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Abstract

Purpose. To detect specularities as ellipses in endoscopic images
to facilitate normal reconstruction. Methods. A pipeline combin-
ing deep learning with handcrafted steps. Results. Convincing
results in detection and reconstruction on synthetic and real images.
Conclusion. First fully automatic method to exploit specularities
in endoscopic 3D reconstruction. Promising results towards future
integration with learning-based depth inference and SfM methods.
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1 Purpose

Specularities are generally considered as nuisance, even in conditions where
they are numerous. However, they have recently been shown to bring useful
information in endoscopy, with as main assumptions that the light source is
to some extent an isotropic point collocated with the camera centre, leading
to the following results [1]: in the endoscopic setting, 1) specularities are near-
elliptical blobs and 2) the surface normal can be reconstructed from the ellipse
coefficients. The ability to reconstruct surface normals from a single image is
a potential boost for learning-based depth inference, which suffers high uncer-
tainty in specularities, and multi-image 3D reconstruction methods such as
Structure-from-Motion. The state of the art lacks an effective method to fully
exploit the information contained in specularities. The main reason is the lack
of a reliable method to detect elliptical specularities. The problem involves
four main challenges: C1) the local intensity strongly varies; C2) the overlap
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of neighbouring blobs; C3) the small size of many blobs, which make ellipse
fitting unstable; C4) the unwanted blobs off the tissues, for instance on the
interventional instruments. We propose a method which addresses these chal-
lenges by leveraging deep learning to reach a global understanding of the image
and ellipse fitting to achieve high accuracy. Experimental results show that our
method produces stable normal estimates in a fully automatic manner from a
single endoscopic image.

2 Methods

2.1 Pipeline

Our method follows the pipeline of figure 1, which combines a neural network
and handcrafted steps, taking the best of both. The neural network finds rel-
evant blobs but has limited precision whilst the handcrafted steps, exploiting
the elliptical prior, bring high precision.
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Fig. 1: Proposed pipeline for specularity detection and normal reconstruction,
combining deep learning with handcrafted steps exploiting the elliptical prior.

2.2 Neural Network

We achieve Step 1) with a fully convolutional network to produce an initial
neural mask M which specifically finds specular pixels on the colon tissue,
dealing with challenges C1) and C4). Our network has 18 layers with ReLU
activation. We created a dataset of 2240 images extracted from 13 colonoscopy
procedures from the Endomapper dataset, which we manually annotated using
adaptive thresholding. We split the dataset in 2000 training, 200 validation
and 40 test images. We used data augmentation using standard image trans-
formations, namely horizontal and vertical flipping and realistic brightness
adjustment within range [−0.3, 0.3]. We trained with Adam for 20 epochs with
a batch size of 32, a learning rate of 0.001 and a binary cross-entropy loss func-
tion. We obtain a Dice score of 80.05% with standard deviation 23.06% on the
test set.
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2.3 Handcrafted Steps

The three handcrafted Steps 2) to 5) start from the neural mask M and recon-
struct the normals. Step 2) blob labelling. The blobs are isolated, dealing with
challenge C2), by giving a unique id to the connected components in M , with
background pixels labelled as 0. We only keep those components whose area
lies between 7× 10−4 and 3× 10−3% of the image area. For our 1248× 1080
images, the range is [10, 40] px2. This was found empirically to discard overly
small blobs (unstable ellipses) and large blobs (breaking the local planarity
assumption or consisting of overlapping specularities). Step 3) contour detec-
tion and smoothing. The isophote contours are extracted and smoothed. We
use marching squares to detect the zero level set for the labelled blobs, leading
to a set of closed contours. We fit a smoothing cubic B-spline, which reduces
the effect of noise, and resample the countours with 1000 points. Step 4) ellipse
fitting. We use [2], dealing with challenge C3). Step 5) normal reconstruction.
We use [3], which takes the ellipse coefficients as input.

3 Experimental Results

Simulated data. We modified the synthetic image renderer of [1] to use a
sphere instead of a plane, hence creating curvature. We use the same param-
eters but increase the roughness parameter to n = 120 for a better trade-off
between specularity size and surface curvature. The average angular error on
the estimated normals over 300 trials is shown in figure 2. First, we observe
that the normal error remains in a reasonable range lower than 14 degrees.
Second, we observe that the larger the sphere radius R, the smaller the normal
error. This was expected as a larger radius flattens the surface, hence con-
forms it to the planar hypothesis made in normal reconstruction. Note that
we took care of keeping the distance from the camera to the brightest point
of the specularity unchanged. Third, we observe that the large the camera tilt
θ with respect to the sphere’s normal at the brightest point of the specular-
ity, the larger the error. This was expected because a larger tilt creates more
perspective, carrying the effects of curvature more strongly.

Fig. 2: Synthetic data. (left) Example image. (right) Normal errors.
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Real data, segmentation evaluation. We selected 5 representative colono-
scopic images from the Endomapper dataset, with various viewing conditions
and the presence of interventional tools. We segmented the images with ITK-
SNAP, creating 1252 specular blobs, which we ensured are isolated and in the
range of size leading to stable normal reconstruction. We used this carefully
labelled dataset to evaluate performance and perform an ablation study. First,
we ran our pipeline without the neural network, replaced intensity threshold-
ing, obtaining a mean Dice of 43%. Second, we ran our pipeline without the
handcrafted steps, directly using the neural mask as final result, obtaining a
mean Dice of 66%. Finally, we ran our full pipeline, obtaining a mean Dice of
84%. This shows that 1) both the learning-based and the handcrafted steps
contribute and 2) the complete pipeline segmentation is complete and accurate.

Real data, reconstructed normals comparison. We compared the nor-
mals reconstructed by our method to the external depth reconstruction
method [4]. This allowed us to perform a test on real colonoscopic images in
challenging conditions, where ground truth is not available. Concretely, we
used the 7 images and depthmaps showcased in [4], from which we extracted
normal maps. Our method reconstructed 67 normals and we obtained an
average angular discrepancy of 12.11◦ with standard deviation 9.86◦. This dis-
crepancy indicates a satisfying agreement between the two methods. The low
image resolution of 256 × 256 required by [4] explains the lower number of
normals detected by our method and possibly the angular discrepancy.

4 Conclusion

We have proposed a method that combines learning-based and handcrafted
steps to achieve elliptical specularity detection, from which robust and accurate
normal reconstruction follows. We plan to combine our method with Structure-
from-Motion and run advanced tests in colonoscopic navigation.
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