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Abstract

A large body of methods exist for keypoint detection
and description in 2D images, but only the handcrafted
SURF3D and SIFT3D methods handle 3D images. We pro-
pose to extend SuperPoint, a learning-based method for 2D
images, to form a novel end-to-end method we call SP3D,
dedicated to medical 3D images. We create a 3D convolu-
tional neural architecture which implements the full proce-
dure of keypoint detection and description for surrounding
3D patches. We propose to train SP3D in two steps with
transfer learning. The first step uses predefined keypoints
in a synthetic dataset of simple 3D shapes. The second step
uses a semi-synthetic dataset of warped CT volumes; the
keypoints are detected via SP3D and by SURF3D, and kept
only if they are sufficiently repeated across the warped vol-
umes. Experimental results on synthetic data and registra-
tion comparison on real data show the superiority of SP3D.

1. Introduction
The general goal of computational anatomy is to quan-

tify the variability of anatomical shapes, such as the shape
of a tumor in time. An important tool required to carry out
this task is medical volume registration. Registration can
be estimated densely by considering all voxels of the source
and target volumes or sparsely by considering keypoints and
their descriptors. We focus on sparse registration, which
crucially depends on keypoint extraction and local descrip-
tor computation. Keypoints must be well distributed, re-
peatable and their descriptors must be discriminant [8, 3].
A keypoint is repeatable if it is detected in both volumes at
corresponding anatomical locations. The descriptor is dis-
criminant if it uniquely characterizes each keypoint.

Learning-based methods for keypoint detection and de-
scription with Convolutional Neural Network (CNN) have

Figure 1. We propose SP3D, a 3D extension of SuperPoint, a fully-
convolutional neural network. SP3D computes keypoint locations
and descriptors in 3D medical images, in a single forward pass.
This figure shows the objective of SP3D training, which is to iden-
tify matching keypoints across two 3D images. The input volume
contains 963 voxels.

recently outperformed handcrafted methods in 2D im-
ages [9, 4, 5], because they can be explicitly trained to
generate repeatable and discriminant keypoints. The hand-
crafted methods SIFT and SURF [3, 8] were extended to
volumes [1, 10]; however, a learning-based approach for
3D images has yet not been attempted.

We propose SP3D, illustrated in figure 1, a 3D extension
of the 2D learning-based method SuperPoint [4]. We face
three main tasks. First, to define an architecture which han-
dles large volume data. Second, to create datasets to train
SP3D. Third, to train SP3D appropriately. For the second
task, we propose to generate two datasets. The first dataset
is used to pre-train the SP3D network with exact positions
of keypoints. We will refer to the pre-trained SP3D net-
work as SP3D-pt. This phase is intended as an initial SP3D
training phase, designed to transfer the weights learned to
the subsequent training phase using our medical dataset.
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Figure 2. Overview of the SP3D network that jointly extracts repeatable keypoints and their discriminant descriptors. The network begins
with a VGG-style encoder whose output is conjointly utilized by the keypoint detector and descriptor. The reshape phase following the
Softmax operation ensures an output volume of similar size to the input for the detection part, and the ground truth volume is only utilized
during the training phase. The descriptor volume size is half that of the volume used for keypoint description.

The first dataset is composed of generated 3D shapes such
as lines, cubes and spheres. The second dataset is used
to train SP3D with our data using transfer learning start-
ing from SP3D-pt weights. The second dataset is created
using 3D-SURF [1] and the detector from the pre-training
stage. The second dataset is semi-synthetic. We create it
by transforming real volumes, extracting the most repeat-
able keypoints and establishing keypoint correspondences
between the multiple transformed volumes. Our experimen-
tal results show that our extension of the SuperPoint method
outperforms hand-crafted methods such as 3D-SURF and
3D-SIFT [1, 10] in terms of repeatability and mean distance
between landmarks after registration, with similar run-time.

2. Network Architecture and Losses

SP3D-pt and SP3D use the same architecture, which is a
VGG-style [12] encoder illustrated in figure 2. SP3D uses a
combination of two losses for the training step, one for the
keypoint detection, and the second for keypoint description.

The VGG encoder uses eight convolutional layers, and
the dimensions of the input data are each reduced by a fac-
tor of 8 while obtaining 513 channels. Among these chan-
nels, the final one serves as a dustbin channel, discarding
non-interest points. Following the application of the Soft-
max function, the last channel is removed, and an automatic
reshaping technique called SubPixelConvolution [11] (re-
ferred to as PixelUnShuffle in the PyTorch library) is ap-
plied. We set Hc = H/8, Wc = W/8 and Dc = D/8,
where H , W , D are the dimensions of the input volume.

During training, as shown in figure 1, SP3D is applied
to two input volumes: V and V τ . The latter V τ is the re-
sult of applying an affine transform to the former, V . The
detector loss is computed independently for both volumes,

while the descriptor loss is computed taking into account
both network outputs.

2.1. Detector Loss

The loss function for the keypoint detector is a cross-
entropy loss applied between xhwd ∈ X and the ground-
truth labels yhwd ∈ Y properly reshaped. The final loss
is :

Lp(X ,Y) =
1

HcWcDc

Hc,Wc,Dc∑
h=1,w=1,d=1

lp(xhwd; yhwd), (1)

where xhwd ∈ X corresponds to each vector across the
channels in the output of the decoder, Y represents the
ground truth provided to the network and lp is the Negative
Log-Likelihood (NLL) of softmax.

2.2. Descriptor Loss

The descriptor loss is composed of two hinge loss terms,
the first hinge loss tends to bring together descriptors which
correspond to the same location and the second term serves
to discriminate descriptors from different locations. The de-
scriptor loss is computed for all descriptor pairs. For a given
pair of descriptors d and d′ from a pair of volumes V and
V τ , it is defined as:

ld(d, d
′) =

(
λd s max(0,mp − dT d′)

)
+

(
(1− s) max(0, dT d′ −mn)

)
, (2)

where mp is the positive margin and mn is the negative
margin, d′ corresponds to the descriptor at position h′w′d′,
d corresponds to the descriptor at position hwd and dT is
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its transposed version. Similarly to SuperPoint, we use the
term λd to mitigate the fact that the network will more often
encounter incorrect (negative) correspondences than correct
(positive) correspondences. In equation (2), s computes
correspondences between each pair of descriptors in input
volumes V and V τ and can be written as follows:

shwd,h′w′d′ =

{
1 ||phwd

τ − ph′w′d′ || ≤ δ
0 otherwise. (3)

In equation (3), phwd represents the keypoint location,
phwd

τ denotes the coordinate transformation of the point
by the affine matrix of transformation τ , δ corresponds to
the maximal allowed distance between the centers of two
keypoints and is expressed in voxels. Empirically we set it
to δ = 8.

3. Training

We train SP3D-pt on a synthetic generated dataset com-
posed of simple 3D shapes with exact keypoint locations.
Examples of volumes can be seen in figure 3. To gener-
ate this dataset, we examined our medical images and con-
structed shapes based on content analysis. For instance, we
aimed to extract keypoints within blobs or spherical struc-
tures such as small muscles, or at the extremities of a vessel-
like structures. However, we avoided placing keypoints in-
side vessels since their precise detection locations are un-
certain. To simulate a random background, we generated
multiple spheres and added Gaussian noise to the images.

For the second training step, we used Silver and Gold
subsets from the Visceral dataset [6], to build a semi-
synthetic dataset. The first subset, named Gold, contains
20 CT volumes, each annotated with about 40 landmarks.
The second subset, Silver, contains 60 CT volumes without
anatomical landmarks. Using 3D-SURF and SP3D-pt, we
can detect keypoints P and P τ respectively from V and V τ ,
with V τ the volume V transformed by τ . Using the inverse
transform τ−1 we warp points P τ to P , and with a threshold
empirically found on distances between each set of points,
we obtain the best set of corresponding points. The weights
of SP3D-pt are fine-tuned using this second dataset. Unlike
the original SuperPoint approach, where the detector was
trained only on 2D shapes during the initial training and the
weights were combined with the addition of the descriptor
part for the second training, we conducted fine-tuning on all
parameters of both the detector and descriptor networks in
both training stages.

For both datasets, the transforms τ are generated with the
same method as [7], using landmarks from the Gold group
to estimate the distribution of transformations.

We note that in the second training step volumes are too
large to be used in a single mini-batch due to memory lim-
itations, with each volume having an approximate size of

Figure 3. The initial input volumes are 3D shapes that were gen-
erated with precise keypoint locations and contain 963 voxels. In
order to enhance the visualization of shapes, we removed the back-
ground.

512 × 512 × 400 or larger. Training SP3D on such vol-
umes, unlike in the 2D case, is not feasible. To avoid this
problem, we train SP3D using sub-volumes extracted from
the original volume. We use a patch size of 963 for every
image or sub-volume image, and simultaneously consider
one patch along with its corresponding transformed version.
Each sub-volume is paired with its corresponding ground
truth.

4. Training Details, Datasets and Metrics

4.1. Datasets

We first learn SP3D-pt with 3D shapes; the data consists
of 24000 volumes for training and 2400 volumes for val-
idation. The volumes are randomly generated from 8 dif-
ferent shape families, each shape being automatically anno-
tated with a list of ground-truth keypoints, see figure 3. For
the second learning step, we use 100 subjects for the train-
ing step, 20 for the validation and 20 from the Gold subset,
20000 keypoints have been extracted for each of these sub-
jects.

4.2. Training Details and Hyper-parameters

We optimize both SP3D-pt and SP3D networks via
ADAM with a learning rate of 0.001 and a mini-batch size
of 1 patch. To compensate the mini-batch size, we use gra-
dient accumulation during training, we accumulate 8 mini-
batches before the learning step. Our GPU-based imple-
mentation uses the PyTorch library. The training for a sin-
gle epoch takes around 90 minutes and approximately 20
Go of memory running on a Linux 64-bit platform, with the
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utilization of NVIDIA V100 GPU.

4.3. Repeatability, Matching Score and Registration

We evaluate the network using three different metrics.
The first metric is the repeatability between keypoints. Af-
ter keypoint extraction, we obtain two sets of points P and
P τ from two volumes V and V τ , V τ being the volume V
transformed by τ . Using τ−1 we transform points P τ to P .
With a simple k-d Tree, we compute distances between P

and P τ−1

. For a distance lower than a threshold between
two points, we consider that these two points are repeated.

The second metric is the matching between descriptors,
which measure how much the network can discriminate de-
scriptors. For random keypoints extracted from two images,
we extract corresponding descriptors. Similarly to repeata-
bility, we use a k-d Tree to measure distance between each
descriptor to find closest points. We consider these two de-
scriptors as a match when the distance between them is less
than the first descriptor and all other descriptors.

The third metric is the Mean Distance Between Land-
mark (MDBL) computed on ground-truth landmarks in
Gold volumes after registering them to a common space us-
ing the FROG registration algorithm [2]. Low mean dis-
tance between landmarks indicates good results, contrary
to the repeatability and matching scores. The repeatability
and matching score are measured in intra-patient, instead of
the MDBL metric which can measure the performances in
inter-patient volumes.

The third metric assesses the complete end-to-end
pipeline, encompassing both detection and description,
while also accounting for the registration method. On the
other hand, the first two metrics, repeatability and descriptor
matching, solely focus on their respective aspects without
considering any additional factors and are only applicable
to intra-patient measurement.

5. Results and Observations
We evaluate the performance of the pre-trained network

SP3D-pt on shapes and patient volumes from the Gold
group. SP3D-pt achieves excellent results on 3D shapes,
with a repeatability of 0.68 and a descriptor matching score
of 0.61. However, these two metrics experience a signifi-
cant drop in performance when applied to the medical im-
age dataset. The repeatability score is only 0.2, and the
matching score falls to 0.16. These results justify the trans-
fer learning approach with SP3D on the medical dataset,
whose results are given in table 1. We can see that SP3D
outperforms 3D-SIFT and 3D-SURF on all metrics.

The left part of figure 4 displays the response keypoint
map extracted using SP3D, while the right part shows the
keypoints extracted from this response map. There is a
higher rate of keypoint detection on bone tissues compared
to soft tissues such as organs and muscles.

Figure 4. Cross-section of keypoint detection example. Left: de-
tector output, highlighting regions with strong responses in green.
Right : same cross-section with keypoints extracted from the re-
sponse map.

Method
Repeatability

(2 mm)
Matching

Score MDBL

3D-SIFT 0.37 0.16 12.2 mm
3D-SURF 0.46 0.34 8.20 mm
SP3D-pt 0.20 0.16 16.6 mm

SP3D 0.51 0.48 7.98 mm
Table 1. Performance comparison between 3DSURF, 3DSIFT and
our SP3D approach. We used MDBL for Mean Distance Between
Landmarks.

6. Conclusion

Our results show that a learned 3D detector and descrip-
tor can outperform handcrafted methods, namely 3DSIFT
and 3DSURF.

Our next objective is to train the network using the re-
peatability metric directly, as we consider it the most impor-
tant of keypoint characteristics extracted from medical im-
ages. In the realm of 2D distant supervised keypoint extrac-
tion, numerous methods have demonstrated superior results.
Distant supervised learning refers to a technique where no
ground-truth data is available, except for the knowledge of
transformations between images. Future research endeavors
will focus on training a 3D keypoint detector and descriptor
using the distant supervised learning approach.
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Croisille, and Rémy Prost. Hubless 3d medical image bundle
registration. In VISAPP 2016 11th Joint Conference, 2016.
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Valette, and Adrien Bartoli. Learning 3D medical image key-
point descriptors with the triplet loss. International Journal
of Computer Assisted Radiology and Surgery, 2021.

[8] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60:91–110, 2004.
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