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Abstract

Training neural networks with noisy labels presents a
challenge due to inherent errors in label annotations. Con-
currently, selectively predicting outputs from neural net-
works involves identifying confidently predicted results.
These challenges are particularly important in the medi-
cal domain, as they often occur jointly. Existing techniques
address either the training of models with noisy labels or
the task of selective prediction in isolation, often neglecting
their intrinsic interdependence. We establish a relationship
between these challenges and propose a novel framework
called Unsupervised Confidence Approximation (UCA) to
address them simultaneously. UCA facilitates the concur-
rent training of neural networks for a main task such as im-
age segmentation and classification while also predicting
confidence levels. This is all done while accommodating
datasets containing noisy labels. Remarkably, UCA oper-
ates autonomously, eliminating the need for labelled con-
fidence information and qualifying as an unsupervised so-
lution. Furthermore, UCA is versatile, integrating with di-
verse network architectures. Our evaluation of UCA’s effi-
cacy covers the general CIFAR-10N dataset as well as the
medical image datasets CheXpert and Gleason-2019. In
our experiments, incorporating UCA into existing networks
enhances performance in both aspects of noisy label train-
ing and selective prediction. Moreover, networks equipped
with UCA demonstrate comparable performance to state-
of-the-art methods for noisy label training when operating
in the conventional full coverage mode. By design, these
UCA-equipped networks incorporate a risk-management
mechanism, as evidenced by flawless risk-coverage curves.
Additionally, UCA-equipped networks outperform existing
selective prediction techniques, leading to substantial per-
formance improvements and reinforcing its utility and im-
pact within the context of trustworthy medical deep learn-
ing.

1. Introduction

Deep learning has been very successful in many do-
mains. Effectively training a deep neural network (DNN)
generally requires a large amount of carefully labelled data.
Medical image datasets, like any real-world dataset, may
include noise in the labels. Noisy labels arise when the an-
notators give a wrong label to the image, either as a random
mistake or owing to the ambiguity of the image, leading to
inconclusiveness of the annotation task. The rate of label
noise can be substantial when the annotators are non-expert
humans, automated systems or when the diagnostic uncer-
tainty is intrinsically high, see figure 1. While recklessly
training a DNN with noisy labels severely degrades perfor-
mance, specific robust training methods exist [4, 14, 25].
Aside, potential errors are inherent and inevitable in the out-
puts of any given DNN. To manage the risk caused by these
errors, a selective predictor abstains from making predic-
tions when it detects high uncertainty in the DNN predic-
tions. A reliable uncertainty or confidence measure is at
the core of selective prediction methods [6]. We claim that
the engineering of clinical and healthcare systems would
strongly benefit the concurrent features of 1) training from
noisy labels and 2) making selective prediction. Both fea-
tures are well-known but have not been realised concur-
rently. We show that they are interdependent and solvable
in an integrated framework.

We propose Unsupervised Confidence Approximation
(UCA), a method to train a DNN for its main task and for
confidence prediction, from noisy datasets without confi-
dence labels. UCA gives, for the first time, concurrent so-
lutions for the two mentioned features. It is a major contri-
bution as existing methods solve one of these two problems
but fail when they are concurrent. UCA adds a confidence
prediction head to the main DNN, whose role is to approx-
imate the confidence for the main task. It is generic, in the
sense that it can be used with any neural architecture. The
proposed UCA loss makes it possible to train the main net-
work and the UCA head concurrently. It does not require
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Figure 1. Test samples from the Gleason-2019 dataset [20] for cancer grading. PSPNet152 [22] trained from the STAPLE consensus
is to date the best performing method (Gleason-2019 challenge). PSPNet152-UCA-PW is PSPNet152 with the proposed UCA trained
from STAPLE (very similar results are obtained when trained from the multi-expert annotations). First row: test case with multi-expert
agreement, PSPNet152 and PSPNet152-UCA-PW give similar results, PSPNet152-UCA-PW has high confidence. Second row: test
case with strong multi-expert disagreement, PSPNet152 and PSPNet152-UCA-PW give similar results, however PSPNet152-UCA-PW
indicates low confidence. Third row: test case with mild multi-expert disagreement, PSPNet152 fails to predict the STAPLE consensus,
while PSPNet152-UCA-PW does succeed and also indicates low confidence in the disagreement area.

the confidence labels and is thus unsupervised in this re-
spect. We show experimental results on the CIFAR-10N,
CheXpert and Gleason-2019 datasets, where UCA shows
a strong performance gain over existing selective prediction
methods and is on par with the state-of-the-art in noisy label
training when used in full coverage mode.

2. Related Work

We review related work in training with noisy labels and
predictive uncertainty estimation. There is no concurrent
solution to these two problems.

Training with noisy labels has been a research focus in ma-
chine learning for a decade, see the surveys [4, 14, 25].
The first approach weights the contribution of samples to
the loss. A straightforward method is the confidence-scored
instance-dependent noise (CSIDN) weight, which however
requires the confidence labels [2]. The weights can also
be found during training by constrained optimisation [15].
The second approach iteratively selects samples that are
likely to be noise-free [11, 33, 17, 30, 3]. These methods
use two networks selecting the clean data samples for each
other to mitigate the confirmation bias [26]. The third ap-
proach uses a noise-resistant loss. The mean absolute error
(MAE) was shown to be more robust to noise than cross-
entropy (CE) [8]. A generalised cross-entropy (GCE) loss

was proposed that combines the advantages of MAE and
CE [34]. A loss exploiting class switching probabilities was
used [12, 21, 9]. However, the probabilities are assumed
class-dependent and feature-independent, which is not real-
istic in many cases. The fourth approach uses early training
stopping, assuming that the clean data have more impact in
the early training steps whilst the noisy samples start cor-
rupting in the later training steps [1].

Predictive uncertainty estimation has recently gained an in-
creased interest, see the survey [6]. The first approach
uses the ultimate softmax value of a DNN to predict con-
fidence. A DNN is deemed calibrated when this predic-
tion is valid. A straightforward method is to directly train a
calibrated DNN, which however requires the confidence la-
bels [23]. Calibration can also be done by post-processing
from a clean validation dataset [10]. The mixup method
regularises the DNN to favour a simple linear behaviour
across the training examples, resulting in an improved cali-
bration [27]. The second approach uses a stochastic model.
The parameters of Bayesian DNNs are explicitly modelled
as random variables, leading to stochastic predictions, from
which the confidence can be estimated. Bayesian infer-
ence in DNNs is however intractable. This was addressed
by Deep Ensembles [16, 18, 24] and Monte Carlo Dropout
(MC-Dropout) [5]. Both techniques are highly resource-



intensive and require several forward passes.

3. Method

We predict confidence as a measure of prediction uncer-
tainty [19]. We first describe the ‘global UCA’, which im-
plements a per sample confidence.

3.1. Noisy Labels and Confidence Score Approxi-
mation

We formulate the problem of learning with noisy la-
bels following [32]. Let D be the distribution of the
noise-free samples, modelled as a pair of random variables
(X,Y ) ∈ X × Y , where X ⊆ Rd is the input space and
Y = {1, 2, . . . , C} is the target set. In contrast, the samples
of a noisy dataset (X, Ȳ ) ∈ X×Y are drawn from the noisy
distribution D̄. A relationship between the two distributions
is given by the clean probability of the sample (x, ȳ):

r(x, ȳ) = P (Y = ȳ | Ȳ = ȳ, X = x). (1)

We assume the label noise is structered, image-dependent
and label-independent [28, 35], which holds very well for
human annotations [31]. It means the label noise statis-
tics are highly correlated to the visual features, hence im-
ages with similar features have similar noise statistics. Con-
cretely, the human-annotated label noise is due in large part
to the image being ambiguous, low quality, inconclusive or
confusing, and in small part to random mistakes. The clean
probability (1) thus becomes independent of ȳ; we propose
to model it by a DNN r̄(x;ϕ) ≈ P (Y = Ȳ |X = xi) with
parameters ϕ. Assuming an effective training of r̄(x;ϕ), it
provides the average clean probability distribution. As the
reliability of the DNN’s output for the main task is compro-
mised in regions where training samples have a low clean
probability, we can consider r̄(x;ϕ) as an approximation
for the confidence score.

3.2. Unsupervised Confidence Approximation Loss

We model the DNN for the main task as y = f(x; θ) with
parameters θ. We denote the loss for the main task and the
i-th training sample as L(xi, ȳi; θ) ≥ 0, for i = 1, . . . , N .
For per-sample weights {wi}, the DNN parameters θ∗ are
classically found by solving:

θ∗ = argmin
θ

N∑
i=1

wi L(xi, ȳi; θ). (2)

We propose to use wi = α r̄(xi;ϕ) as sample weights so
as to downweight the samples prone to noise. Considering
that:

N∑
i=1

r̄(xi;ϕ) ≈ NEX r̄(xi;ϕ)

= N
∑
i

P (Y = Ȳ |X = xi)P (X = xi)

= NP (Y = Ȳ ),

(3)

and normalising the weights to
∑N

i=1 wi = 1, we have:

α =
1∑N

i=1 r̄(xi;ϕ)
≈ 1

NP (Y = Ȳ )
=

1

NA
, (4)

where A is the total labelling accuracy of the training data,
considered as a hyperparameter if not known a priori. A
naive approach is then to train θ, ϕ by solving:

θ∗, ϕ∗ = argmin
θ,ϕ

N∑
i=1

r̄(xi;ϕ)

NA
L(xi, ȳi; θ). (5)

This has trivial spurious solutions, such as weighting all
samples with zero except one. We thus add a regularisation
term D(w, u) penalising divergence of the discrete weight
distribution w, with wi =

1
NA r̄(xi;ϕ), to a prior weight dis-

tribution u. We use the non-informative uniform distribu-
tion ui =

1
N by default; any other distribution constructed

for instance from inter-expert variability may be used in-
stead. We arrive at the proposed UCA loss for training in
the presence of noisy data with hyperparameter β > 0 as:

θ∗, ϕ∗ = argmin
θ,ϕ

N∑
i=1

r̄(xi;ϕ)L(xi, ȳi; θ) + βD(w, u)

subject to: r̄(x;ϕ) > 0,

N∑
i=1

r̄(xi; θ) = NA

(6)

The UCA loss is the core of our approach: it allows one
to train f(x; θ) and r̄(x;ϕ) end-to-end without needing con-
fidence labels while handling noisy data.

3.3. Unsupervised Confidence Approximation Ar-
chitecture

We name the DNN r̄(x;ϕ) as UCA head, as it learns
the instance-based confidence without requiring its label.
The UCA head is connected to the features of the main net-
work f(x; θ), as shown in figure 2. We present two ver-
sions of the UCA head. The global UCA head implements
the method as described thus far, with a per-sample weight
r̄(x;ϕ). It has a global averaging layer and K fully con-
nected hidden layers with ReLU activation. We use a sig-
moid as last activation, enforcing r̄(x;ϕ) > 0. We use a
special batch normalisation layer in the output, enforcing∑

i r̄(xi; θ) = NA in each training batch. The pixelwise
UCA head is described in section 3.5.
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Figure 2. Unsupervised Confidence Approximation (UCA) architecture.

3.4. Confidence-selective Prediction

Following the concept of selective classifiers [7], we de-
fine the confidence-selective predictor f̃ as a pair of func-
tions (f, r) where f : X → Y is the prediction function
and r : X → [0, 1] is the confidence function. Defin-
ing t ∈ [0, 1] as the minimum acceptable confidence, the
confidence-selective predictor is:

f̃(x) =

{
f(x), r(x) ≥ t
reject otherwise. (7)

Concretely, r(x) is obtained by UCA, softmax confidence
or any other confidence measure. By varying t, one controls
the coverage and consequently the risk. Coverage is the
probability mass of the non-rejected region in X and risk is
the expected value of l(f(x), y) on the same region, where
l : Y ×Y → R is a given evaluation loss function. For clas-
sification, we use the classification error and for segmen-
tation, we use Jaccard dissimilarity. A risk-coverage (RC)
curve is a plot of prediction risk and coverage for a varying
t. The RC curve can be used to choose a balancing point
with acceptable trade-off between risk and coverage. We
use area under RC curve (AURC) as a performance metric
of selective predictors.

3.5. Pixelwise UCA

The above described UCA, which we name global UCA,
estimates a single confidence per sample. This is very re-
stricted for complex images and pixelwise tasks such as
segmentation, for which one may be interested in access-
ing the local confidence of the DNN prediction, as shown in
figure 1. We propose an extension named pixelwise UCA,
which predicts a per-pixel confidence map r̄q(xi;ϕ) per
sample, where q ∈ I is the pixel coordinates within the
set of image pixel coordinates I. We write the training loss
as Lq(xi, ȳi; θ) for training sample xi at pixel q. Defining
the number of pixels as M = card(I), we set the weights
as wi,q = 1

MNA r̄q(xi;ϕ) and the uniform prior distribution

as ui,q = 1
MN . We arrive at the proposed pixelwise UCA

loss as:

θ∗, ϕ∗ = argmin
θ,ϕ

N∑
i=1

∑
q∈I

r̄q(xi;ϕ)Lq(xi, ȳi; θ) + β D(w,u)

subject to: r̄q(x;ϕ) > 0,

N∑
i=1

∑
q∈I

r̄q(xi; θ)

(8)

The confidence is modelled by the pixelwise UCA head
shown in figure 2, which is similar to the global UCA head
without the global averaging layer and with convolutional
hidden layers instead of fully connected ones. Pixelwise
UCA allows pixelwise selective prediction. Concretely, the
selective predictor can reject the predicted class for low con-
fidence pixels. The Jaccard index is then computed on the
selected pixel set Ic = {q ∈ I | r̄q(x;ϕ) ≥ t}.

4. Experimental Results
4.1. Evaluation metrics

We use standard metrics. We evaluate the ability to cope
with noisy labels using the Full Coverage Accuracy (FC-
Acc), Full Coverage Area Under Curve (FC-AUC) and Full
Coverage Jaccard index (FC-Jac), for classification and seg-
mentation respectively. Full Coverage metrics are com-
puted averaging over the complete test dataset. We eval-
uate selective prediction using the RC curve and AURC.
An effective method must both cope with noisy labels and
perform well in selective prediction.

4.2. Image Classification on CIFAR-10N

We use CIFAR-10N [31]. This dataset uses the same im-
ages as CIFAR-10 but the training dataset labels are substi-
tuted by human-annotated noisy labels. The test dataset la-
bels are kept unchanged. We use ResNet34 trained with CE
as baseline, named ResNet34-CE. We connect the global
UCA head with K = 1 and 128 neurons to the output of
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Table 1. FC-Acc and AURC for image classification on CIFAR-
10N.

Method FC-Acc↑ AURC↓
MC-Dropout [5] 82.92% 4.43%
Divide-Mix [17] 89.64% 4.87%
Co-Teaching+ [33] 89.83% 1.75%
ResNet34-CE (Baseline) 86.79% 3.76%
ResNet34-UCA (ours) 89.64% 2.01%
PES (semi) [1] 95.12% 1.60%
PES-UCA (ours) 94.62% 0.96%

layer 4. We train using equation (6) and CE as main task
loss, with fixed hyperparameters A = 0.5 and β = 5 form-
ing method ResNet34-UCA. We also combined PES [1] and
UCA, forming method PES-UCA. We trained in three steps:
the main network using PES, then the UCA head and finally
the complete DNN, both using equation (6). We compare
UCA-equipped DNNs with existing methods, all trained on
the Random1 subset of CIFAR-10N, whose noise rate is
17.23%. The results are in table 1 and figure 3. Comparing
FC-Acc values between ResNet34-CE and ResNet34-UCA
shows that UCA successfully downweights the impact of
noisy samples. The performance of ResNet34-UCA is sub-
stantially better than ResNet34-CE and on par with PES [1],
Co-Teaching+ [33] and Divide-Mix [17], which are solid
methods in noisy label training. We also observe that MC-
Dropout [5], representing uncertainty quantification meth-
ods, does not cope with noisy labels. The RC curves and
AURCs show that ResNet34-CE performs poorly, but that
ResNet34-UCA brings a significant boost. While PES has
a satisfactory AURC, its RC curve is mostly flat, making
it nearly impossible to trade off coverage for gaining ac-
curacy. In contrast, PES-UCA shows the best RC perfor-

mance. The AURC is considerably decreased compared
to PES and the RC curve gives better control on the risk-
coverage trade-off.

In figure 4, we present a visual analysis of the classi-
fication outcomes achieved by the ResNet34-UCA model
on the CIFAR-10N dataset. The visualised samples are se-
lected from the lowest 10% and highest 10% of estimated
confidences. We observe that UCA assigns higher confi-
dences to the unambiguous and clear samples and they are
mostly classified correctly; in contrast, the ambiguous and
unclear samples are classified with high error but they are
assigned with lower confidences. Thus, a selective classifier
can sensibly reject the uncertain cases where the input data
is not sufficient to make a decision.

In addition to the aforementioned investigation, we con-
ducted a series of additional experiments on the CIFAR-
10N dataset. These experiments were geared towards un-
derstanding the impact of various factors, including alter-
ations in hyperparameters, changes in layer architecture,
modifications in training loss functions, and the use of inter-
expert variability as a prior distribution of sample weights.
The influence of these factors on the performance of UCA-
equipped networks were examined.

In table 2, we evaluated the AURC metric for a
ResNet34-UCA network trained on CIFAR-10N with dif-
ferent values of the hyperparameters A and β. The sensitiv-
ity of the UCA model to these hyperparameters is notably
low. Consequently, there is not a strong necessity for careful
hyperparameter tuning.

Table 2. Comparison of AURC for different hyperparameters A
and β for training ResNet34-UCA on the Random1 subset of
CIFAR-10N.

A
β

0.5 1 2.5 5 10

0.5 3.59% 2.97% 2.25% 1.98% 2.14%
0.65 4.17% 2.51% 2.15% 2.35% 2.12%
0.8 3.53% 2.65% 2.27% 2.42% 2.22%

The architecture of the UCA head offers flexibility in
terms of the number of hidden layers and the number of
neurons in each layer. In table 3, we present an assessment
of various UCA head architectures during the training of
ResNet34-UCA on the CIFAR-10N dataset. Our evaluation
highlights a notable trend favouring simpler network struc-
tures characterised by fewer learnable parameters.

Table 4 illustrates the comparative analysis of the
ResNet34-UCA model’s performance on the Random1 sub-
set of CIFAR-10N dataset using two distinct loss functions:
negative log likelihood (NLL) and cross entropy (CE). The
performance of the model showcases minimal sensitivity to
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Figure 4. Test samples from the CIFAR-10N dataset. The correct classification and misclassification are shown with green and red borders
respectively for ResNet34-UCA. The samples in the left column are selected from the lowest 10% of estimated confidences and the ones
on the right are selected from the top 10%.

the choice of loss function.
In order to investigate the impact of selecting different

sample uncertainty priors on the training of the ResNet34-
UCA and PES-UCA networks, we conducted an investiga-
tion as illustrated in table 5. We introduced a novel sample
uncertainty prior termed as the ‘inter-expert prior’, which is
based on the inter-expert variability observed in the CIFAR-
10N dataset. This inter-expert prior was used to assign un-
certainty priors, p1, p2, and p3, to training samples based
on the presence of zero, one, or two affirmative labels from
other annotation sets, respectively. The values of these un-
certainty priors were determined empirically as 0.35, 0.5,
and 0.55. Notably, the integration of the inter-expert prior
led to enhancements in network performance. However, it
is worth noting that the observed performance improvement
was not significant enough to systematically justify multiple
expert annotations.

4.3. Image Classification on CheXpert

In order to further expand our assessments of UCA
equipped networks, a series of experiments were conducted
using the CheXpert dataset [13]. CheXpert is a huge dataset

Table 3. Comparison of AURC against UCA architecture, specif-
ically, the number of hidden layers and the number of neurons in
each layer.

Neurons in hidden layers AURC
[64] 2.27%
[128] 1.98%
[512] 2.13%
[512, 128] 2.21%
[128, 64] 3.97%
[512, 128, 64] 2.16%

Table 4. Performance comparison of ResNet34-UCA trained with
different loss functions.

FC-Acc AURC
ResNet34-UCA (CE loss) 90.49% 1.98%
ResNet34-UCA (NLL loss) 89.93% 2.25%

of chest X-ray images along with associated textual reports
generated by radiologists. CheXpert is notable for its large



Table 5. Influence of sample uncertainty prior on ResNet34-UCA
and PES-UCA training.

FC-Acc AURC
ResNet34-UCA (uniform prior) 90.49% 1.98%
ResNet34-UCA (inter-expert prior) 90.35% 1.67%
PES-UCA (uniform prior) 94.73% 0.90%
PES-UCA (inter-expert prior) 94.93% 0.81%

Table 6. FC-mAcc, FC-mAUC and AURC for image classification
on CheXpert.

Method β FC-mAcc↑ FC-mAUC↑ AURC↓
SB [13] - 87.00% 90.67% 6.27%
SB+UCA 0.1 87.60% 90.77% 5.58%
SB+UCA 0.5 87.92% 91.05% 5.41%
SB+UCA 1 86.83% 90.93% 5.79%
SB+UCA 5 86.52% 90.54% 5.81%

scale, over 200,000 chest X-rays from more than 65,000 pa-
tients, and its unique feature of handling uncertainty in ra-
diology reports which makes it an ideal candidate for eval-
uating the efficacy of our proposed methodology. In es-
tablishing a foundation for our experiments, we adopt the
baseline network proposed in [13] named Stanford baseline
(SB). We extend SB by adding the proposed UCA exten-
sion which we call SB+UCA. We compare the performance
of the baseline network with and without UCA extension in
table 5 and figure 6.

As the CheXpert dataset is labelled for the presence of
14 common chest radiographic observations which might be
concurrent, SB is configured as multiple binary classifiers,
each one for detecting one of the diagnoses. Thus we eval-
uate the performance of the network by averaging the accu-
racy and AUC metrics over all the binary classifiers. In full
coverage mode, we call them FC-mACC and FC-mAUC re-
spectively. Both metrics are improved when the UCA ex-
tension is added to the baseline network, which shows the
efficacy of the UCA method in dealing with noisy labels.
The Area Under Risk-Coverage Curve (AURC) was also
evaluated, which shows a significant improvement when
UCA is added to SB, which confirms the capability of the
proposed method to control the risk-coverage trade-off. The
same trend is also seen in the RC curves shown in figure 5.

4.4. Image Segmentation on Gleason-2019

We used Gleason-2019 [20], figure 1. The dataset is
tissue micro-array (TMA) images with multiple segmen-
tation masks by up to six expert pathologists. Because of
the large degree of heterogeneity in the cellular and glan-

Figure 5. RC curves on CheXpert.

dular patterns associated with each Gleason grade, there
is a significant inter-expert variability. We use PSPNet152
and UNet trained with CE as baselines, named PSPNet152-
CE and UNet-CE. We connect the global UCA head with
K = 2 hidden layers with 512 and 128 neurons to the last
layer of PSPNet152 and to the last layer of the contract-
ing path of UNet. We trained with STAPLE consensus [29]
using equation (6) and CE as main task loss forming meth-
ods PSPNet152-UCA and UNet-UCA. We also connect the
pixelwise UCA head to PSPNet152 with K = 2 convo-
lutional layers with 512 and 128 filters and trained using
equation (8) with STAPLE consensus and with the multi-
expert annotations, forming methods PSPNet152-UCA-PW
and PSPNet152-UCA-PW* respectively. We use the same
hyperparameters A = 0.75 and β = 12 in all cases. The
noisy label training methods evaluated above [17, 33, 1] are
not applicable to segmentation. The results are in table 7
and figure 6. UNet-UCA has a similar FC-Jac as the original
UNet but decreases AURC by more than 3pp. PSPNet152,
as winner of the Gleason-2019 challenge [22], represents
the state of the art for this dataset. PSPNet152-UCA boosts
the FC-Jac and AURC by more than 5pp and 6pp respec-
tively. UCA thus brings a significant boost to both base-
lines. PSPNet152-UCA-PW and PSPNet152-UCA-PW*
have remarkably better AURCs with an FC-Jac on par with
the global one. PSPNet152-UCA-PW* has the benefit of
being self-sufficient and to not dependent on STAPLE.

In the pursuit of determining the influence of hyperpa-
rameters on the training process of PSPNet152-UCA, we
conducted an experiment to analyse the performance with
respect to different hyperparameters, denoted as A and β,
as shown in table 8. This evaluation was run in parallel
with the experiment carried out on CIFAR10-N and reveals
that the model’s sensitivity to hyperparameter variations re-
mains consistently low across different tasks and datasets.



0 20 40 60 80 100

Coverage

0

5

10

15

20

25

30

35

40

45

50

R
is
k

PSPNet152-UCA
PSPNet152-CE
UNet-UCA
UNet-CE
PSPNet152-UCA-PW

PSPNet152-UCA-PW*

Figure 6. RC curves on Gleason-2019.

Table 7. FC-Jac and AURC for image segmentation on Gleason-
2019.

Method FC-Acc↑ AURC↓
UNet-CE 64.48% 27.79%
UNet-UCA (ours) 64.02% 24.11%
PSPNet152-CE 69.47% 23.74%
PSPNet152-UCA (ours) 71.65% 17.77%
PSPNet152-UCA-PW (ours) 68.56% 13.32%
PSPNet152-UCA-PW* (ours) 68.74% 12.74%

Table 8. AURC comparison for various hyperparameters A and β
in PSPNet152-UCA training on Gleason-2019.

A
β

8 12 16

0.5 17.88% 18.41% 21.20%
0.75 22.35% 17.77% 20.78%
1.0 25.43% 21.12% 19.14%

5. Conclusion

We have proposed UCA, the first method to handle train-
ing from noisy labels and confidence selective prediction
simultaneously. UCA is generic: it does not require addi-
tional labels (specifically, confidence labels) and adapts to
any existing neural architecture for various tasks, making
it an adapted solution in the medical context. It shows a
strong performance gain over existing selective prediction
methods and is on par with the state-of-the-art in noisy la-
bel training when used in full coverage mode. Future work
will test UCA in highly subjective medical image comput-
ing problems.
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