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Précis: We provide the surgical dataset SurgAI3.8K, train an Artificial Intelligence system to 22 

recognise gynaecologic organs and show its direct impact in an augmented reality surgical 23 

guidance software. 24 
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Abstract 26 

Study Objective: We focus on explaining the concepts underlying Artificial Intelligence (AI), 27 

using Uteraug, a laparoscopic surgery guidance application based on Augmented Reality 28 

(AR), to provide concrete examples. AI can be used to automatically interpret the surgical 29 

images. We are specifically interested in the tasks of uterus segmentation and uterus 30 

contouring in laparoscopic images. A major difficulty with AI methods is their requirement for 31 

a massive amount of annotated data. We propose SurgAI3.8K, the first gynaecological dataset 32 

with annotated anatomy. We study the impact of AI on automating key steps of Uteraug. 33 

Design: We constructed the SurgAI3.8K dataset with 3800 images extracted from 79 34 

laparoscopy videos. We created the following annotations: the uterus segmentation, the uterus 35 

contours and the regions of the left and right fallopian tube junctions. We divided our dataset 36 

into a training and a test dataset. Our engineers trained a neural network from the training 37 

dataset. We then investigated the performance of the neural network compared to the experts 38 

on the test dataset. In particular, we established the relationship between the size of the 39 

training dataset and the performance, by creating size-performance graphs. 40 

Setting: University 41 

Patients: NA 42 

Intervention: NA 43 

Measurements and main results: The size-performance graphs show a performance 44 

plateau at 700 images for uterus segmentation and 2000 images for uterus contouring. The 45 



final segmentation scores on the training and test dataset were 94.6% and 84.9% (the higher, 46 

the better) and the final contour error were 19.5% and 47.3% (the lower, the better). These 47 

results allowed us to bootstrap Uteraug, achieving AR performance equivalent to its current 48 

manual setup. 49 

Conclusion: We describe a concrete AI system in laparoscopic surgery with all steps from 50 

data collection, data annotation, neural network training, performance evaluation, to final 51 

application. 52 

Keywords: artificial intelligence, deep learning, laparoscopic surgery, gynaecological surgery, 53 

augmented reality, computer-assisted surgery 54 

  55 

1.   Introduction 56 

Computer-aided surgery systems require the computer to interpret surgical images 57 

automatically. In this respect, Artificial Intelligence (AI) has recently shown unprecedented 58 

performance in the technical literature, in particular via the deep learning approach (1). The 59 

key idea in deep learning is to train a neural network to replicate results created by experts. A 60 

neural network is an artificial object created in the computer’s memory1. The concept of 61 

training can be understood as ‘teaching’, as it is also said that the neural network ‘learns from 62 

data’. This indeed works by means of creating a dataset, which is an ensemble of images, 63 

where the expected results were manually annotated by experts. Our objective is to explain 64 

these concepts in detail using a concrete example of surgical application. Specifically, we 65 

show that a neural network can be used to automate Uteraug, a visual guidance software for 66 

gynecologic surgery developed by our team (2). This article results from the collaboration 67 

                                                
1 A neural network is an artificial object which solves a specific task. Alternatively, the expression neural 

networks may be found in the literature to encompass the set of methods related to deep learning. 



between three expert surgeons (SMZ, MC and NB) and two scholars researching and 68 

engineering the techniques of AI and their application to surgery (TF and AB). 69 

 70 

Figure 1: Sketch-up of Uteraug, the EnCoV team's AR system (4). Example of a 71 

laparoscopic myomectomy assisted by AR. Step 1: the preoperative 3D model is 72 

reconstructed from pelvic MRI. Step 2: the intraoperative 3D model is reconstructed from a 73 

set of laparoscopy images. Step 3: the deformation between the pre- and intraoperative states 74 

of the uterus is computed. Step 4: the uterus is tracked automatically and augmented in real 75 

time with two myomas using custom colours, creating the effect of virtual transparency. Our 76 

proposed neural network has been the cornerstone to automate steps 2 and 4, dropping the 77 

need for surgeon attention to setup the system and dramatically increasing usability. In the 78 

longer run, our dataset and methods may be used to solve other problems in the 79 

implementation of computer-aided surgery support systems. With this in mind, we have 80 

included extra annotations in our dataset, namely the junctions between the uterus and 81 

fallopian tubes. 82 

 83 



As we shall see, automating Uteraug requires us to solve two tasks. Uteraug implements a 84 

virtual transparency visualisation mode of the uterus by fusing preoperative 3D images with 85 

the laparoscopic images, as shown in figure 1. In its setup, Uteraug requires the surgeon to 86 

select the region occupied by the uterus and its contours in several laparoscopy images, which 87 

is a strong limitation in terms of clinical usability. In the context of AI, these two tasks are 88 

referred to as uterus segmentation and uterus contouring, which are illustrated in figures 2 89 

and 3. Uterus segmentation consists in labelling each image pixel as being uterus or non-90 

uterus. Uterus contouring consists in labelling each image pixel as being uterus contour or 91 

non-contour. Technically, a contour is a boundary between the image part containing the 92 

uterus and the rest of the image. These two tasks are extremely simple to solve for an expert 93 

in most cases. The human brain is indeed particularly well-equipped to recognise and 94 

delineate objects from images. However, in spite of its simplicity, labelling the extent of all 95 

pixels in an image is extremely time-consuming for an expert. A major advantage of a neural 96 

network is that, once properly trained, it can solve this type of task in a split second, typically 97 

processing several dozen images in a second, without any further expert supervision. 98 

 99 

Figure 2: Uterus segmentation. Each image pixel receives one of two labels, namely uterus 100 

and non-uterus. The result is called a segmentation mask and is a binary image, which can 101 

be visualised with black and white or any other two colours. 102 



 103 

Figure 3: Uterus contouring. Each image pixel receives one of four labels, namely occluding 104 

contour (the visible boundaries of the uterus), occlusion contour (for instance, the boundary 105 

created by the sigmoid colon in front of the uterus), connection contour (the connection 106 

between occluding and occlusion contours) and non-contour. The result is called a contour 107 

mask and is a four-colour image, which can be visualised using any four colours. The uterus 108 

contouring task is to achieve the automatic detection of each type of contour. 109 

 110 

A major difficulty with neural networks is their requirement for a massive amount of manually 111 

annotated data (3) to be trained for a specific task. Such data are gathered in a so-called 112 

dataset, which in practice requires surgeons to record surgeries and organise for experts to 113 

label the images. This requires attention and time, making existing datasets extremely 114 

valuable. We propose SurgAI3.8K, the first large gynaecologic dataset, comprising 3800 115 

labelled images. A very important question, which is regularly asked when creating neural 116 

networks, regards the required quantity of data; otherwise said, the minimal size of the dataset 117 

required to achieve the desired task with the expected performance. It has been verified 118 

empirically that for most tasks, the larger the dataset, the better the performance. However, 119 

data is expensive, both in terms of collection and annotation. A sound way of determining 120 

when to stop data collection is to monitor the quantitative performance of the neural network 121 

as the dataset is being collected and annotated. Observing that the performance plateaus, 122 

and if the performance is sufficient for the target application, is generally a reasonable 123 

indication that data collection can be stopped. We show experimentally that our dataset 124 



SurgAI3.8K is large enough to train a neural network with reliable performances for uterus 125 

segmentation and uterus contouring. 126 

Finally, our neural network is shown to be a successful replacement of the surgeon for the 127 

manual tasks in Uteraug. 128 

2. Methods 129 

2.1. General Points 130 

2.1.1 Deep Learning and Neural Networks 131 

Deep learning is the scientific field which deals with large neural networks. A specificity of 132 

neural networks is that they do not require one to program the computer to explicitly perform 133 

a task. Rather, the neural networks are trained from a dataset containing information about 134 

the task, similarly to a human being taught to perform a task from examples. Indeed, the most 135 

common training paradigm is called supervised training, which requires the dataset to contain 136 

examples with their expected results. Training is generally a long process, requiring heavy 137 

computational power and the attention of expert engineers. However, it needs to be done only 138 

once, representing the first phase in the life cycle of a neural network. The second phase is 139 

called prediction. At this phase, the neural network is simply used to solve the target task for 140 

any new image used at input. The two essential phases to create and use a neural network 141 

are thus summarised as follow: 142 

● Phase 1: training - the neural network is trained from many examples showing how the 143 

target task is solved by experts. 144 

● Phase 2 : prediction - the neural network is used to predict the result, in other words to 145 

solve the task, for new cases without requiring the attention of experts. 146 

The remainder of this paragraph formalises the concept of supervised training. It is slightly 147 

technical and may be skipped on a first reading. Formally, we denote an input as X -in the 148 



case at hand, X is a laparoscopy image- and the expected result as Y -in the case at hand, 149 

we choose Y to be the uterus segmentation for simplicity. The neural network is modelled by 150 

a mathematical function f, which has a fixed mathematical form representing the neural 151 

network designed by the engineer. Specifically, the neural network design specifies the 152 

number of artificial neurons being used and the way they are connected, similarly to biological 153 

neurons. Function f takes X as input and maps it to Y. A neural network with some prescribed 154 

architecture can be trained to solve many different tasks. This is because its behaviour is 155 

controlled by a set of parameters, contained in a variable p, which defines the firing rate of 156 

each of the artificial neurons the neural network is made of, again, similarly to biological 157 

neurons. Therefore, function f not only depends on X but also on p. The training process 158 

attempts to capture the relationship that exists between a laparoscopy image and a uterus 159 

segmentation by finding an optimal value for p. Technically, it finds the parameters in p which 160 

minimise the distance between Y, which is the expected uterus segmentation from the expert, 161 

and f(X,p), which is the prediction of uterus segmentation made by the neural network for a 162 

given laparoscopy image X and parameters p. More specifically, the training process 163 

estimates p from the whole training dataset, generally containing many pairs (X,Y) of input 164 

laparoscopic image and expected uterus segmentation. Once p has been estimated from the 165 

training phase, the neural network is ready to be used on new data. This is the prediction 166 

phase, whereby the parameters p are frozen and the function f(X,p) used to predict the uterus 167 

segmentation Y from a new, previously unseen, input laparoscopy image X. 168 

The specificity of deep learning within the general world of machine learning and AI is related 169 

to the design of the neural networks it uses. These neural networks are based on artificial 170 

neurons, organised in layers connected to each other. The ‘deep’ qualifier comes from the 171 

large number of such layers, forming a so-called deep neural network. The neural network 172 

design defines its structure and its number of layers; it is also called the neural network 173 

architecture in the technical literature. The choice of the neural network architecture is critical 174 



to obtain reliable results. The architecture we chose for uterus segmentation and uterus 175 

contouring is discussed in section 2.2. 176 

2.1.2 Annotation and Dataset Size 177 

The annotations represent the expected results of the tasks that the neural network should 178 

learn, in other words, they are examples used to teach the neural network’s purpose. The 179 

annotation process is generally carried out manually. For common objects, the annotation can 180 

be done by anyone. In the medical field however, the required level of expertise reduces the 181 

number of reliable labellers. So, on the one hand, annotating data is time-consuming and on 182 

the other hand, the larger the training dataset, the better the final neural network performance. 183 

Determining the optimal size of the dataset is thus critical in practice, to best compromise 184 

feasibility and performance. We have proposed a methodology to address this problem based 185 

on creating a size-performance graph, described in section 2.3.1. 186 

 2.2. Architecture Design 187 

The tasks at hand -uterus segmentation and uterus contouring- are strongly related. 188 

Specifically, knowing the segmentation is a strong cue to solve contouring, while knowing the 189 

contours should directly allow one to deduce the segmentation, as the inner part of the closed 190 

contours. Therefore, a natural question is whether we should strive to solve both tasks, or 191 

solve just contouring. Theoretically, this is a sound question, but in practice the contours are 192 

not guaranteed to be closed due to imperfect annotations and predictions, as seen for instance 193 

in the case of figure 3.  Nevertheless, it remains true that both tasks are strongly related. This 194 

fact will be exploited by our technical solution, which uses a neural network architecture 195 

solving both tasks simultaneously. More specifically, our engineers chose an existing neural 196 

network architecture well-adapted to medical images called U-Net (4) and specialised it to the 197 

tasks at hand. In short, the proposed neural network has the following input and output 198 

specificities: 199 



● Neural network inputs: the laparoscopy image. 200 

● Neural network outputs: the segmentation and the contours. 201 

The proposed methodology is applicable to any dataset containing contour annotations, 202 

whether it be a dataset of surgical images or other modalities such as radiological images. 203 

2.3. Dataset Creation and Neural Network Training 204 

2.3.1 Dataset Size 205 

Finding the optimal dataset size is a challenging question because, as we have seen, it 206 

represents a trade-off between labelling effort and performance. The relationship to 207 

performance is easy to understand: an object has a visual appearance depending on several 208 

factors, including its position with respect to the camera and the background it lies on. The 209 

larger the number of examples which the neural network learns from, the better it will 210 

extrapolate to new data. However, beyond a certain quantity of examples, the addition of new 211 

examples will only lead to a marginal performance gain which is probably not worth the 212 

labelling effort. Hence, an optimal dataset size may be found as the best compromise between 213 

the labelling manpower availability and cost, and the incremental performance gain. 214 

We propose to determine an optimal dataset size for uterus segmentation and uterus 215 

contouring by studying size-performance graphs. We measure performance using the so-216 

called test error. The test error is an extremely simple, yet important notion. Once the neural 217 

network is trained, the test error is computed from the test dataset, containing data 218 

independent of the training dataset. In other words, the test error uses images which were not 219 

used for training, and for which the expected results are available, to compare the prediction 220 

of the neural network against the expert. It is thus customary for the engineers to split the 221 

dataset in two parts: the training dataset, which is typically about 80% of the dataset, which is 222 

used to train the neural network, and the test dataset, which is typically about 20% of the 223 

dataset, which is used to evaluate the performance independently. 224 



Our methodology to construct the size-performance graphs is to train the neural network 225 

incrementally. We start with a small subset of the dataset of size 100 images, train the neural 226 

network and measure its performance. We then add a batch of 100 images to the training 227 

dataset and repeat the steps. We thus obtain the sought size-performance graph, into which 228 

we search for a performance plateau. The test dataset used to measure performance is fixed. 229 

It contains 581 images, representing approximately 15% of our 3800 images. The test and 230 

training datasets contain images from different procedures to prevent any patient overlap and 231 

to guarantee an unbiased performance evaluation. 232 

2.3.2 Data Source, Extraction and Selection 233 

We construct SurgAI3.8K, our proposed dataset, by extracting and labelling individual frames 234 

from 79 laparoscopy videos. The videos were recorded as part of a research protocol (IRB 235 

2016-002773-35) (6,7). When creating a dataset, it is crucial to ensure data diversity. The 236 

dataset should be large, but it should also span the possible usage conditions. We have taken 237 

care of using videos capturing both intra-patient and inter-patient diversity. Intra-patient 238 

diversity is covered by including images with various uterus viewpoints, deformations and 239 

colour, as the latter evolves through the procedure. Inter-patient diversity is simply covered by 240 

including videos from different patients. In addition, we used videos from three types of 241 

procedures: hysterectomy, laparoscopic fertility exploration and endometriosis surgeries 242 

containing images of both normal and pathological cases. We used 79 videos from which we 243 

extracted our dataset of 3800 images. Technically, the videos were visualised with the 244 

multimedia player VLC, which allowed us to extract images at a regular time interval. The final 245 

images were then manually selected in order to fulfil the above diversity criteria. Manual 246 

selection by an expert is very important: it favours quality and diversity, whereas an automatic 247 

selection, for instance directly using the images extracted at a regular time interval, would 248 

focus on quantity only. 249 

2.3.3 Annotation, Tools and Labellers 250 



In our dataset, the annotations were designed to resolve uterus segmentation and uterus 251 

contouring. The uterus contours identify the relationships between the uterus and its 252 

neighbouring organs in terms of visual occlusions. Specifically, each of the pixels forming the 253 

uterus contours can be of one of three types: the occluding contour type, where the uterus 254 

ends by occluding another organ, the occlusion contour type, where the uterus is occluded by 255 

another organ or the image boundaries, and the connection contour type, where the uterus is 256 

connected to another organ. We have also labelled the junctions between the uterus and 257 

fallopian tubes specifically, to allow further usage. Overall, we thus specifically have the 258 

following annotations for each image of our dataset: the uterus segmentation, the uterus 259 

occluding contours, the uterus occlusion contours, the uterus connection contour, the region 260 

of the right fallopian tube junction and the region of the left fallopian tube junction. These 261 

annotations can be combined and arranged to create new labels. For instance, the fallopian 262 

tube junction region can be used together with the connection contour mask to create the 263 

uterus-fallopian tube junction mask. The selected images were transferred to the online 264 

annotation software Supervise.ly (8). They were then annotated by two expert gynaecological 265 

surgeons (SMZ and NB). Figure 4 shows an example of an annotated image under 266 

Supervise.ly. 267 



 268 

Figure 4: Example of a laparoscopic image annotated with the online annotation 269 

software, Supervise.ly. In green, the occluding contours, in light blue the occlusion contours, 270 

in dark blue the connection contours and in purple and pink the right and left uterus-fallopian 271 

tube junctions. 272 

 273 

3. Results 274 

3.1 Neural Network Implementation and Evaluation 275 

Our engineers (TF and AB) implemented the neural network using the programming language 276 

Python with Facebook’s PyTorch software toolbox running on a standard desktop PC 277 

computer. They evaluated the neural network with so-called evaluation metrics, quantifying 278 

the discrepancy between the predicted and the expert annotations, for the images from the 279 



test dataset. Recall that the test dataset contains patient data which were not used to train the 280 

neural network. It thus allows one to perform an independent evaluation. We now describe the 281 

evaluation metrics. 282 

Uterus segmentation. Segmentation is a well-studied task for which there exist simple and 283 

commonly accepted evaluation metrics. Specifically, we use the Intersection over Union (IoU), 284 

which vastly dominates the evaluation of segmentation in the literature. As illustrated in figure 285 

5, the IoU represents the percentage of overlap between the expert segmentation and the 286 

neural network predicted segmentation. We use the average of the IoU over all the images 287 

from the test dataset. The IoU is a measure of agreement between the experts and the neural 288 

network, thus the higher, the better. The IoU ranges from 100%, which is a perfect result, to 289 

0%, which is a very bad result. 290 

 291 

Figure 5: Intersection over Union explanatory diagram. The IoU between segmentations 292 

A and B is defined as the ratio between the area of the intersection and the area of the union 293 

of A and B. In the example image, A in red is the expert segmentation and B in blue is the 294 

neural network predicted segmentation, leading to an IoU of 39%. The IoU is usually 295 

expressed as a percentage and varies between 100% for a perfect segmentation and 0% for 296 

an extremely poor segmentation. 297 

 298 



Uterus contouring. In contrast to segmentation, the evaluation metric for contour detection is 299 

challenging to design and has not been standardised yet. This is because a contour is a 300 

precisely localised thin image part. A prediction is thus rarely perfect, in the sense that it never 301 

perfectly reproduces the annotation. Consequently, even if a prediction lies close to the 302 

annotation and is thus acceptable, it will in most cases have a very low IoU. Our engineers 303 

proposed the contour error, which addresses the problem using a tolerance distance between 304 

the contour points, as explained in our previous paper (5). The final contour error is a measure 305 

of discrepancy between the experts and the neural network, thus the lower, the better. The 306 

contour error ranges from 0%, which is a perfect result, to 100%, which is a very bad result. 307 

3.2 Training Results and Dataset Size 308 

The dataset consists of 3800 annotated images, whose characteristics are given in table 1. 309 

The dataset was split into a training set of 3234 images and a test set of 581 images. Figure 310 

6 shows the uterus segmentation performance. We observed a steep improvement from 100 311 

to 700 training images and a much slower improvement beyond. The final IoU on the training 312 

and test datasets were 94.6% and 84.9% (the higher, the better). Similarly, for uterus 313 

contouring, we observed a steep improvement from 100 to about 2000 training images and a 314 

much slower improvement beyond. The final contour error on the training and test datasets 315 

were 19.5% and 47.3% (the lower, the better). 316 



 317 

Figure 6: Size-performance graphs for uterus segmentation and uterus contouring. The 318 

curves show the performance as the training set is increased by adding batches of 100 319 

images. Recall the higher, the better for the segmentation score (the IoU) and the lower, the 320 

better for the contour error.  321 

 322 



 323 

Table 1. Characteristics of the proposed SurgAI3.8K dataset. 324 

Figure 7 illustrates the uterus segmentation results for the cases of 100, 1300 and 2900 325 

training images. Visual inspection confirms that, as suggested by the IoU values, while a 326 

strong agreement holds between the second and third cases, a substantial difference can be 327 

seen between them and the first case. 328 

 329 

Figure 7: Uterus segmentation results. Training was performed with (a) 100, (b) 1300 and 330 

(c) 2900 images. True Positives are in green, i.e. pixels labelled as ‘uterus’ by the expert and 331 

predicted as ‘uterus’ by the neural network, False Positives are in red, i.e. pixels not labelled 332 

as ‘uterus’ by the expert and predicted as ‘uterus’ by the neural network and False Negatives 333 

are in blue, i.e. pixels labelled as ‘uterus’ by the expert and not predicted as ‘uterus’ by the 334 

neural network. The IoU is given in the bottom right corner. 335 



 336 

Figure 8 illustrates the occluding contours of the uterus for the cases of 100, 1300 and 2900 337 

training images. Visual inspection confirms that, as suggested by the contour error, while a 338 

strong agreement holds between the second and third cases, a substantial difference can be 339 

seen between them and the first case. 340 

  341 

 342 

Figure 8: Uterus contouring results. The images specifically show the occluding contours 343 

of the uterus. Training was performed with (a) 100, (b) 1300 and (c) 2900 images. True 344 

Positives are in green, i.e. pixels labelled as ‘occluding contour’ by the expert and predicted 345 

as ‘occluding contour’ by the neural network, False Positives are in red, i.e. pixels not labelled 346 

as ‘occluding contour’ by the expert and predicted as ‘occluding contour’ by the neural network 347 

and False Negatives are in blue, i.e. pixels labelled as ‘occluding contour’ by the expert and 348 

not predicted as ‘occluding contour’ by the neural network. The contour error is given in the 349 

bottom right corner.  350 

 351 

4. Discussion 352 

4.1 Summary of Contributions 353 

Introducing the method of AI. This article contributed a pedagogical introduction of the 354 

fundamental notions of AI, through the use of a concrete application of image processing 355 

towards automating a surgery guidance application, as described below. It introduced the 356 



notions of neural networks, their design, their training from the training dataset and their 357 

performance evaluation from the test dataset. It then shows that the key factor is the availability 358 

of a dataset with expert annotations. This introduction is intended to give surgeons an 359 

understanding of how AI works and the ability to use it wisely. For instance, it is clear that if a 360 

neural network was not trained on a sufficiently large dataset, its performance may be poor in 361 

some cases. Requesting the amount of cases a neural network was trained from and what the 362 

test error was may thus become a natural question for the surgeons to ask before adopting an 363 

AI-based technology. 364 

The dataset. This work contributed to the construction of a dataset of annotated laparoscopic 365 

images for the uterus segmentation, uterus contouring and fallopian tube junctions detection 366 

tasks. Compared to the existing datasets for the automatic recognition of common, non-367 

medical objects, it is modest in size. Nonetheless, it has variability, obtained by including 368 

multiple patients, different times of surgery, different view angles, and has quality manual 369 

annotations. Several datasets for the automatic detection of surgical tools exist in the 370 

literature, but very few works deal with the automatic detection of anatomical structures. Prior 371 

to this work, we carried out a feasibility study on a reduced dataset and a simple task of 372 

detecting pelvic organs (uterus, ovary, surgical tools) (9). This prior work showed that AI 373 

techniques could feasibly solve this type of task. Leibetseder et al. have carried out several 374 

studies in laparoscopic surgery, but their work focuses on the classification of surgical images 375 

(10), merely indicating the presence or absence of an organ in an image. Recently, they have 376 

published work aiming at endometriosis detection in laparoscopic surgery images (11). They 377 

have published a dataset of 25K images with half of the images with endometriosis lesions 378 

and the other half without. Only 300 images are manually annotated with specific 379 

endometriosis lesion contours, which are known to require a high degree of expertise in 380 

laparoscopic anatomy. More recently, the same team has published endometriosis lesion 381 

detection using Mask-RCNN (12), which was a significant step forward. Concretely, the results 382 

are bounding boxes containing the lesions. In contrast, our results provide the detailed contour 383 



of the anatomical structures, representing a much richer piece of information than a bounding 384 

box. In addition, several studies have been carried out on the automatic detection of surgical 385 

tools (13–15). Surgical tools differ significantly from the abdominal anatomy and do not 386 

necessarily require expert annotation. There is no large-scale dataset for the automatic 387 

detection of gynaecological organs in laparoscopic surgery to date. Nevertheless, the 388 

proposed dataset could be extended by labelling the other anatomical structures visible in the 389 

image, which may potentially improve the performance of AI. We leave this extension for future 390 

work. 391 

Dataset size. An important contribution of this work is to analyse the size of the laparoscopic 392 

image dataset required for the automatic segmentation and contouring of the uterus in a 393 

laparoscopic image. It contributes to answering an essential question regarding the use of AI 394 

techniques, which regards the number of training images necessary and sufficient to achieve 395 

the desired performance. This question has not been resolved to date in the literature. We 396 

bring an answer regarding uterus segmentation and contouring  by means of observing the 397 

size-performance graphs. We may hypothesise that for other organs presenting the same type 398 

of inter-patient variability on a laparoscopic image, it may be possible to consider the creation 399 

of a dataset with the same order of magnitude in size to obtain similar results. 400 

  401 

4.2 Contribution of the Neural Network to Augmented Reality 402 

The objective of solving uterus segmentation and uterus contouring was to replace the manual 403 

annotation required at the initialisation phase of Uteraug, the AR based laparoscopic surgery 404 

assistance software developed by our team in prior work. Steps 2 and 4 in the initialisation 405 

phase include manual interactions: the selection of the region formed by the image of the 406 

uterus and the selection of the different contours of the uterus. Thanks to our dataset and 407 

trained neural network, we have automatised these manual tasks. We have integrated our 408 

neural network to Uteraug and evaluated the quality of the manual and automatic solutions by 409 



comparing the surgeons’ annotations with the neural network. We have also measured the 410 

time saved by the automatic annotation during the initialisation phase. These results have 411 

been published by our team in (6). The automatic annotation achieves almost identical AR 412 

results to manual annotation in terms of quality. The time is reduced by 3 minutes and 56 413 

seconds compared to manual annotation, on average, which represents a 97.4% reduction, 414 

increasing the software usability and presumably its acceptability. The manual interactions 415 

required at the initialisation phase of Uteraug would harm its clinical use in the operating room 416 

without trained staff. By automating this phase, AI offers the possibility to extend its use to a 417 

larger number of surgeons. 418 

 5. Conclusion 419 

We have described a concrete example of how AI can be used in surgery, which conveys the 420 

basic concepts of AI in a pedagogical way, with illustrations given on the concrete case of 421 

augmented reality in laparoscopy. 422 

  423 
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