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Abstract. Image segmentation is an essential component in medical
image analysis. The case of 3D images such as MRI is particularly chal-
lenging and time consuming. Interactive or semi-automatic methods are
thus highly desirable. While deep learning outperforms classical meth-
ods in automatic segmentation, its use in interactive frameworks is still
limited. The main reason is that most neural networks do not lend them-
selves well to the required user interaction loop. We propose a general
deep learning-based interactive framework for image segmentation, which
embeds a base network in a user interaction loop with a user feedback
memory. We propose to model the memory explicitly as a sequence of
consecutive framework states, from which the features can be learned.
A major difficulty is related to training, as the network inputs include
the user feedback and thus depend on the network’s previous output. We
propose to introduce a virtual user in the training process, modelled by
simulating the user feedback from the current segmentation. We demon-
strate our framework on the task of female pelvis MRI segmentation,
using a new dataset. We evaluate our framework against existing work
with the standard metrics and conduct a user evaluation. Our framework
outperforms existing systems.
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1 Introduction

Image segmentation is an essential component of many visual processing systems,
which involves classifying each pixel or, equivalently, delineating the regions con-
taining pixels of the same class. In medical image analysis, the images are of-
ten patient scans from modalities such as MRI (Magnetic Resonance Imaging)
or CT (Computed Tomography). MRI segmentation is a tremendously difficult
task, owing to it being 3D, low contrast, noisy, low resolution and artifacted.
Existing segmentation approaches can be divided into three settings based on
user involvement: manual, automatic and interactive. The manual approach is
the most time-consuming, as each pixel has to be attributed a label indepen-
dently, which may require hours for a single MRI. It is error-prone and infeasible
in the clinical environment. At the other extreme lies the automatic approach,
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which works without user involvement. This strongly limits its applicability, as
a clinician operator shall validate and possibly edit the result before its use in
a therapeutic act. The interactive approach trades-off manual and automatic
features: it typically involves an automatic part with an extent of user control.
The interactive approach attempts at minimising the amount of required user
interaction whilst maximising the quality of the result. It is the most adapted
approach to the clinical environment.

The automatic approach is largely dominated by deep learning, which over-
turned classical methods over the last decade. In contrast, interactive deep learn-
ing methods present specific difficulties and have yet received limited attention.
Concretely, deep learning interactive segmentation requires embedding a network
in a loopy system allowing the user to interact. Indeed, the network inputs must
include the user feedback, which depends on the network outputs. This creates
a dependency between the inputs and outputs of the network, which is poorly
resolved by a regular training process from static data. Creating such interactive
systems exploiting deep learning is nonetheless fundamental to simplify, speed
up and secure the performance of segmentation in the clinical environment.

We propose a general multi-class deep learning interactive segmentation frame-
work and training methods. Our system consists of an embedded network, a user
interaction loop and an interaction memory. First, the user reviews the current
segmentation result and, if satisfied, accepts. Otherwise, the user may quickly
make simple corrections by placing points and strokes to refine the segmentation,
which is achieved by a special input configuration of the embedded network. In-
deed, this network inputs the image, user correction masks, and possibly other
memorised parameters, and outputs the segmentation probability maps. The
system then loops back to the user review step, whilst updating the interac-
tion memory to keep track of the user corrections through the interactions. Our
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Fig. 1. MRI female pelvis dataset samples, main difficulties indicated with green ar-
rows, series 1 to 5: (1) presence of an IUD, not seen in the training set; (2,5) unclear
contours, blurriness of the uterine cavity; (3) similarity of the uterine (left) and cervix
cavities (right); (4) strong uterus deformation due to tumours, with here five tumours.

contributions are two-fold. First, a general deep learning-based interactive multi-
class image segmentation framework, with a user interaction loop, dynamic data
training process and an interaction memory. Second, a sequential interaction
memory, which keeps track of the segmentation results and user corrections,
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maintaining sequentiality within the system. We demonstrate our framework in
semantic multi-class MRI segmentation of the female pelvis for which we intro-
duce a new dataset. For this task, we instantiate our system with an existing
encoder-decoder architecture optionally featuring RNN [38] modules. We val-
idate the results against automatic and existing interactive systems with the
standard metrics and perform an ablation study of our system’s components.
We report results of a preliminary user study conducted with medical users,
using a specifically developed graphical user interface connected to our system.

2 Related Work

We review classical and deep learning approaches to medical image segmentation,
distinguishing automatic and interactive approaches for each.

Classical automatic segmentation encompasses a wide variety of methods [30].
Their performance are usually insufficient to achieve clinically-acceptable accu-
racy and they have been largely taken over by deep learning. In contrast, clas-
sical interactive methods are still widely used. The most well known ones are
probably the Graph Cuts [2], Random Walker [9] and Geodesic Image Segmen-
tation (GeoS) [4]. They achieve acceptable performance for simple cases. How-
ever, medical data often features structures with complex shapes and poorly
defined contours, noise and artefacts. This results in a substantial increase of
user time required to perform segmentation and limited achievable accuracy.
Deep learning-based automatic segmentation includes a multitude of methods.

Fig. 2. Proposed interactive system.

A review and evaluation of over 100 methods [19] was conducted with ResNet [12]
extensively used as a backbone, represented by EMANet [16] with top scores on
the PASCAL VOC dataset. Most of the models use an encoder-decoder architec-
ture [19]. This includes the U-Net [20], with a wide spectrum of applications [23],
and recent variants [7,24] reaching top positions in the BraTS challenge 2021.
Automatic MRI segmentation was attempted for various targets, including the
kidney [14], the prostate [10] and brain tumours [11]. These methods demon-
strate state-of-the-art performance in their respective tasks. However, they are
automatic and do not allow the user to interact. Automatic segmentation is
highly appropriate in applications which can not involve user interactions, such
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as real-time organ tracking. In contrast, many applications require validation
and corrections from a certified user. For such applications, the direct use of
automatic deep learning methods is inappropriate.

(b) () (b) (c)

(a) (b) () () (b) (e)

Fig. 3. Segmentation results, where uterus - green, bladder - yellow, tumour - red,
cavity - pink and user clicks - cyan: (a) ground truth; (b) auto; (¢) human user-
controlled DDG-SIM.

The integration of deep learning within interactive segmentation systems is
a major challenge. A simple approach is to use a classical interactive method
to post-process the result from an automatic deep learning method [26] or cor-
rect it manually [22]. Such systems inherit the intrinsic limitations of the chosen
classical method. A more advanced approach is to use a neural network to pro-
cess user feedback in a loopy structure [1,27-29,17,21]. These methods use a
network which takes the image and user interaction masks as inputs. Training
is challenging owing to the loop. Existing approaches generate user interaction
masks from labelled data, either statically before training or dynamically during
training. Static data training methods [27-29] limit the system’s generalisation
and interaction effectiveness. Dynamic data training methods [1, 17] improve per-
formance. They simulate user interaction by randomly sampling mis-segmented
regions. This is done once from a single prediction [1] or from the latest seg-
mentation result [17]. These methods diversify the training data, but do not
reproduce the typical sequentiality of real user interactions. The lack of sequen-
tiality is also a consequence of the interaction memory used in these systems,
which simply accumulates the user corrections, discarding ordering. A sequential
memory was used in [29] to ‘transfer’ the user interaction recorded on one slice
to the other slices, but was not used to exploit sequentiality during slice segmen-
tation. An open-source interactive segmentation platform [6] was recently made
available, which offers both deep learning-based [26,21] and classical methods
[2], inheriting their limitations.

In contrast to existing work, our framework uses a sequential interaction
memory which captures the sequentiality of user interactions at training and
inference times. It is also the first framework to cope with multiple classes.
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Table 1. Experimental evaluation results where bold means best.

Method BGD Uterus Bladder Tumours Cavity
IoU | Dice | IoU | Dice | IoU | Dice | IoU | Dice | IoU | Dice
Auto 99.2 1 99.6 | 64.7 | 78.6 | 71.9 | 83.6 | 60.4 | 75.3 | 40.4 | 57.6
SDG-base | 99.1 | 99.6 | 61.7 | 76.3 | 70.1 | 82.4 | 62.5 | 76.9 | 21.1 | 34.9
SDG-CIM | 99.3 | 99.7 | 66.5 | 79.9 | 83.9 | 91.2 | 72.8 | 84.3 | 29.0 | 44.9
DDG-CIM [ 99.6 |99.8 | 77.4 | 87.3 | 87.4|93.3 | 77.7 | 87.4 | 39.6 | 56.7
DDG-SIM [ 99.6 |99.8 | 79.8 | 88.7 | 87.0 | 93.0 | 79.0 | 88.3 | 57.8 | 73.3

3 Applicative Scope

While our framework may be applied to numerous segmentation problems, we
focus on the interactive female pelvis MRI segmentation, involving five classes:
uterus, bladder, uterine cavity, tumours and background. The intended use is
surgical planning and surgical augmented reality [3]. We create public female
pelvis MRI dataset, consisting of 97 MRI series with 3066 slices in total, manually
annotated in 3D Slicer [13] and in MITK [8] by expert radiologists. This took
from 10’ to 50’ per series with 25’ on average, which is clearly infeasible in
the clinical setting. The segmentation of anatomical structures of the female
pelvis is particularly challenging due to a large variance in their representation,
including shape, size, position, orientation and texture among the patients, with
and without pathologies. Difficult samples can be seen in figure 1. Moreover,
the target anatomical structures form a naturally imbalanced dataset, where
background takes 96.15%, uterus 2.11%, bladder 1.02%, tumours 0.67% and
uterine cavity 0.05%. The strongest imbalance is observed for the uterine cavity
and the background, whose average ratio of volumes is 0.057%. Our objective is
to develop a segmentation system which minimises the time required to complete
the segmentation with acceptable accuracy, while allowing an expert reviewer to
have control and guide the segmentation, as and when necessary.

4 Methodology

4.1 System

Structure. We build the proposed system shown in figure 2 starting with a basic
interactive segmentation system named base, featuring an interaction loop. This
system does not have a memory of user corrections or previous segmentation
results and processes each set of user corrections in isolation. The interaction
loop allows iterative refinement by forming new inputs through a combination
of network outputs and user corrections. The system is generic as it does not
depend on a specific network architecture, as long as the network takes both the
image and the user corrections as inputs. The user corrections are represented
by N binary masks, where N is the number of classes. The network inputs are
concatenated to a single tensor of size H x W x C, where H x W is the image
size and C' is the number of channels, varying depending on the system. For the
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base system Chase = 1 + N. Indeed, as there is no memory, the network takes
the image as the first channel and the binary masks of the user corrections for
the NV classes for next N channels. This strongly harms user experience as the
past user corrections would be forgotten by the system at the next interaction
27, 26].

Sequential Interaction Memory. Existing works use the type of interaction
memory, which aggregates the raw system states by merging the successive in-
teraction masks [1, 28, 17]. We call this a cumulative interaction memory (CIM).
The network takes the image and the merged user correction masks, and its
input tensor thus has Cgjy, = Chase = 1 + N channels. This type of memory dis-
cards the ordering of interactions - the sequentiality, typical of user corrections.
We introduce a second type of interaction memory which, in contrast to CIM,
preserves the past D system states, hence the user’s sequential behaviour. We
call this a sequential interaction memory (SIM). We call the number of states
D the SIM’s size or depth. For the task of multi-class segmentation, a single
state consists of a probability map for the network outputs and a binary mask
for the user corrections, for each of the N classes. The network takes an image
and the SIM, which are automatically combined to form the input tensor with
Csim = 14+2DN. Tt is important to make a distinction between the proposed SIM
and internal RNN memory. SIM tracks and stores system states, represented by
inputs and outputs of the network. Indeed, SIM is external to the network and
does not depend on a specific network architecture. The RNN memory, however,
is specific to the network architecture, enabled by passing hidden state from step
to step and represented by weights. In our ablation study we show that RNN’s
suitability for sequential data may further reinforce the proposed framework.

4.2 Training with Dynamic Data Generation

A regular training process from static data will poorly reproduce the real system
usage at test time and hence limit the achievable accuracy and user interaction
efficiency. To resolve this, we propose a dynamic training approach, where the
training data is generated from the labelled dataset during training by a vir-
tual user. The basic idea of the virtual user is to generate corrections similarly
to a real user, whose involvement in training is not feasible. These corrections
are represented by one binary mask per class, populated by foreground clicks
for each class. The click is handled by an interaction-control process, which ex-
ploits the difference image between the previous network output and the ground
truth. Training with the proposed SIM means filling its D states with realistic
values produced by the virtual user. We thus run the system for D iterations
with fixed weights to populate the SIM with simulated user input data prior to
backpropagation. We choose D experimentally with the goal of maximizing the
performance with the minimum number of interactions.
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Table 2. User evaluation results given as Time, IoU and number of interactions per
class as ‘Int.” ;*A’ - gynecologic surgeon; ‘B’, ‘C’ - certified radiologists. Tumour presence
is in proportion to that of the whole dataset.

Series | Time BGD Uterus | Bladder | Tumours | Cavity mloU Total

IoU | Int. | IoU |Int. | IoU | Int. | IoU | Int. | IoU | Int. Int.
1-A | 1’447 (99.7| - |69.5] 23 |92.0| 5 - - |44.0| - | 76.3 28
1-B [3007]99.6| - [64.1| 12 |93.6| 6 - - (414 2 | 747 | 20
1-C 3197 (99.6| 8 |67.6| 30 |93.5| 6 - - |37.7] 9 | 746 53
2-A 13’107(99.3| - [67.0| 21 |794| 9 |71.7| - |35.0] 10 | 70.5 | 40
2-B |2'427199.3| - |69.9| 20 [78.4| 7 |71.7| - [426| 1 | 724 | 28
2-C | 504”7 198.2| 11 |51.9| 29 [52.3| 12 |71.8| - [46.6| 13 | 64.1 65
3-A [3107(99.6| - [70.3| 7 |76.1| 15 | - - 385 6 | T1.1 28
3-B |2'507(99.6| 1 |722| 5 |76.8| 14 | - - |426| 5 | 72.8 25
3-C | 4137]99.6| 6 |[70.7| 12 |77.8| 11 - - 218 9 | 674 | 38
4-A | 7087 |98.1| - |63.0] 3 |71.9| 6 |81.0[137|44.0| 27 | 71.6 | 173
4-B [8307(98.2| 8 [66.8| 21 |76.6| 9 |58.6| 27 |41.9| - | 684 | 65
4-C | 8477(98.0| 13 [53.0| - |80.0| 11 |72.7| 96 |34.7| - | 67.6 | 120
5-A [2’387(99.8| - [61.0| 17 |93.2| 14 | - - (249 1 | 69.7 | 32
5B |4'177]199.9| 11 |68.0| 5 [93.5]| 11 - - 1306| 6 | 73.0 33
5-C |3’517199.8| 13 |66.9| 29 [93.2| 12 | - - 129.3| 13 | 72.3 67

5 Experimental Results

5.1 Setup

We instantiate our system with an existing encoder-decoder architecture fea-
turing RNN modules. Namely, we use a ResNet34 [12] encoder pre-trained on
ImageNet [5] and a decoder equipped with a pair of standard convolutional layer
and a matching convolutional LSTM layer at every step of the upsampling path.
To counter the dataset imbalance, we use the focal loss [18] and dataset-wide
precalculated per-class weights. The dataset split is as follows: training set - 77
series /2449 slices, validation set - 10 series/308 slices and test set - 10 series/309
slices. We preprocessed all data via normalisation, standardisation and N4BFC
[25] and performed random data augmentation: vertical and horizontal flipping,
intensity shifting, gamma correction, blurring and unsharp masking.

5.2 Automated Evaluation

We compare one automatic method and four interactive methods, where SDG
is Static Data Generation and DDG is Dynamic Data Generation: 1) Auto: U-
Net with ResNet34 encoder [15]; 2) SDG-base: memory-less system trained with
SDG, as described in [1]; 3) SDG-CIM: network from SDG-base used with a
CIM overlay; 4) DDG-CIM: system with CIM trained with DDG; 5) DDG-SIM:
complete proposed system with SIM trained with DDG. The evaluation setup
is a ResNet34 encoder with (1-4) a generic decoder or (5) an LSTM-decoder
as in section 5.1. At test time, clicks are generated via the virtual user. The
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metrics are reported in table 1. We observe that DDG-SIM outperforms the
other methods with a minor disadvantage for bladder, for which DDG-CIM
is slightly better with 87.4% against 87.0% IoU. The ablation study shows a
steady increase in performance, starting with SDG-base and adding the proposed
components towards DDG-SIM. Auto outperforms both SDG-base on uterus,
bladder and cavity, and SDG-CIM on cavity. This can be attributed to static
data generation, which does not perform well for smaller numbers of interactions.
In our experience, the higher the number of interactions at training, the lower
the effectiveness of individual interactions at test time. While the opposite is also
true, it can be observed from the results that certain systems may not be able
to learn efficiently from a small number of interactions at training. We observe
a comparatively lower accuracy for cavity, whose IoU lies between 21.1% and
57.8%. We explain this with its low volume, which accounts for only 0.054% of
the dataset.

5.3 User Evaluation

We performed a preliminary user study with DDG-SIM involving three senior
medical experts, using a specifically developed graphical user interface. We ran-
domly selected 6 test series containing 144 slices in total, where 1 series is used
to familiarise the users with the graphical user interface and 5 series are used in
a random order for user evaluation. MRI image samples from each of the series
can be seen in figure 1. We evaluate the user performance in table 2 using elapsed
time, IoU and the number of interactions employed per class. The segmentation
result is compared with Auto method in figure 3.

We note that the time is low enough to be clinically feasible, even if the users
are barely acquainted with the system. Indeed, the average elapsed time for all
series is 4’187, which is largely below the reported average of 25’ for existing
systems. Series 4 was a complex case with 11 tumours and a heavy deformation
of the uterus shape, taking 8’08” on average for our system and 40’ for existing
systems.

6 Conclusion

We have proposed a general deep learning-based interactive multi-class image
segmentation framework, with a user interaction loop and a sequential inter-
action memory. We have demonstrated our framework in female pelvis MRI
segmentation, using a new dataset. We have evaluated our framework against
existing work with the standard metrics and conducted a user evaluation. This
shows that our framework largely outperforms existing systems in accuracy and
drastically reduces the average user segmentation time from 25’ to 4’18”.

We plan to further improve the proposed solution towards its clinical us-
age. First, through application to other segmentation tasks and expansion of the
user study. Second, by using it to aid annotation, reducing interaction demand
through SIM initialization with automatic segmentation. Third, by directly ap-
plying it to 3D images, to further shorten the segmentation time.
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