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Abstract To improve our understanding of how de-

formable objects are transported in flows, it is neces-

sary to develop new experimental tools capable of ac-

curately measuring the evolution of their deformations.

We present a reconstruction process for sheet-like ob-

jects utilizing Thin-Plate Splines (TPS), providing ac-

cess to the object’s 3D position and deformation over

time. We tested the technique on a simple configura-

tion: a thin-heavy-flexible disc within a vortical flow

driven by impellers in a cubic tank. The vortical flow

field is characterized using Particle Image Velocimetry

(PIV) and is seen to be well approximated as a Lamb-

Oseen vortex within the volume of reconstruction. The

disc is imaged using three cameras, which are calibrated

using the pinhole model. The reconstruction process

uses shape-from-silhouette to define an initial 3D recon-
struction, which is subsequently refined by minimizing

a cost function based on physical and visual criteria.

This process is shown to be generalizable to other thin

geometries, offering a starting point towards studying

the dynamics of more complex sheet-like objects, such

as plastic pollutants and vegetation.

Keywords particle tracking · anisotropic particles ·
vortex

1 Introduction

Particles in fluid flows are ubiquitous in nature, indus-

try, and biology: from the transport of sediment, vegeta-

tion, organisms, snowflakes, and pollutants in geophysi-
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cal flows, down to the scale of cells, proteins, and bacte-

ria. Recently, the fate of plastic pollutants in the ocean

has motivated several investigations to understand their

drifting due to waves and currents (DiBenedetto et al.,

2018) and their fragmentation rate due to hydrodynam-

ical constraints, as seen in Allende et al. (2020) and

Brouzet et al. (2021). These last two studies demon-

strated a strong relationship between the deformation

of fibers and the resulting fragment size distribution.

Before it is possible to explore these findings in rela-

tion to 2D objects, such as plastic bags and films, a

method to reconstruct and characterize the dynamics

of complex 2D objects in 3D flows is needed.

We present a process to measure the deformations of

2D objects and test its efficacy on a simple case where
a smooth, thin, flexible silicone disc is placed in a vor-

tical flow. Our process represents a deformed 2D object

by a Thin-Plate Spline (TPS) (Duchon, 1976), com-

posed of three 2D to 1D functions sharing their source

control points. The TPS maps points from a reference

2D frame, representing the object laid flat, to their 3D

position. TPS fitting techniques have been effectively

used in medical applications in the representation of or-

gan tissues and the detection of anomalies (Bookstein,

1989). A computationally efficient and readily available

TPS creation and fitting technique is provided in the

toolset created by Bartoli et al. (2010), which also pro-

vides the built-in ability to calculate a range of desired

values needed to characterize the deformation of the

disc. Our process would help one to characterize the La-

grangian transport of elastic particles in flows. Further-

more, the presented work can be generalized to measure

the deformations of other flexible objects, such as the

dynamic ecosystem of kelp forests, the migration and

locomotion of jellyfish swarms, or aggregations of plas-
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tic debris (fabrics, bags, bottles) in large-scale oceanic

gyres. Building a collection of resources for the investi-

gation of these flexible sheet-like particles would allow

for a new range of problems to be explored in funda-

mental flows that will, in turn, better enable the study

of richer, complex large-scale questions.

This paper presents our work to reconstruct a thin-

heavy-flexible disc in a vortical flow. The experimental

set-up is described first, along with details about the

flow and disc characteristics. Then, the general process

is presented, followed by a discussion of the resulting

3D reconstruction. The paper ends with concluding re-

marks and our parting thoughts.

2 Experimental set-up

The experiments are performed in a 60 cm cubic tank

filled with water. The flow can be illuminated or viewed

through the acrylic windows on each face of the cube.

The generation of the flow field in the tank is provided

by 8 rotors fitted with impeller disks with diameter

of 17 cm equipped with six straight blades 5 mm in

height. Each impeller is located at a vertex and points

towards the center of the cube. The rotation rate ΩF

of each impeller can be set independently between 5

and 19 Hz. In the present study, a single pair of di-

agonally opposing impellers are actuated at the same

frequency with opposite directions. Video acquisition

is carried out by three synchronized high-speed cam-

eras (VEO 710L) each equipped with a ZEISS Milvus

2/100M ZF.2. The images used for the reconstruction

were recorded at a sampling rate of 3000 Hz with an

exposure of 330 µs. The cameras are positioned to pro-

vide 3 approximately orthogonal views of the volume of

interest. An illustration of the relative positions of the

tank, motors, and cameras is provided in figure 1(a).

Through the windows on the opposite side of the cam-

eras, the backlighting for the captures is provided by

three LED panels. The LED panels are energized by

DC power supplies to ensure the illumination is contin-

uous. The reconstruction measurements of the flexible

disc have been performed in a cubic volume of nearly

10 cm × 10 cm × 10 cm at the center of the tank.

The flow field of the vortex was characterized for a

range of forcing frequencies, ΩF , using multi-planar PIV

measurement. For these measurements, the tank is seeded

with polyamide seeding particles of diameter 50 µm

(Dantec Dynamics). The PIV images were captured us-

ing a Dantec Flowsense EO camera and illumination

was provided by a Nd:YAG pulsed laser 532 nm. The

investigation was carried out using DynamicStudio, for
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(a) Experimental set-up

(b) PIV planes

Fig. 1 Figure 1(a) provides an illustration of the tank, mo-
tors, and position of the cameras. Figure 1(b) shows the loca-
tion of the planes where PIV measurements were taken with
respect to the physical center of the tank in the laboratory
frame of reference. The blue dotted line [ ] is provided to
indicate the expected position of the vortex centerline along
the diagonal of the tank

both the capture and PIV data analysis, with post-

processing carried out in MATLAB. Figure 1(b) pro-

vides an illustration of the positions of the laser sheet

used for the characterization. As the axis of the vor-

tex is not aligned with any of the viewing planes of

the tank, the planes of the PIV measurements are not

orthogonal to the axis of the vortex. However, the az-

imuthal velocity of the vortex can be inferred by adjust-



3D reconstruction of a thin flexible disc in a vortical flow 3

ing for difference in alignment between the measured

plane’s normal and the axis of the vortex. Due to the

meandering of the vortex core across image pairs, an

averaged value for the velocity field was achieved by a

spatial shift in the velocity fields to align the two local

velocity magnitude maxima across each respective run

(Heyes et al., 2004). Figure 2 provides a sample of a

comparison between the time-averaging approaches of

the velocity magnitude for motor forcing frequency of

9 Hz. Figure 2(a) is the result of time-averaging the ve-

locity magnitude in the laboratory frame of reference.

The signatures of the core of the vortex are more read-

ily identifiable when averaging in the vortex frame of

reference, shown in figure 2(b). The flow in the cen-

ter of the tank is modelled (to first order) as a Lamb-

Oseen vortex (Lamb, 1945). The values of circulation,

Γ, and scale of the vortex core, σ2, plotted in figure 2(c)

are averaged across the measurement planes with bar

half-length representing the standard deviation. Both

parameters are found to evolve monotonically with the

forcing frequency. The standard deviations are provided

to give a sense of the similarity between the flows across

the measurement planes at each frequency. The velocity

fields, averaged in the vortex frame of reference, were

consistent across the multiple planes of measurement,

shown in figure 1(b), at each forcing frequency. The

vortical flow does not appear to vary along the axis of

the vortex within our volume of interest and the mea-

sured flow field agrees reasonably well with that of a

Lamb-Oseen vortex.

The smooth flexible disc is made of EC 13 silicone, from

Esprit Composite, with a specific gravity of 1.08 and

Young’s modulus of E = 130±20 kPa. To make the sil-

icone semi-transparent, a small amount of fine pigment

was well mixed into the silicone prior to curing. To form

the silicone sheet, the silicone is poured and pulled onto

a glass substrate (within a known gap height determin-

ing the thickness of the sheet) and allowed to cure. The

roughness of the the disc is expected to be on the order

of that of the glass substrate (≲ 10 µm) used for the

molding. The disc is cut using a 16 mm inner-diameter

hollow punch (BOEHM) from a h = 312±7 µm thick

silicone sheet.

3 General process

The process required to measure the position and shape

of the flexible disc is separated into four main steps,

covered in the following sections. Step 1 calibrates the

cameras. Step 2 reconstructs an initial estimate of the

disc’s 3D perimeter. Step 3 creates an initial TPS to

model the surface of the disc. Step 4 optimizes the fit
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Fig. 2 Time averaged velocity magnitudes from 2D PIV
measurements from center plane (x = 0). Figure 2(a) is the
result of time averaging in the lab frame of reference. Fig-
ure 2(b) is the result of time averaging after accounting for
the spatial shift of the vortex core. Figure 2(c) provides the
estimated Lamb-Oseen vortex parameters obtained by aver-
aging across the 4 measurement planes, with bar half-length
representing the standard deviation

based on desired physical (bending and stretching en-

ergies) and visual (reprojection quality) criteria.

3.1 Camera calibration

To quantify the 3D position of the disc from images,

a calibration for the three cameras must be created.
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The cameras are calibrated by approximating their op-

tics with the pinhole model. The 11 model parame-

ters represent the position and orientation of the cam-

era in the laboratory frame, two scaling factors, the

skew parameter and the principal point. They are de-

termined through a specific process based on multiple

correspondences of 3D and 2D points (Faugeras and

Luong (2001); Hartley and Zisserman (2003); Verhille

and Bartoli (2016)).

The calibration is performed within the fluid to ac-

count for the variation of the refractive index through

the multiple flat interfaces that light traverses during

a capture (water/acrylic/air) (Agrawal et al., 2012). In

our implementation, the point correspondences are ob-

tained by tracking a target sphere through a sweep of

the volume of interest. The center of the sphere is posi-

tioned by a set of 3 linear translation stages in an assem-

bly. Each linear stage is actuated by a corresponding

stepper motor and the direction of each linear stage is

fixed to move orthogonal to one another. As the trans-

lation apparatus moves to each known position, the 3

cameras simultaneously capture an image of the sphere.

The projection of the sphere onto each camera’s image

plane is well approximated1 as a circle, therefore the

MATLAB function imfindcircles is used to estimate

the coordinates of the center of the sphere in each cam-

era’s image plane. The 11 parameters are then deter-

mined from the correspondences between the known 3D

coordinates of the sphere’s center in laboratory space

and the measured 2D coordinates of its projection in

the image planes. This calibration step is only required

once per adjustment of the optics.

3.2 Initial perimeter reconstruction

Working with the calibrated cameras, a set of raw im-

ages is taken and used to isolate the pixel locations

related to the disc’s perimeter. These pixel locations

are then used to estimate the 3D location of the disc’s

perimeter. Figures 3(a-c) present cropped views of the

disc as seen from the three camera views. The back-

lit, semi-transparent disc reduces the amount of light a

camera receives from the LED panel it is facing. The

pixel-wise intensity value has an inverse connection with

the integral of the disc’s volume along the line of sight

between the light source and camera sensor. Sharp spa-

tial changes of the intensity value in the image can in-

dicate an edge of the disc, which is a useful cue for

1 Due to the quality of the lenses used and the sphere’s
size in combination with its distance from each of the cam-
eras, image distortions and the effect of local perspective are
negligible.

(a) View 1

(b) View 2

(c) View 3

Fig. 3 Cropped raw image captures from the three orthogo-
nal views of the disc. The cropped region is 155 px × 155 px
in size

determining the disc’s perimeter. Changes in the in-

tensity value can also indicate local variations of the

surface orientation. However, in this case, they tend to

be smooth variations.

Figure 4(a) shows the result of view 1 processed by

a Canny edge detection; this is identically applied to

the other views. The process provides a binary im-
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age with values of 1 where a strong intensity gradi-

ent was found. Defocused particles outside the volume

of interest’s focal depth are passively removed due to

their weaker edges. The position of points correspond-

ing to the perimeter of the disc are estimated using a

volume based shape-from-silhouette method (Cheung

et al. (2005); De La Rosa Zambrano et al. (2018) ).

The volume of reconstruction is divided into cubic vox-

els of 750 µm in length. Each voxel is projected onto

each image plane. The voxels with projections that fall

on locations of strong image edges in all three image

planes are preserved and the non-matching points are

discarded. This predominately preserves the points that

represent the disc’s perimeter, while suppressing strong

image edges incurred by bends along the surface of the

disc that are not consistently seen in all views. The re-

tained set of perimeter points are reconstructed in the

experimental 3D frame of reference, visualized in figure

4(b) by red dots. Image masks are also constructed us-

ing the points of the silhouette’s edge, s. The masks are

used to classify the two regions for each view: inside the

disc’s image and outside.

3.3 Initial surface reconstruction

We define a TPS to represent the initial surface recon-

struction. The TPS is obtained from 2D to 3D point

correspondences, which we create on the perimeter. To

accomplish this, the coordinates of the reconstructed

perimeter points are resampled at equispaced intervals

along its closed curve. These resampled 3D points are

mapped to equispaced points along the perimeter of

the disc’s 2D reference model: these points are referred

to as boundary control points. This correspondence of

the control points defines an initial TPS estimating the

disc’s surface.

The TPS, ϕ, is a parametric mapping taking points

from a 2D space, X = (X,Y ), to any desired dimen-

sion. We instantiate it to create a surface, x = (x, y, z).

Fitting the TPS requires knowledge of corresponding

points from the 2D model reference frame to their po-

sition in 3D space. These are referred to as control

points. The TPS function will satisfy the constraints

imposed by the control points while minimizing the in-

tegral bending norm (Duchon, 1976):

I[ϕ] =

∫∫
R2

(
(ϕXX)

2
+ 2 (ϕXY )

2
+ (ϕY Y )

2
)
dS (1)

The subscripts of ϕ denote the partial derivative with

respect to the noted reference coordinate; dS represents

a surface element in the domain R2. The 2D model of

(a) Detected edges

(b) 3D reconstruction

(c) 2D disc model

Fig. 4 Figure 4(a) provides the result after a Canny edge de-
tection process is applied on view 1. In figure 4(b), red dots
[ ] show the original reconstructed perimeter points using
shape-from-silhouette, the magenta line [ ] is the connect-
ing line between the initial reconstructed control points, and
the goldenrod mesh [ ] provides an illustration of the disc’s
initial reconstruction in space. The axis is with respect to the
experimental coordinate system, as measured from camera
calibration. Figure 4(c) illustrates the disc reference model,
the mesh points are represented by black dots [ ], the ref-
erence boundary control points are shown as magenta circles
[ ], internal control points are represented by magenta
squares [ ], and the model’s perimeter is outlined by blue
dots [ ].
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the disc is a circle with a radius equal to the physical

radius of the disc in the experiment. Figure 4(c) pro-

vides an illustration of the reference model. The area

of the disc model is sampled as a regular mesh with

grid spacing of ∆x = ∆y = R
N . Results using a value

of N = 33 are presented here, corresponding to a to-

tal number of mesh nodes of M = 793, represented by

black dots in figure 4(c).

For this work, the control points in the 2D reference

frame are sampled at equispaced locations along the

perimeter of the model disc. Since we do not have ac-

cess to an unambiguous one-to-one mapping of the ma-

terial points of the physical disc, we cannot measure the

spinning about the principal axis of the disc. However,

this ambiguity in the mapping requirements leads to a

beneficial invariance in the selection of the boundary

control points, which are only required to be in order

and equispaced along the length of the perimeter. The

set of reconstructed 3D points are parameterized and

fitted using the spherical coordinates. The 3D boundary

control points are subsequently sampled at equispaced

locations along the length of the 3D perimeter fit to

match those from the 2D reference model. Because the

control points are related between the reference and

the experimental frame, the initial TPS mapping can

be solved for using the toolset provided in Bartoli et al.

(2010). The number and location of the control points

and mesh points are set per investigation. The kernels

used for the mapping and evaluation of derivatives on

the surface are calculated once. These kernels are ma-

trices that formulate a system of equations to efficiently

calculate their respective outputs once given the 3D lo-

cations of the control points.

Figure 4(b) provides an illustration of the initial mapped

model mesh in goldenrod. The magenta line segments

link the locations of the control points, shown as ma-

genta circles. This preliminary fit is sampled to initialize

the internal control points. The location of the internal

control points on the reference model are marked as

magenta squares in figure 4(c). The reprojection of the

initial fit, as shown in figure 5, is deficient in visually

reproducing the image of the disc in all 3 views, most

notably in figure 5(a). To produce a more faithful recon-

struction, the 3D position of the boundary and internal

control points are numerically optimized to iterate to-

wards desired physical and visual criteria.

3.4 Reconstruction refinement

The optimization process consists of verifying quantifi-

able criteria to improve the quality of the mapping.

These criteria come from both physical characteristics

(a) View 1

(b) View 2

(c) View 3

Fig. 5 Reprojection of the initial boundary control points
[ ] and mesh [ ].

of the disc and visually derived metrics based on re-

projections of the mapped mesh onto the source im-

ages.

The physical disc in its equilibrium position is flat. As

such, the reference configuration for the disc model is

an unbent and unstretched surface. Once in the flow,

the physical disc adopts a shape that balances the hy-

drodynamical forces and the internal restorative forces,
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Fig. 6 Local bending cost figure 6(a) and stretching cost
6(b) of the initial TPS fit

causing the disc to tend back to its equilibrium shape

which minimizes its elastic energy.

Bending cost. The disc’s surface is observed as smooth,

with no cusps, while advected by the flow. One cost in-

volved in the optimization aims to minimize the bend-

ing energy of the particle. Mapped control points, along

with derivative kernels, are used to compute the princi-

ple curvatures at all points of the mapped mesh. Sub-

script [i] is used to denote a local mesh point value. A

nodal bending cost value is defined as:

cbend[ϕ, x[i]] =
[
κ2
1 + κ2

2 + 2pκ1κ2

]
[i]

(2)

where p is the Poisson’s ratio of the disc and κ1,2 rep-

resent the principal curvatures. This cost is proportion-

ally equivalent to the bending energy per unit area as

shown in Verbeek and Van Vliet (1993). For silicone, a

working value of p = 0.5 is used. The bending cost is

calculated as the mean cost over all the nodes in the

mesh:

Cbend[ϕ] =
1

M

M∑
i=1

(
cbend[ϕ, x[i]]

)
(3)

Stretching cost. By minimizing the stretching cost of

the model, the optimization tends towards an isometric

mapping. This isometry would preserve the local dis-

tance between two points on the surface, taken from

the model to the mapped frame of reference. This is

done through the stretching cost:

cstch[ϕ, x[i]] =

[(
(ϕX)

2 − 1
)2

+
(
(ϕY )

2 − 1
)2

]
[i]

(4)

As with the bending cost, the mean cost over all the

nodes in the mesh is calculated:

Cstch[ϕ] =
1

M

M∑
i=1

cstch[ϕ, x[i]] (5)

This value’s trend has parity with the summed strain

over the surface. The local strain, ϵj , is calculated from

the Euclidean distances of neighboring points in the

mesh grid between the model, ∆Rj and mapped con-

figurations, ∆rj .

ϵ[j] =

[
|∆r −∆R|

∆R

]
[j]

(6)

The subscript [j] denotes a unique neighborly connec-

tion. Each internal point of the model mesh has 4 Carte-

sian neighbors considered. With mirrored connections

excluded, the unique number of connections is less than

4M .

Reprojection cost. The model mesh is mapped to the

estimated physical 3D position and conformation in

the laboratory frame. This mapped mesh is then re-

projected onto the image plane of each camera. The

image masks of the disc are used to verify the TPS fit’s

reprojection quality in each view. This is done by de-
termining if the mapped mesh points are reprojected

onto the image coinciding with a location outside or in-

side the area of the disc. For a particular image space

there are T silhouette points s[t] delineating the region

outside and inside the disc, P mesh points reprojecting

outside h[p], and Q number of mesh points reprojecting

inside g
[q]
, where P+Q = M , the total number of mesh

points. The values of h[p] and g
[q]

and their quantities

depend on the TPS ϕ.

Every outer point h[p] is penalized by its Euclidean dis-

tance to the nearest point s[t]. The mean of these dis-

tances for all the outer points is taken and normalized

by the disc scale term δ of the image:

cout,[k][ϕ] =

[
1

δP

P∑
p=1

min
(
dist(h[p], s[1:T ])

)]
[k]

(7)

The subscript [k] is used to denote a particular image

space, where k ∈ {1, 2, 3}. Per image, the disc scale
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term is calculated by taking the mean of the maximum

distances of all points on the silhouette to another point

on the silhouette:

δ[k] =

[
1

T

T∑
t=1

max
(
dist(s[t], s[1:T ])

)]
[k]

(8)

Each cost associated with points reprojected outside

the disc’s image space per view is squared then summed

over all views, which results in a scalar cost denoted as

Cout[ϕ]:

Cout[ϕ] =
3∑

k=1

(cout,[k][ϕ])
2 (9)

The under-utilization of the disc’s inner region is pe-

nalized by using the distance of each inner s[t] point to

its nearest g
[q]

as:

cin,[k][ϕ] =

[
1

δT

T∑
t=1

min
(
dist(s[t], g[1:Q]

)
)]

[k]

(10)

Cin[ϕ] =
3∑

k=1

(
cin,[k][ϕ]

)2
(11)

The cost Cin[ϕ] aids in approaching a fit that repro-

jects more effectively within the desired area in each

image.

Total cost. Each of the four costs is multiplied by its

respective weight and then summed together into the

total cost to be minimized as:

Ctot[ϕ] = WoutCout[ϕ] +WinCin[ϕ] + ...

WstchCstch[ϕ] +WbendCbend[ϕ]
(12)

with each weight tuned to have the mapping converge

to a desired result. Specifically, the weights were se-

lected to prioritize the enforcement of their respective

attributes as they pertain to their relative contributions

to the total cost.

More specifically for our application, the elastic en-

ergy can be deconstructed into two parts: bending and

stretching. The bending and stretching energy are pro-

portional to the bending and stretching costs defined

in equation (3) and (5), respectively. From elasticity

(Landau et al., 1986, Powers, 2010), we know that for

a plate bent by a length δ the force scales as:

Fbend ∼ EhR · κh ∼ EhR · (δ/R2)h (13)

Similarly, for a plate stretched by a length δ the force

scales as:

Fstch ∼ EhR · δ/R (14)

In both cases, the energy scales as F · δ; therefore, the
ratio of the bending over the stretching energy scales

as h/R. It follows that the ratio of the bending and

stretching weights should then scale as:

Wbend/Wstch ∼ Fbend/Fstch ∼ h/R (15)

In practice, the bending and stretching contribution,

W[·]C[·], to the total cost, Ctot, should scale in relation

to their expected contribution to the total elastic energy

of the disc. For our application, the the bending weight

is lower than the stretching weight by a scalar factor of

this ratio. This relative weighting allows the refinement

step to move away from the initial reconstruction, to-

wards one that agrees the physical scaling of the costs’

respective energy analogues. Because we wish to enforce

a faithful reprojection of the disc within the silhouette

of the disc in the 3 views, the reprojection weights are

set to be even higher than that of stretching.

4 Discussion

Bending. Figures 6(a) and 7(a) allow for comparison

of the local bending cost between the initial and op-

timized fits. The initial fit is the minimization of the

integral bending norm (Duchon, 1976); as would be ex-

pected, figure 6(a) shows its internal local bending costs

are low and smoothly evolving. The local bending cost

for the optimized fit, in figure 7(a), shows a band of

higher bending cost along a diameter (∼ 10◦ clockwise

from vertical axis). The highly localized peaks in the

curvature at the control points are characteristic of fit-
ting schemes that are enforced with the second deriva-

tive.

Stretching. Figures 6(b) and 7(b) present a compari-

son of the local stretching cost between the initial and

optimized mapping. The initial fit has no obligation

to produce an isometric mapping, which can be seen

as regions of high local stretching cost values in fig-

ure 6(b). The mean local strain value is µϵ = 0.173

with a standard deviation of σϵ = 0.100 for this ini-

tial mapping. Figure 7(b) illustrates that the optimized

mapping drastically lowers the local stretching cost over

the entirety of the disc. The mean local strain value is

µϵ = 0.0107 with a standard deviation of σϵ = 0.0092

for this optimized mapping. A change of color map-

ping used between figures 6(b) and 7(b) draws attention

to the order of magnitude difference while preserving

the visibility of the cost function’s spatial variations.
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Fig. 7 Local bending cost figure 7(a) and stretching cost 7(b)
of the optimized TPS fit. Different color-maps between fig-
ures 6(b) and 7(b) are used to facilitate the inspection of the
variations while emphasizing the difference of scales between
the two results. In figure 7(c), red dots [ ] show the original
reconstructed perimeter points using shape-from-silhouette,
the blue line [ ] is the perimeter of the optimized recon-
struction, and the cyan mesh [ ] provides an illustration
of the reconstructed disc in space. The axis is with respect
to the experimental coordinate system as measured from the
camera calibration

Reprojection. Figure 5(a-c) presents the reprojection of

the initial boundary control points and a mesh of the

fit on the raw capture of each view. The reprojection

of the initial fit is in poor agreement with the area of

the disc in the raw captures. This can be most notably

seen in 5(a), as the reprojection under-occupies the disc

area. Figure 8 provides a visual illustration associated

0 5 10 15 20 25 30 35

(a) Initial

(b) Final

Fig. 8 Color bar denotes pixel distance from silhouette
points [ ] to their respective nearest mesh point repro-
jected inside. This distance is used for the evaluation of the
optimization cost, Cin[ϕ]

with Cin to compare the initial and final distances of

silhouette points to the points reprojected inside the

area of the disc in the image of view 1. The silhouette

points are linked to their nearest internally reprojected

point and colored according to the magnitude of their

distance. Figure 8(a) illustrates an under-occupation of

the internal area by the reprojected initial points, with

distances reaching 32 px. Figure 8(b) shows a signifi-

cant improvement with distances falling below 5.5 px.

A visual illustration associated with Cout is not pro-

vided because the initial reconstruction of this sample

falls reasonably well within the image area of the disc

in the 3 views and therefore does not show an appre-

ciable improvement once optimized. A correlation can

be observed between the density of the mesh points and

the relatively lowered local intensity value of the image.

The mesh points serve as a proxy for the physical loca-

tion of the disc’s volume; the higher density of points

is analogous to light having to travel a longer distance



10 Ibarra Eric et al.

through the semi-transparent material of the disc in

a given view. Figure 9(a-c) presents the reprojection

of the optimized fit on the raw capture of each view.

When compared to the initial fit, figure 5(a-c), the op-

timized fit occupies a fuller internal range of the disc

in the image. In contrast to the other costs, the bend-

ing cost globally increases after the optimization. This

was expected, as the TPS is the solution that minimizes

the integral bending norm based on the location of the

initial boundary control points. After optimization, one

can see that the disc is predominately bent along one

diameter aligned with the likely local axis of the vor-

tex. The high curvatures localized around the control

points are not physical in this case, as the curvature

is expected to evolve at the scale of the radius of the

disc. These peaks are artifacts stemming from the finite

number of control points used for the model, similar to

using a discrete number of pointed poles in trying to

pitch a tent. To prevent these non-physical local peaks,

two options are possible. The first one is to spatially

filter the curvature after the optimization step; the sec-

ond is to increase the stiffness of the TPS used to fit

the data. Both cases require some a priori on the ex-

pected deformation. Finally, by comparing the bending

cost and the stretching cost, one can extrapolate that

the disc is an effectively inextensible area.

Figure 7(c) provides a 3D illustration of the finalized

mesh mapping. To begin investigating the evolution

of the flexible disc, measurements of the disc’s posi-

tion, orientation, and deformation are required. Using

the proposed reconstruction process, the disc is tracked

through a short video sequence. Figure 10(a) uses black

dots to illustrate the path traced by the center of the
mapped disc model in time alongside the reconstruc-

tion of the model at the start and end of the trajectory

in this sequence. Figure 10(b) presents the time evo-

lution of the center of the disc with each coordinate

of trajectory normalized by the disc’s radius, R, and

Cbend. Reconstructions with cost values two standard

deviations away from the mean in time are considered

sub-optimal, treated as outliers, and naively excluded.

These exclusions can be noted as irregular spacing in

the time evolution. Of the 512 frames reconstructed in

the truncated series, 58 frames were excluded with this

simplistic metric.

To demonstrate the reconstruction’s sensitivity to the

blurring produced by a particle being out of the focal

depth of a given view, we applied an artificial Gaussian

blur to our images with a range of blurring strengths

and then applied the reconstruction process to the blurred

frames. This artificial blur was applied using the MAT-

LAB function imgaussfilt. We verified the sensitiv-

(a) View 1

(b) View 2

(c) View 3

Fig. 9 Reprojection of the optimized model’s perimeter [
] and mesh [ ] of resultant mapping

ity of the center of gravity of the disc, bending cost,

and stretching cost as σ was varied from 0.3 to 3. Per

frame reconstructed, the center of gravity of the recon-

structed particle progressively shifted as the intensity

of the blur strengthened. Whereas the center of grav-

ity of the reconstructed disc was measured as the mean

of all the mesh points’ positions, the bending cost is

Cbend, as presented in equation (3), and the stretching
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(a) Visualized 3D trajectory
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(b) Time evolution

Fig. 10 A 3D visualization of the disc’s trajectory is pre-
sented in figure 10(a). The measured position of the center of
the disc is plotted with black dots [ ]. The coordinate sys-
tem x0 is with respect to the likely axis of the vortex, denoted
with a black dashed line [ ]. The blue [ ] and green [

] mapped model meshes, with center points, are provided
for the first and last reconstructions of this truncated series.
The evolution in time of the measured position of the center
of the disc normalized by its radius, R, and Cbend is provided
in figure 10(b).

cost is Cstch, as presented in equation (5). The mean and

standard deviation values are evaluated over all frames

and blur strengths. Per frame, the reconstruction pro-

cess is applied to the raw images, without blurring, to

produce a reference reconstruction. The shift distance

between the center of gravity of the blurred reconstruc-

tion and that of the reference reconstruction is mea-

sured for each respective frame, for each blur strength.

This difference is normalized by the disc’s radius. The

mean value of this spatial shift of the center of gravity

is 8.22% of the disc’s radius. The mean bending cost

magnitude multiplied by R2, for normalization, is 2.44

with a standard deviation of 1.98 × 10−1. The mean

stretching cost is 2.36×10−3 with a standard deviation

of 5.81× 10−4. This sensitivity characterization to uni-

form blurring does not provide insight to the process’s

sensitivity to motion blur resulting from large exposure

times, but it does provide some insight into the recon-

struction process’s sensitivity to blur in general, such

as when the particle in the view of all three cameras

falls outside of their focal depth.

The accuracy of the reconstruction was verified using a

reference disc. This reference disc was fabricated using

a stereolithography 3D printer with 100 µm resolution.

The resin used was semi-transparent with a Young’s

modulus of E = O(1) GPa. The 3D printed disc was

fabricated to have a radius of 8 mm, a constant radius

of curvature of 8 mm for the concave side, and thickness

of 750 µm. A laser profilometer was used to measure the
convex side of the reference disc after the curing pro-

cess, which assessed the upper bound of the disc’s radius

of curvature as 8.86 mm with a mean absolute error of

27 µm. The relatively large thickness, compared to the

thickness of the flexible disc, was selected to ensure the

rigidity and dimensions of the disc. The reference disc

was measured using the same experimental set-up and

process as presented above. The disc’s radius, based on

the the reconstructed perimeter, was 5.89% above the

expected value according to the disc fabrication speci-

fications. Similarly, the radius of the disc based on the

measured surface area of the reconstructed disc had an

error of 6.32%. Using the reconstruction process, the

measured radius of curvature of the reference disc was

8.77 mm. These errors are on the order of magnitude

of the disc’s aspect ratio, between its thickness and ra-

dius, h/R ≃ 10%. This suggests that the finite thickness

of the disc might need to be taken into consideration

to improve the reconstruction. This source of error is

elaborated upon in the closing remarks.
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5 Closing remarks

The presented framework provides a robust starting

point for the investigation of smooth flexible sheets in

various flows. This preliminary work focuses on a cir-

cular disc model, yet the principles behind the process

are not limited to this singular geometry. This work

can be extended to various thin particles and models,

given an adequate matching of control points between

the model and the target. Figure 11 demonstrates the

results from the same process applied to square flexible

sheets. Tracking the discernible features of the parti-

cle’s geometry (i.e., the corners of the flexible square

sheet) provides a basis to measure rotation of the par-

ticle about its principal axis. This extension to different

geometries opens our investigation to explore the effect

that shape might have on the observed equilibrium po-

sition or preferential shape alignment with the vortex;

it additionally presents the possibility of studying the

dynamics of similar anisotropic particles in other forced

flows.

The current study focuses only on thin flexible parti-

cles fabricated to be uniform in thickness and smooth,

with no surface singularities. Smooth, for the purpose

of these measurements, indicates that no roughness or

imperfections are discernible at the resolution of the

recording. In general, the resolution of the recording

depends on the desired application, requiring a compro-

mise between spatial resolution and the field of view. It

is possible that our 3D reconstruction process could be

used to reconstruct more complex particles (inhomoge-

neous thickness/material, roughness), but this has cur-

rently not been tested. Other possible approaches to

handle reconstructing complex geometries include uti-

lizing digital image correlation (DIC) on surface pat-

terns or textures (Pan, 2018) or using Fourier Trans-

formation Profilometry (FTP) with structured illumi-

nation (Su and Zhang, 2010).

The TPS mapping has a parameter that allows the

user to tune the stiffness of the mapping, as mentioned

briefly in the previous section. For the work presented

here, the parameter was preserved at the default value

of unity. This parameter should be definable based on

the mechanical properties of the disc: the modulus of

the material and its aspect ratio.

The model approximates the physical disc as a surface

of zero thickness; this simplification can make it dif-

ficult for the model’s reprojection to properly occupy

the image of a physical volume. Using the process de-

scribed in this paper, lamination can simply be placed

normal to the surface of the fit at a distance commen-

surate with its thickness, h, to be used towards the

(a) View 1

(b) View 2

(c) View 3

Fig. 11 Reprojection of the optimized mapped model
perimeter [ ] and mapped model mesh [ ] for a square
sheet particle. The cropped region is 343 px × 343 px in size

visual reprojection costs. This strategy was unneces-

sary in our investigation due to the aspect ratio of the

disc, ≈ O(102), and our image resolution. Within the

volume of reconstruction, the resolution of the disc pro-

vided sufficient points to well characterize its silhouette

while maintaining a thickness on the order of O(1) px,

which allowed the thin model approximation to perform

effectively.



3D reconstruction of a thin flexible disc in a vortical flow 13

The efficiency of the optimization step and quality of

the resultant fit is dependent on the accuracy of the

target information. A poor estimation of the disc’s sil-

houette, and the subsequent mask, results in a poor

mapping. Particular care is taken to tune the opacity

of the silicone during fabrication to obtain a desired

signal-to-noise ratio in the images: one that allows for

discernible detail when the disc is occluded while still

providing a strong contrast between the disc and back-

ground. If we were to imprint the disc with a known

texture or designed pattern, DIC techniques would be

able to circumvent this difficulty while also facilitat-

ing a unique fitting of control points to the features.

An unambiguous one-to-one mapping would allow the

ability to track the spinning of circular discs. DIC ap-

proaches are promising for applications with a limited

number of particles, where unique patterning can be

used to reconstruct complex surface features. However,

for applications dealing with a high number of flexi-

ble particles, this method would be limited due to the

substantial volume of fabrication required and the chal-

lenges of measuring the numerous unique, unstretched

reference patterns.

When working with a large number of particles, differ-

ent complications arise in the event of multiple discs

in the region of interest. When sufficiently far apart,

multiple discs can be treated independently from one

another. Discs overlapping in images create a segmenta-

tion challenge. Both DIC and FTP methods would face

considerable challenges in experiments where particle-

particle occlusions or self occlusion (resulting from strong

deformations of the particle) are prevalent. In our ex-

periments, the semi-transparent property of the smooth

thin flexible disc allows an image from a single view to

provide information about the location of the perime-

ter of the particle, even when self-occlusion is present.

This feature is desired for tracking multiple discs, where

occlusions are more prevalent. Yet, the ambiguity of

a composite region may cause the optimization step

to create a mapping that could prioritize the repro-

jection of the mesh points onto a region not associ-

ated with the corresponding disc. Accurately segment-

ing regions, such as silhouette points pertaining to sep-

arate discs, is an issue. To be able to process multi-

disc flows, future work will require the incorporation

of a robust segmentation routine. Machine learning, as

applied to shape segmentation for autonomous driv-

ing and bio-medical applications (Ronneberger et al.,

2015), provides a framework for constructing an effi-

cient tool for the segmentation of overlapping discs.

The range of simple geometries used for our investiga-

tion allows a tractable creation of synthetic data based

on our particle models, as described in Rozantsev et al.

(2015) and in Nikolenko (2021), to provide an adequate

dataset needed to train a deep neural network. Ad-

vanced tools such as domain adaptation will then be

needed to make sure that the neural network copes with

real images.
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