands for for real generated with Kinect V2.

ural prior for quasi-isometric templates [61, 62] and it does not
require additional learning.

Unlike the DNN, which is independent of surface represen-
tation, the shape completion process requires the template to be
represented as a triangular mesh. We useMS andMT to repre-
sent the deformed and rest template meshes respectively. These
have 3D vertices VS = {p1, . . . ,pN} and VT = {q1, . . . ,qN}

respectively. The objective of ARAP shape completion is to
recover VS (and hence S) from Svis and VT by solving the
following optimisation problem:

VS = arg min
VS

E(VS), (7)

where:

E = Ed(VS,Svis) + λaEa(VS,VT ) + λsEs(VS,VT ). (8)

Ed is the data term. It uses the Euclidean norm between the
set of visible vertices in VS and their corresponding 3D coor-
dinates in Svis, as produced by DeepSfT. Ea is the ARAP prior
[62], that encourages the deformed mesh to be isometric with
respect to the rest mesh. Finally, Es is a smoothing term that pe-
nalizes large deviations in the local curvature of S with respect
to the template. The hyperparameters λa = 20 and λs = 0.005
control the influence of the ARAP and smoothing terms. We set
them to a fixed value selected experimentally. We implement
Ea and Es following [62] and optimise E with Gauss-Newton,
which typically converges in fewer than 10 iterations. This can
be implemented easily on a GPU enabled device for real-time
shape completion.

4. DNN Training

4.1. Training process overview

For a given template, we create a quasi-photorealistic syn-
thetic dataset using rendering software. This process is de-
scribed in detail in §5.1.1 and it is used to train DeepSfT with
supervised learning. We also record a much smaller dataset
with a real RGB-D camera capturing some representative defor-
mations and poses of the object. We emphasize that the RGB-D

camera provides only depth labels and not registration labels, so
it cannot be used for supervised learning of the registration.

Using both simulated and real data, we train DeepSfT in
three steps. In the first step we use the synthetic data to train the
Main, Depth Refinement and Registration Refinement Blocks
end-to-end. In the second step we refine the Depth Refinement
Block weights using real training data. In the third step we re-
fine the Registration Refinement Block weights using real train-
ing data with unsupervised learning, by minimising a loss func-
tion that enforces the registered template to be photometrically
consistent with the input images.

DeepSfT has been implemented in Keras/Tensorflow [63].
We have observed that Stochastic Gradient Descent (SGD)
achieves better generalisation results when fine tuning the
network with real data while Adaptive Moment Estimation
(ADAM) [64] performs better when training from scratch. We
thus use ADAM in the first step and SGD in the second and
third steps. Mixing ADAM and SGD is common practice
[65, 66].

4.2. Training step 1: initial global training
The Main, Depth Refinement and Registration Refinement

Blocks are trained end-to-end with the following supervised
loss function:

L1(θW) =
1
2

M∑
i=1

‖η̂i − ηi‖
2
F +

M∑
i=1

‖ρ̂i − ρi‖
2
F+

1
2

M∑
i=1

‖η̃i − ηi‖
2
F +

M∑
i=1

‖ρ̃i − ρi‖
2
F ,

(9)

where ρ̂i and η̂i are the estimated depth and registration maps,
and ρ̃i and η̃i are the outputs from the Main Block. The terms
ρi and ηi are the label maps, and M is the number of synthetic
images. The symbol ‖.‖F is the Frobenius norm. We use ADAM
optimisation with a learning rate of 10−3 and parameters β1 =

β2 = 0.9. Training is fixed to 40 epochs with a batch size of
7, taking approximately 12 hours in a single GPU workstation
(Nvidia GTX1080). The weights are initialised with random
uniform sampling [67].

4.3. Training step 2: Depth Refinement Block fine tuning
We fine-tune the Depth Refinement Block weights using real

data while freezing the weights θM of the Main Block. This
step is crucial to adapt the network to handle the render gap and
to cope with real illumination conditions, camera response and
color balance. In this step a different loss function L2 is used,
which combines a supervised loss for the Depth Refinement
Block and a spatial regulariser:

L2(θD) =

M′∑
i=1

‖ρ̂i − ρi‖
2
F + λ

M′∑
i=1

‖∇ρ̂i‖
2
1, (10)

where M′ is the number of real training images. We include
total variation regularisation [68] to mitigate the effect of noise
in the depth labels while preserving edges and details [69]. The
hyperparameter λ is set to 10−9 in all experiments and chosen
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empirically. We train with SGD and a small and fixed learn-
ing rate of 10−5. We train for 10 epochs with a batch size of
7. Having both a low learning rate and a reduced number of
epochs allows us to adapt our network to real data while avoid-
ing overfitting.

4.4. Training step 3: Registration Refinement Block fine tuning

In this step we use a property of SfT, which is that the in-
put image can be synthesised from the registration solution,
by warping the template texture map. We propose a self-
supervised fine tuning algorithm for the Registration Refine-
ment Block, based on minimising a photo-consistency loss that
computes the error between the synthesised image and the input
image. For each input image Ii, the corresponding synthesised
image I′i is computed as follows:

I′i (u, v) =

{
A (η̂i(u, v))
0

(u, v) ∈ Î
otherwise,

(11)

where Î(u, v) , ρ̂(u, v) > −1 is the object segmentation ob-
tained from the Depth Refinement Block. The computation of
equation (11) is first-order differentiable in the Registration Re-
finement Block network weights θR, as described in Appendix
AAppendix A.

The unsupervised loss functionLu forces the network to pro-
duce synthesised images that are photometrically similar to the
input images. The loss involves the registration map η̂i com-
puted by the Registration Refinement Block, each input image
Ii and their corresponding synthesised image I′i , and is defined
as follows:

Lu(θR) =

M′∑
i=1

∑
(u,v)∈I

χ
((

I′i (u, v) − Ii(u, v)
)2
)
+

µ

M′∑
i=1

∑
(u,v)∈I

χ
((

I′↓i (u, v) − I↓i (u, v)
)2
)

+ λ

M′∑
i=1

‖∇η̂i‖
2
1.

(12)

where M′ is the number of training images, χ(x) is an M-
estimator, and images I′↓i and I↓i are downsized versions of I′i
and Ii respectively by a factor 2. These are used to include
losses at two spatial scales, which improves convergence simi-
larly to image pyramids used in unsupervised optical flow [70].
The loss is controlled by a hyperparameter weight µ, fixed to
0.5 in all our experiments. To handle illumination changes
and shading effects that violate photo-consistency, we use the
Cauchy M-estimator:

χ(x) =
c2

2
log

(
1 + (x/c)2

)
, (13)

with c = 4 as default. We also include a total variation regu-
larisation term in the loss that imposes smoothness in the reg-
istration output while preserving discontinuities. This term is
usually included in optical flow methods [70] to improve con-
vergence. The hyperparameter λ is set empirically to 10−9 in all
experiments. We optimise Lu using SGD with momentum. We
found that optimisers with an adaptive step, such as ADAM,

or large learning rates cause convergence problems when min-
imising Lu. We use an initial learning rate of 10−5 and a decay
of 10−9. The Registration Refinement Block is trained for 10
epochs with a batch size of 6.

4.5. Handling different camera intrinsics

We train DeepSfT with images generated by a camera with
fixed intrinsics (called the training camera), which may poten-
tially have different intrinsics to the test camera. Once the net-
work is trained, we cannot immediately input images from the
test camera into the network because its weights are trained
specifically for the intrinsics of the training camera. A possi-
ble solution to this problem is to train DeepSfT to handle vary-
ing intrinsics. However, this is very challenging and a potential
source of ambiguities between intrinsics and image deforma-
tions. We have been able to generalise DeepSfT to work with
a different camera at test time without any need to retrain the
network weights. This has not been achieved with other DNN-
based SfT methods and it significantly broadens our applicabil-
ity for real-world use. We propose to handle this by adapting
the test camera’s effective intrinsics to match the training cam-
era. Because the object’s depth within the training set varies
(and so do the perspective effects), we can emulate testing on
the training camera by applying a known affine transform to
images from the test camera. The affine transform is the matrix
A = KtrainK−1

test, where Ktrain and Ktest are the intrinsic matri-
ces of the training and test cameras respectively. The trans-
formed test image is then clipped about its principal point and
zero padded, if necessary, to obtain the canonical resolution of
270 × 480 (the input image size of DeepSfT). It is important
to highlight that the DeepSfT output maps correspond with the
standardized intrinsics (i.e. the intrinsics used for training). For
example, in the case of the depth map, the 3D surface is then
estimated from this depth-map using the standardized intrin-
sics. If desired, the depth-map can be converted to an equiva-
lent depth-map associated to the test intrinsics by the 2D affine
transform A−1.

5. Experimental Results

5.1. Datasets

5.1.1. Templates
We have tested DeepSfT with 5 objects represented by 3 thin-

shell and 2 2D manifold templates shown in table 5. We refer
to these as DS1 to DS5. DS1 models an A4 paper sheet with
very poor texture. DS2 models an A4 paper sheet with a richer
texture and DS5 models an A4 paper sheet from a well-known
public dataset [71]. DS3 is a 2D manifold model of a soft toy
and DS4 is a 2D manifold model of an adult sneaker. DS1, DS2
and DS5 can be modelled with a rectangular template, however
DS3 and DS4 cannot. They were built with triangular meshes
using dense SfM (Agisoft Photoscan [72]). We emphasize that
no previous DNN-based work has been able to solve SfT for
2D manifold templates like DS3 and DS4 in the wide-baseline
setting.
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5.1.2. Synthetic datasets
For each template a synthetic dataset was constructed by de-

forming the template with random quasi-isometric deforma-
tions and rendering the deformed template with fixed camera
intrinsics and random viewpoints. We used Blender [55], which
includes a physics-based simulation engine to simulate defor-
mations with different degrees of stiffness using position-based
dynamics. For DS1, DS2 and DS5 (rectangular templates) we
simulated continuous videos with a high stiffness term and ran-
domly located 3D anchor points. We applied tensile and com-
pressive forces in randomised 3D directions. The simulation
parameters are given in the supplementary material. For DS3
and DS4 (2D manifold templates) we used rig-based deforma-
tions with hand-crafted rigs. We generated independent defor-
mations for each image using random joint angles.

For each deformation we rendered an image with a ran-
dom camera pose (random rotation around the camera’s op-
tical axes with angle variations in the interval [− π4 ,

π
4 ] radians

and random translations in the intervals tx ∈ [−150, 150] mm,
ty ∈ [−150, 150] mm and tz ∈ [100, 600] mm). A distant
light model was used with illumination angles parameterised
by spherical coordinates that was drawn randomly in the inter-
val [− π

18 ,
π
18 ] radians around the camera’s optical axis. The dif-

fuse surface reflectance component was modelled as Lamber-
tian and the specular component was modelled with Blender’s
Cook-Torrence model. We generated brightness variations by a
random gain in the range [0.9, 1.1]. We randomly changed the
image background with images from [73]. To simulate occlu-
sions, we randomly introduced a maximum of 4 synthetically
generated circles of constant random color in each image with
variable diameter in the range [1, 10] px at random locations.
In total, each dataset consists of 60000 RGB images with la-
belled depth and registration maps. These were standardised to
a canonical resolution of 270 × 480 px.

5.1.3. Real datasets
Real datasets of each object were recorded with Microsoft

Kinect v2 with deformations caused by hand manipulation, as
shown in table 5. Videos for DS1, DS2, DS3 and DS4 were
recorded by us and the video for DS5 was provided in the pub-
lic dataset (192 frames). The recorded depth maps were aligned
with the RGB images using the extrinsic parameters and down-
sized to 270 × 480 px. Note that these RGB-D videos do not
provide labelled registration data.

5.1.4. Training/testing data splits
We evaluate DeepSfT in terms of reconstruction and regis-

tration errors with synthetic and real test data. Synthetic test
data were generated using the same process as the synthetic
training data (§5.1.2), using random configurations not present
in the training data. Real test data were generated using the
same process as the real training data, using new videos, con-
sisting of new viewpoints and object manipulations not present
in the training data. We also generated test data using two new
real cameras: an Intel Realsense D435[74] (an RGB-D camera
for quantitative reconstruction evaluation) and a Gopro Hero

V3[75] (an RGB camera for qualitative evaluation). Table 6
shows their respective camera intrinsics.

Table 4 shows the train and test split for all real datasets.
When testing DeepSfT with synthetic data, results from the
Main Block are evaluated. When testing with real data, results
from the Depth Refinement Block and Registration Refinement
Block are evaluated.

5.2. Compared methods and evaluation metrics
We compare DeepSfT with two classical state-of-the-art SfT

methods. The first is an isometric SfT method [9] with public
code, referred to as CH17. We provide this method with two
types of registration: CH17+GTR uses Ground-truth Registra-
tion (indicating its best possible performance independent of
the registration method) and CH17+DOF uses a state-of-the-art
Dense Optical Flow registration method [22]. In the latter case
we generate registration only for image sequences using frame-
to-frame tracking. We also add to these two methods a final
refinement step based on minimising a statistically optimal non-
convex cost function with Levenberg-Marquardt [7]. We refer
to the refined solutions as CH17R+GTR and CH17R+DOF. The
second classical SfT method we test is [76] with public code,
referred to as NGO15. In addition to this, we do not compare
with [60] because its performance in terms of surface recon-
struction error registration and surface is similar to [9] with
which we compare our proposal. [60] is a classic 2D manifold
SfT method that estimates volume deformation and has some
strong limitations, like not achieving real-time, being feature-
based and requiring densely textured surfaces with distinct tex-
ture features.

We compare DeepSfT with three DNN-based methods. The
first is a naı̈ve application of the popular ResNet architec-
ture [57] to solve SfT, referred to as R50F. The reason to in-
clude the ResNet model was to compare our fully convolu-
tional encoder-decoder architecture against a combination of
an encoder and a fully connected model. This comparison
demonstrates that the proposed architecture outperforms the
classic encoder-fully connected architectures such as ResNet.
We adapt ResNet by removing the final two layers and intro-
duce a dense layer with 200 neurons and a final dense layer
with a 3-channel output (for depth and registration maps) of
the same size as the input image. We trained R50F with ex-
actly the same training data as DeepSfT and with real-data fine
tuning. Fine-tuning was implemented by optimising the depth
loss, using the same optimiser and learning rate as we used for
DeepSfT. The second DNN method is [17], which we refer to as
HDM-net. This is tested only with rectangular templates (DS1
and DS2) because it only handles textureless or weakly textured
rectangular templates. We carefully re-implemented [17], re-
quiring an adaptation of the image input size and the mesh size
so that it matched the size of the template meshes. The third
DNN method is [18] using the authors’ code, which we refer to
as IsMo-GAN, that is also applied only to DS1 and DS2 as it
requires a rectangular template.

We evaluate reconstruction error using the Root Mean Square
Error (RMSE) in millimeters. We also use RMSE to evalu-
ate the registration accuracy in pixels. The evaluation of regis-
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Template 3D shapes
DS1 DS2 DS3 DS4 DS5

Mesh Faces=1521 Mesh Faces=1521 Mesh Faces=36256 Mesh Faces=5212 Mesh Faces=1521

Template texture maps

Synthetic images

Real images

Table 5: Visualization of templates and input images. Rows 1 and 2 show the five templates DS1, DS2, DS3, DS4 and DS5. Rows 3 and 4 show example renders
with simulated deformations. Rows 5 and 6 show real deformations of the physical objects.
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Camera Resolution fu fv cu cv

Kinect V2 1920 × 1080 1057.8 1064.0 947.6 530.4
Intel Realsense D435 1270 × 720 915.5 915.5 645.5 366.3

Gopro Hero V3 1920 × 1080 1686.8 1694.2 952.8 563.5

Table 6: Camera intrinsics of the different real cameras used in our experiments.
We use Kinect V2 for training and all three cameras for testing.

tration accuracy is notoriously difficult with real data because
there is no way to obtain reliable ground-truth. We propose to
use as a proxy for the ground-truth the output from a state-of-
the-art dense trajectory optical flow method DOF [22]. We only
make this quantitative evaluation for videos, for which DOF
can reliably compute registration. We manually selected se-
quences where DOF produces stable tracks. The use of DOF
or any other optical flow method as a registration baseline can
introduce bias. However, obtaining registration results with a
wide-baseline method such as DeepSfT that are comparable
with DOF is considered a very strong result for a wide-baseline
method.

5.3. Evaluation with rectangular templates

We show in tables 7, 11 and 12 quantitative and qualitative
results obtained with rectangular templates and synthetic test
datasets, denoted by DS1S and DS2S, and real test datasets, de-
noted by DS1R, DS2R and DS5R. In terms of reconstruction er-
ror, DeepSfT is considerably better than the other methods, both
in synthetic test data, where the RMSE remains below 2 mm,
and for real test data, where the RMSE is below 10 mm. Kinect
V2 has an uncertainty of about 10 mm at a distance of one
meter, which partially explains the higher error for real data.
The second and third best methods are IsMo-GAN and R50F
respectively, also DNN-based. However, their errors are far
worse compared to DeepSfT. CH17 obtains reasonable results
when it is provided with ground-truth registration (CH17-GTR
and CH17R-GTR). However, the performance is considerably
worse when real registration is provided by DOF (CH17-DOF
and CH17R-DOF). NGO15 obtains the worst result on DS1 and
the second worst result on DS2. This was expected because we
evaluate this algorithm in a wide-baseline setting and, as men-
tioned by the authors, this method was designed to work only
for small deformations (small-baseline).

In terms of registration error, DeepSfT also has the best re-
sults both for synthetic test data, where ground-truth registra-
tion is available, and real test data, where DOF is used as the
ground-truth proxy. In all cases DeepSfT has a mean registra-
tion RMSE of approximately 2 px. The performance of R50F
is competitive with DOF, with registration RMSE of approxi-
mately 5 px.

5.4. Evaluation with 2D manifold templates

The quantitative and qualitative results of the experiments for
the 2D manifold templates DS3 and DS4 are provided in tables
9, 11 and 12, with both synthetic test data, denoted by DS3S
and DS4S, and real test data, denoted by DS4R and DS4R. Re-
call that the test datasets consist of unorganised images, unlike

DS1, DS2 and DS5, and it is thus impossible to estimate regis-
tration reliably with DOF. Therefore we only compute registra-
tion error with synthetic data (DS3S and DS4S). CH17+GTR
and CH17R+GTR are tested only on DS3S and DS4S, because
these are the only datasets they can handle.

The results show a similar trend as with the rectangular tem-
plate datasets: DeepSfT outperforms the other methods in terms
of reconstruction error, with an RMSE of the order of millime-
ters, and in registration with an RMSE close to 2 px. The sec-
ond best method is R50F, although its results are significantly
worse than DeepSfT is. The results of CH17 and its variants are
very poor. This may be because CH17 is not well adapted for
2D manifold objects with stronger non-isometric deformation.

We show in table 13 qualitative reconstruction results ob-
tained with DS1R, DS3R and DS4R with real images. We
observe that shapes recovered with DeepSfT are similar to
ground-truth obtained with the RGB-D camera and have no
’outliers’ in their boundaries, in contrast to the RGB-D cam-
era ground-truth. We observe that the error is larger near self-
occlusion boundaries.

5.5. Evaluation of ARAP shape completion

We show in table 13 example results before and after ARAP
shape completion using DS1, DS3 and DS4 arranged in three
rows. The table shows from left to right a representative input
image, ground-truth provided by Kinect V2, registration and re-
construction outputs from DeepSfT as point clouds, outputs as
coloured point clouds, and lastly the 3D shape completion re-
sults. The reconstruction errors are evaluated across the visible
surface regions before and after shape completion and denoted
by DNN RMSE and ARAP RMSE respectively. We can see
that these errors are very similar, which implies that the benefit
of shape completion is only to recover the occluded regions. It
does not improve significantly the reconstruction of the visible
regions compared to the DNN output. Quantitatively the com-
pleted 3D shapes look compelling and representative of the true
object deformations.

5.6. Evaluation of test camera generalisation

Using the technique described in §4.5, we test performance
with three different real test cameras (Microsoft Kinect V2:
same as for training, Intel Realsense D435 and Gopro Hero
V3). Table 14 gives reconstruction errors with the Kinect and
Realsense cameras. For the Gopro Hero V3 (an RGB camera)
we show qualitative results. Quantitatively, the reconstruction
errors with the Kinect and Realsense cameras are quite similar.
This is an important point and clearly demonstrates the ability
of DeepSfT to generalise well to images taken with a different
test camera. Furthermore, DeepSfT copes with images from an-
other camera even if the focal lengths are significantly different,
as indicated qualitatively with the GoPro camera. We empha-
size that this is the first time SfT has been solved with different
train/test cameras with a DNN. This has a big practical bene-
fit, because we are not limited to using the same camera at test
time.
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Registration RMSE (px) Reconstruction RMSE (mm)

Sequence Samples DOF R50F DeepSfT CH17+GTR CH17+DOF CH17R+GTR CH17R+DOF NGO15 HDM-net IsMo-GAN R50F DeepSfT

DS1S 5000 4.63 6.69 1.87 6.89 15.60 8.27 15.41 18.77 10.80 7.32 7.99 1.68
DS2S 5000 5.91 6.13 1.34 6.89 28.26 8.27 28.04 21.32 9.92 6.94 7.75 1.63
DS1R 232 - 5.02 2.32 - 38.12 - 34.24 - - - 17.53 9.51
DS2R 373 - 4.13 1.53 - 27.31 - 25.24 - - - 14.45 7.37
DS5R 50 - 6.33 2.74 - 22.57 - 19.42 32.3 - - 16.30 6.97

Table 7: Quantitative evaluation on synthetic and real test data with rectangular templates (DS1S, DS2S, DS1R, DS2R and DS5R).

5.7. Evaluation of light and occlusion resistance

We show that DeepSfT is resistant to light changes and sig-
nificant occlusions in table 15. The first two rows of the table
show representative examples of scenes with external and self
occlusions. DeepSfT is able to cope with them, accurately de-
tecting the occlusion boundaries. The third and fourth rows
show examples of scenes with illumination that produce sig-
nificant shading variations. DeepSfT shows good resistance to
these variations.

5.8. Failure modes

There are some instances where DeepSfT fails, shown in the
final two rows of table 15. There are general failure modes
of SfT (very strong occlusions and illumination changes), for
which all methods will fail at some point. There are also failure
modes specific to learning-based approaches (excessive defor-
mations that are not represented in the training set). However,
recall that wide-baseline methods like DeepSft can recover eas-
ily from failures with video inputs because they process each
image independently, unlike short-baseline methods. Therefore
failure for some frames in a video does not prevent successful
reconstruction and registration in the later frames.

5.9. Ablation studies

5.9.1. The benefit of Total Variation regularisation
We included total variation smoothness during fine tunning

of the Depth Refinement Block and the Registration Refine-
ment Block. In the Depth Refinement Block, the main objec-
tive of this term is to alleviate the effect of noise and outliers in
depth data used as ground-truth in equation (10). In the Regis-
tration Refinement Block, it is used to improve convergence of
the self-supervised algorithm, based on minimising the photo-
metric error in equation (12). We investigate the effect of this
term in both depth and registration accuracy, when testing with
real data. We show in table 10 the quantitative results obtained
with all the templates DS1, DS2, DS3, DS4 and DS5. As can
be seen, the Total Variation regularisation improves the recon-
struction and registration errors in all the cases, especially for
the DS2 template.

5.9.2. The benefit of depth refinement
We evaluate the influence of the Depth Refinement Block and

its results in terms of depth RMSE. We show these errors in ta-
ble 16 where the RMSE obtained using only the Main Block
of DeepSfT is compared to the RMSE obtained by the Depth
Refinement Block. Recall that the Main Block has been trained
exclusively using synthetic data whereas the Depth Refinement

Block has been fine-tuned with real data. It can be clearly seen
that the Depth Refinement Block RMSE is much lower com-
pared to the Main Block RMSE. Recall that the Main Block
provides a first approximation of the depth map but, due to the
render gap between synthetic and real data, this approximation
is not highly accurate. The Refinement Block refines this ap-
proximation. This agrees with the widely held view that refin-
ing a network with real data can significantly reduce the render
gap, and improve generalisation [77].

It is important to highlight that the results indicate an error
increase according to the template complexity. For the rectan-
gular templates, like DS1 and DS2, there is less of an error gap
with and without the Depth Refinement Block. This is likely
because these objects are the less difficult to represent and eas-
ier for the network to generalise, because their intrinsic defor-
mation space is smaller compared with the 2D manifold objects
that deform in more complex ways. The RMSE gap for the 2D
manifold templates is large, and the benefit of the Depth Re-
finement Block is very evident in these cases.

5.9.3. The benefit of registration refinement
We evaluate the impact of the Registration Refinement Block

in terms of registration accuracy. Given that we lack registra-
tion ground-truth with real data we use photometric error as a
proxy, computed as follows. We compute the Mean Square Er-
ror between the rendered images I′i and the input image Ii in the
visible region Ii:

Epr =

 1
|Ii|

∑
(u,v)∈Ii

(
I′i (u, v) − Ii(u, v)

)2


1
2

. (14)

We show in table 17 the photometric error and qualitative re-
sults when using the output of the Main Block, and when using
the Registration Refinement Block. In terms of photometric
error, the Registration Refinement Block output has less error
than the Main Block output, which we recall was trained using
only synthetic data. The templates with more texture features
like DS5, DS2, and DS3 show qualitatively more improvement
than DS1 and DS4, which have less texture. tables 17 and 10
show quantitative and qualitative results before and after regis-
tration refinement.

We also give a qualitative visualization of the registration er-
ror, computed by blending the input image I and the rendered
image I′, computed from the DeepSfT registration:

Iavg =
I′i + Ii

2
. (15)

A sharper Iavg indicates a better registration. We show this vi-
sualization in figure 5, where the greater the photometric error,

13



DS1 DS3 DS4 DS5

Input Image

Ground-truth

DenseDepth+FT

46.31 17.46 28.68 20.73

BTS+FT

19.84 19.35 19.22 14.61
0 500 mm

DenseDepth

96.42 205.23 172.32 272.70

BTS

72.12 132.16 134.63 126.11
0 3000 mm

Input Image

DeepSfT

3.26 3.98 4.81 4.29
0 500 mm

Table 8: Representative results and comparison of DeepSfT with other monocu-
lar depth reconstruction methods. The estimated depth maps and corresponding
RMSE error in mm are shown for each method with one example input image
from 4 templates (arranged in 4 columns).

the worse the accuracy of the registration, and the more blurred
the average image. In table 17 we show the registration error vi-
sualization zoomed in the region of interest to provide a better
visualization. We can clearly see a strong registration improve-
ment with DS5, DS2 and DS4, with a smaller improvement for
DS1 and no clear improvement with DS3.

5.10. Timing experiments
Table 18 shows the average frame rate of the compared meth-

ods, benchmarked on a conventional Linux desktop PC with a
single NVIDIA GTX-1080 GPU. The DNN methods are con-
siderably faster than the other methods, with frame rates close
to real time for DeepSfT. Solutions based on CH17 are far from
real-time.

5.11. Monocular depth estimation comparison
We have compared object-generic monocular reconstruction

method with DeepSfT. We use DenseDepth [33] and BTS [34],
two state-of-the-art DNN monocular reconstruction methods.
The former is based on DenseNet [78]. We evaluated their abil-
ity to recover the object’s depth with two experiments. 1) We

Registration RMSE (px) Reconstruction RMSE (mm)

Sequence Samples R50F DeepSFT CH17+GTR CH17R+GTR R50F DeepSfT

DS3S 5000 7.14 1.05 45.21 43.67 6.34 1.16
DS4S 5000 8.93 3.60 73.80 70.70 12.62 1.57
DS3R 1300 - - - - 12.43 8.12
DS4R 550 - - - - 27.31 6.86

Table 9: Quantitative evaluation on synthetic and real data with 2D manifold
templates (DS3S, DS4S, DS3R and DS4R).

Reconstruction RMSE (mm) Registration (photometric error Epr)

Sequence Samples DeepSfT DeepSfT+TV DeepSfT DeepSfT+PR

DS1R 5000 9.51 4.12 0.266 0.211
DS2R 5000 7.37 3.39 0.094 0.015
DS3R 1300 8.12 7.40 0.141 0.109
DS4R 550 6.86 5.80 0.196 0.184
DS5R 50 6.97 6.89 0.388 0.203

Table 10: Quantitative evaluation on real test data and 2D manifold templates
(DS1R, DS2R, DS3R, DS4R and DS5R).

test DenseDepth and BTS depth accuracy on the real datasets
when they are pre-trained with the NYUDepth dataset [73],
which contains RGB-D images from indoor scenes with dif-
ferent types of common objects. To make a fair comparison
we have adapted our images to match the intrinsics of the
NYUDepth dataset. We compute depth error only in the vis-
ible region of each image. We see that DenseDepth and BTS
depth RMSE are several orders of magnitude higher compared
to DeepSfT. 2) We fine tune DenseDepth and BTS with all train-
ing examples from DS1R, DS3R, DS4R and DS5R datasets
at the same time and separately with each one of the tem-
plates. This restricts DenseDepth and BTS to detect four dif-
ferent objects in the first case, and to each one of the objects
in the second case. The results are shown in tables 19 and
8 where DenseDepth and BTS fine tuned versions are named
as DenseDepth+FT4 and BTS+FT4 and DenseDepth+FT1 and
BTS+FT1 respectively. In this case the errors have consider-
ably reduced specially in the one object fine tune case, but they
are still larger than the error achieved by DeepSfT. With this ex-
periment we show that instance-level monocular reconstruction
solutions such as DeepSfT are able to achieve much more accu-
rate reconstruction results compared to object-generic methods

Figure 5: Visualization of registration accuracy using image blending and pre-
senting important reference cases.
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Ground-truth 3D surface DS1 Input Image

Method 3D Reconstruction & RMSE colormap Registration ROI & RMSE colormap

CH17+DOF

CH17R+DOF

NGO15

HDM-net

IsMo-GAN

R50F

DeepSft

Ground-truth 3D surface DS3 Input Image

Method Reconstruction & RMSE colormap Registration ROI & RMSE colormap

R50F

DeepSft

RMSE colormap 0 30 mm 0 1 n.u.

Table 11: Visual comparison of results computed from DeepSfT and other clas-
sical and DNN SfT methods with two test objects. The reconstructions are
colored according to RMSE with heatmaps (middle column). The registration
results are visualised with an overlay of the predicted template shape projected
onto the input image. Registration errors are visualised with heatmaps (right
column). n.u. stands for normalised texture map units.

such as [33, 34]. DenseDepth and BTS obtain an approximately
correct average shape, the latter being best. However, they are
not able to achieve comparable results to DeepSfT, even when
training them with only a reduced set of objects.

6. Conclusions

We have presented DeepSfT, the first dense, real-time solu-
tion for wide-baseline SfT with general templates. This has
been an open computer vision problem for over a decade. No
previous DNN-based method is able to accurately solve SfT for
weakly-textured, non-flat object templates, such as the dinosaur
or shoe examples. DeepSfT will enable many real-world ap-
plications that require dense registration and 3D reconstruction
of deformable objects, in particular augmented reality with de-
forming objects. In future work we aim to generalise DeepSfT
to multiple templates, using them as explicit inputs to our net-
work, or by using object detectors to select an object-specific

Dataset Input Image Depth Output Registration Output
(v)

Registration Output
(v)

Depth
RMSE
(mm)

DS2 2.82

DS5 6.01

DS1 4.69

DS3 11.26

DS3 8.96

DS4 9.08

DS4 7.49

Colormaps
Registration Output (u) 0 1 n.u.
Registration Output (v) 0 1 n.u.

Depth 0 500 millimeters

Table 12: Example outputs for the five objects used to test DeepSfT. n.u. stands
for normalised units in the template texture map.

SfT network. We also will investigate how to train DeepSfT
with self-supervised learning approaches, which may require
incorporating other priors, such as temporal and spatial smooth-
ness, and other deformation models. Another future way to in-
vestigate is the use of test cameras, whose intrinsics are un-
known [79]. Our DeepSfT architecture and results may also
contribute to develop future DNN NRSfM solutions. In par-
ticular, the use of dense maps as the network output followed
by post-processing steps for mesh completion significantly re-
duces the complexity of the learning process, as opposed to in-
ferring the entire surface or volume. Semi-supervised learning
approaches, similar to the one implemented in DeepSfT, can
also boost the goal.

Appendix A. Warping with Bilinear Interpolation

We describe the process to create the image I′(u, v) from the
registration η̂(u, v) = (η̂U(u, v), η̂V (u, v)) and the texture map
A(U,V). We recall that U,V are normalised coordinates drawn
from the unit square. We define the texture map image Ā(Ū, V̄)
of size H × W with (Ū, V̄) ∈ [1,W] × [1,H] being pixel co-
ordinates, obtained by de-normalising (U,V) with W and H.
Image coordinates (u, v) ∈ [1,w] × [1, h] are already in pixels
and I′(u, v) is of size h × w pixels. In addition, we assume that
both Ā and I′ are single channel images. The generalisation
to 3-channel images is straightforward. We have that η̂(u, v) is
a differentiable function of the Photometric Refinement Block
weights θR and

∂η̂U(u, v)
∂θR

and
∂η̂V (u, v)
∂θR

are the first derivatives

of the registration with respect to θR. We recall that I is a sub-
set of coordinates (u, v) where the object is visible, and thus
I′(u, v) is set to a constant value outside I. By using billinear
interpolation we obtain I′ as follows:
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Dataset Input Image Ground-truth DNN reconstruction Textured DNN 3D Shape comple-
tion

output (blue) vs GT
(red)

reconstruction out-
put

DS1

DNN RMSE (mm)

DNN RMSE (mm)
3.26

ARAP RMSE (mm)
3.41

DS3

DNN RMSE (mm)
9.51

ARAP RMSE (mm)
9.84

DS4

DNN RMSE (mm)
7.42

ARAP RMSE (mm)
7.47

Table 13: Examples of DeepSfT results before and after ARAP 3D shape completion as described in §3.4 using real data. From left to right colum we show, the
dataset of the template used, the input image to use, the groundtruth of the surface reconstructed, the comparison of the reconstruction and the groundtruth overlayed,
the textured reconstruction, and the result of ARAP shape completion.

I′(u, v) =


∑4

i=1 wiĀ(Ūi, V̄i) (u, v) ∈ I
0 otherwise

(A.1)

where:

Ū1 = Ū2 = ζU (bη̂U(u, v)c) Ū3 = Ū4 = ζU (dη̂U(u, v)e)(A.2)
V̄1 = V̄3 = ζV (bη̂V (u, v)c) V̄2 = V̄4 = ζV (dη̂V (u, v)e)

and

w1 = (1 + Ū1 − η̂U(u, v))(1 + V̄1 − η̂V (u, v)) (A.3)
w2 = (1 + Ū1 − η̂U(u, v))(1 − V̄2 + η̂V (u, v))
w3 = (1 − Ū3 + η̂U(u, v))(1 + V̄3 − η̂V (u, v))
w4 = (1 − Ū4 + η̂U(u, v))(1 − V̄4 + η̂V (u, v))

with b.c and d.e being the ‘floor’ and ‘ceil’ operators respec-
tively. We assume that their derivatives with respect to θR
are zero. Also, ζU(x) = max(min(x,W), 1) and ζV (x) =

max(min(x,H), 1) are functions ensuring that coordinates re-
main inside the domain of Ā. Therefore, all terms in equa-

tion (A.3) are bilinear in η(u, v) with:

∂I′(u, v)
∂θR

=


∑4

i=1
∂wi

∂θR
Ā(Ūi, V̄i) (u, v) ∈ I

0 otherwise.
(A.4)
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