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Abstract

Tracking the 3D shape of a deforming object using only monocular 2D vision is a challenging problem. This is
because one should (i) infer the 3D shape from a 2D image, which is a severely underconstrained problem, and (ii)
implement the whole solution pipeline in real time. The pipeline typically requires feature detection and matching,
mismatch filtering, 3D shape inference and feature tracking algorithms. We propose ROBUSfT, a conventional pipeline
based on a template containing the object’s rest shape, texture map and deformation law. ROBUSfT is ready-to-use,
wide-baseline, capable of handling large deformations, fast up to 30 fps, free of training, and robust against partial
occlusions and discontinuities. It outperforms the state-of-the-art methods in challenging video datasets. ROBUSfT is
implemented as a publicly available C + + library. We provide the code, a tutorial on how to use it, and a supplementary
video of our experiments at https://github.com/mrshetab/ROBUSfT.
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1. Introduction

Problem and challenges. Tracking the 3D shape of
a deforming object has important applications in aug-
mented reality [1, 2], computer-assisted surgery [3–7] and
robotics [8–10]. However, the existing methods are im-
practical. This is because of the following challenges:
(C1) real-time implementability and (C2) robustness.
Challenge C1 occurs because the solution usually in-
volves a computationally demanding multi-step pipeline.
Challenge C2 occurs because of noises, occlusions, the
object being out of the sensor’s field of view, large de-
formations and fast motions. Furthermore, in numer-
ous applications of augmented reality, computer-assisted
surgery and robotics, a 2D camera is the de facto sensor
owing to its light weight, small size, and low cost [11].
The camera’s perspective projection introduces an addi-
tional challenge, (C3) recoverability of depth from a 2D
image. Challenge C3 becomes extremely strong for de-
forming objects.

Shape-from-Template. Different priors and constraints
have been proposed to resolve challenge C3. The most
common ones are the object’s 3D rest shape, texture map
and deformation law, and the camera’s calibration. These
are the base ingredients for a variety of methods. Among
these methods, we are specifically interested in Shape-
from-Template (SfT). SfT has been well studied for iso-
metrically deforming objects [12–14] and has been shown
to uniquely resolve the depth of each object point [15].
It uses a template formed by the abovementioned priors.
SfT’s input is a single image of the deformed object and
its output is the object’s 3D shape seen in the image. We
adopt a conventional SfT pipeline shown in Figure 1 to
solve the problem of tracking the 3D shape of deform-
ing objects. The pipeline involves keypoint extraction and
matching, mismatch filtering, warping, and 3D shape in-
ference steps. We successfully made it real-time and ro-
bust by seamlessly integrating both novel and state-of-the-
art algorithms. We next give an overview of the strengths
and weaknesses of existing SfT methods.
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Figure 1: Overview of ROBUSfT, the proposed SfT pipeline.

Existing SfT methods. SfT can be broken down into
two main parts: registration and 3D shape inference. Fol-
lowing this, we categorize existing SfT methods into two
groups: (G1) shape inference methods and (G2) inte-

grated methods. G1 methods only cover the 3D shape
inference part [10, 12, 13, 15–19]. In contrast, G2 meth-
ods cover both the registration and 3D shape inference
parts [6, 20–24]. We also review Deep Neural Network
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(DNN) based SfT methods, which have been recently in-
troduced, as the third group (G3). G3 methods cover both
the registration and 3D shape inference parts [25–29].
The majority of G1 methods are wide-baseline. However,
they barely run in real time. Furthermore, a complete so-
lution with registration would be even slower. The ma-
jority of G2 methods require an initialization close to the
solution. This makes them short-baseline. These methods
often fail against occlusions, fast motions and large de-
formations. Once they have failed, they need to be reini-
tialized. G3 methods are wide-baseline and run in real
time. However, they are object-specific. They require a
huge amount of training data and proper computational
resources for each new object. This makes it difficult to
consider them as general and ready-to-use solution meth-
ods. We therefore conclude that there does not exist an
SfT method that is complete, real-time, robust and easily
applicable to new objects.

Contributions. We list our contributions in four parts.

Contribution to SfT. We propose ROBUSfT, a complete
real-time robust SfT pipeline for monocular 3D shape
tracking of isometrically deforming thin-shell objects
with matchable appearance. With the proposed CPU-
GPU architecture, ROBUSfT can track up to 30 fps using
640×480 images on off-the-shelf hardware. It does not re-
quire initialization and implements tracking-by-detection.
It is wide-baseline and robust to occlusions, the object be-
ing out of the field of view, large deformations, and fast
motions. To use it with a new object, all it needs is a tem-
plate of that object. It, thus, does not require any training
or fine-tuning and is directly usable in many industrial ap-
plications and research studies. ROBUSfT outperforms the
state-of-the-art methods in challenging datasets.

Contribution to mismatch removal. We introduce
myNeighbor, a novel mismatch removal algorithm. This
novel algorithm handles deforming scenes and a large
percentage of mismatches. It is lightning fast, reaching
200 fps. It outperforms the existing mismatch removal
algorithms in terms of accuracy and execution speed.

Contribution to experimental validation. We design a
novel type of validation procedure, called Fake but Realis-
tic Experiment (FREX). With just one run, FREX produces

a large number of semi-synthetic scenes featuring an ob-
ject undergoing isometric deformation under various con-
ditions. The scenes come with 2D and 3D ground truth.
This allows easily testing, evaluating, training and validat-
ing new algorithms that deal with isometrically deforming
objects in tasks such as removing mismatches, registering
2D images and inferring 3D shapes. Unlike other arti-
ficially generated scenes of isometrically deforming ob-
jects, the images generated by FREX are the result of real
object deformations. FREX is very simple to set up. All
that is needed is a piece of paper with a set of Aruco mark-
ers printed on it.

Contribution to open-source. We release ROBUSfT

as an out-of-the-box tool, in the form of a C++
library with a comprehensive tutorial for public
use. The code, the tutorial, and a supplemen-
tary video of our experiments can be found at
https://github.com/mrshetab/ROBUSfT.

Paper structure. Section 2 reviews previous work. Sec-
tion 3 explains ROBUSfT. Section 4 presents FREX. Sec-
tion 5 describes myNeighbor, conducts a series of exper-
iments and evaluates the results of myNeighbor in com-
parison to previous work. Section 6 validates ROBUSfT
through FREX and real data experiments, and compares
the results with previous work. Finally, Section 7 con-
cludes and suggests future work.

2. Previous Work

We review the methods for monocular shape inference
of isometrically deforming objects, following the three
categories mentioned above, namely, (G1) shape infer-
ence methods, (G2) integrated methods, and (G3) DNN-
based SfT methods. For each category, we describe the
assumptions, main characteristics, and limitations. We fi-
nally compare ROBUSfT to these methods.

2.1. (G1) Shape inference methods

These methods cover the 3D shape inference part.
They assume that the registration between the template
and the image was previously computed. For instance,
they typically use keypoint matches between the template
and the image, with generic mismatch removal meth-
ods [17, 30, 30–32]. Very few methods in this category
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could form a complete SfT pipeline by adding an exist-
ing registration solution [2, 17]. Three general groups are
found in existing 3D shape inference methods: (i) meth-
ods using a convex relaxation of isometry called inexten-
sibility [12, 13, 18], (ii) methods using local differential
geometry [15–17], and (iii) methods minimizing a global
non-convex cost function [10, 18, 19]. The methods in
(iii) are the most precise ones; however, they are compu-
tationally expensive, and they require initialization. The
first two groups of methods are often used to provide an
initialization for the third group.

In the first group, Salzmann et al. [13] suggested a
closed-form solution to non-rigid 3D surface registration
by solving a set of quadratic equations accounting for
inextensibility. Later, they replaced equality constraints
with inequality constraints and thus sharp deformations
could be better recovered [12]. Brunet et al. [18] formu-
lated two shape inference methods based on point-wise
and continuous surface models as Second Order Cone
Programs (SOCP). In the second group, Bartoli et al. [15]
showed that in addition to keypoint 2D coordinates in the
image, their first-order differential structure can be used
to estimate the depth. Instead of calculating a warp glob-
ally, which is time-consuming, Famouri et al. [17] es-
timated the depth locally for each match pair with re-
spect to both local texture and neighboring matches. In
each frame, the most recognizable matches were selected
based on offline training. The execution speed of their
algorithm is claimed to be up to 14 fps only for the 3D
shape inference. In the third group, Brunet et al. [18] pro-
posed a refining isometric SfT method by reformulating
the isometric constraint and solving a non-convex opti-
mization problem. The method required a reasonably ac-
curate 3D shape of the deforming surface as the initializ-
ing guess. Özgür and Bartoli [19] developed Particle-SfT,
which handles isometric and non-isometric deformations.
A particle system is guided by deformation and repro-
jection constraints which are applied consecutively to the
particle mesh. Similarly to [18], this algorithm needs an
initial guess for the 3D position of the particles; however,
for [19], the sensitivity to this initial guess is very low.
The closer the guess to the true 3D shape, the faster the
convergence. Aranda et al. [10] improved this algorithm
in terms of execution speed and occlusion resistance and
used it in real-time shape servoing of isometrically de-
forming objects. They used the 3D shape estimated in one

frame as the initial guess for the next frame and thus im-
proved the convergence speed of the algorithm to a great
extent. They showed that their algorithm can track a pa-
per sheet covered with markers and being manipulated by
a robotic arm. To this end, they only needed to track a
handful of markers. Knowing the 3D coordinates of sev-
eral mesh points also has a significant effect on the con-
vergence speed of the algorithm. The last step of ROBUSfT
uses the same method to infer the 3D shape, as explained
in Section III.

2.2. (G2) Integrated methods
These methods handle registration and 3D shape infer-

ence at the same time. They minimize a non-convex cost
function in order to align the 3D inferred shape with im-
age features. These features can be local [21, 22] or de-
fined at the pixel-level [6, 23, 33].

Ostlund et al. [21] and later Ngo et al. [22] used the
Laplacian formulation to reduce the problem size by in-
troducing control points on the surface of the deforming
object. The process of removing mismatches was per-
formed iteratively during optimization by projecting the
3D estimated shape onto the image and disregarding the
correspondences with higher reprojection errors. Using
this procedure, they could reach up to 10 fps for 640×480
input images, restricting the maximum number of tem-
plate and image keypoints to 500 and 2000, respectively.

As for pixel-level alignment, Collins and Bartoli [23]
introduced a real-time SfT algorithm which could han-
dle large deformations and occlusions and reaches up to
21 fps. They combined extracted matches with physical
deformation priors to perform shape inference. Collins et
al. [6] later extended this algorithm and used it for track-
ing organs in laparoscopic videos. For achieving better
performance, they also exploited organ boundaries as a
tracking constraint. Recently, Kairanda et al. [33] have
introduced a novel approach that utilizes a physics-based
deformation model for reconstruction, simulating the ob-
ject behavior within a simulator. They use a differentiable
renderer to ensure that the reprojection of the object’s in-
ferred 3D shape precisely matches the observed images.

These methods are fast and can handle large deforma-
tion. Their main drawback, however, is that they are short-
baseline. In case of tracking failure, they should be re-
initialized precisely with a wide-baseline method. This
restricts their usage to video streams.
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Category Method Registration Real-time Wide-baseline
General

geometry

Needless of
training for
new objects

Public access
code

G1

Salzmann et al. [13] × NA ✓ ✓ ✓ ×

Brunet et al. [18] × × ✓ ✓ ✓ ✓
Bartoli et al. [15] × NA ✓ ✓ ✓ ✓

Ozgur et Bartoli [19] × × ✓ ✓ ✓ ×

Famouri et al. [17] × ✓ ✓ ✓ ✓ ✓
Aranda et al. [10] × ✓ ✓ ✓ ✓ ×

G2

Ostlund et al. [21] ✓ ✓ × ✓ ✓ ×

Ngo et al. [22] ✓ ✓ × ✓ ✓ ×

Collins and Bartoli [23] ✓ ✓ × ✓ ✓ ×

Collins et al. [6] ✓ ✓ × ✓ ✓ ×

G3

Pumarola et al. [25] ✓ × ✓ × × ×

Golyanik et al. [26] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [28] ✓ ✓ ✓ ✓ × ×

Shimada et al. [27] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [29] ✓ ✓ ✓ × ✓ ×

ROBUSfT ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of the existing SfT methods and ROBUSfT.

2.3. (G3) DNN-based methods
DNN-based SfT methods have been introduced in re-

cent years. This coincides with the general trend to use
deep learning to solve many computer vision problems.
These methods are wide-baseline, fast, and cover both the
registration and shape inference steps [25–29]. We clas-
sify these methods in two groups based on their type of
output, which may be sparse or dense. The methods of
the first group represent the SfT solution as the 3D coor-
dinates of a regular mesh with a predefined size [25–27].
The usage of these methods is limited to thin-shell objects
with rectangular shapes. The second group of methods
gives a pixel-level depth map as output [28, 29]. They also
apply a post-processing step based on the As-rigid-as-
possible (ARAP) model [34] to the resulting depth map.
This step recovers the whole object, including the oc-
cluded parts, as a mesh. The method in [28] reconstructs
the shape of the object with different geometries and tex-
ture maps that the network is trained for. In [29], the pro-
posed method can be applied to objects with new texture
maps previously unseen by the network. The geometry
of the objects is, nevertheless, limited to flat paper-like
shapes. All the aforementioned methods in this category
are object-specific. This means that they merely work for
the object that they were trained for. An exception is [29],

as it works for unseen texture maps but the applicability is
still limited to flat rectangular objects. Therefore, in order
to use a DNN-based method for a new object, the network
should be fine-tuned for it. This demands proper compu-
tational resources and potentially a huge amount of train-
ing data, which are challenging to collect for deformable
objects.

Lastly, apart from DNN-based SfT methods, there also
exist deep object-generic monocular reconstruction meth-
ods which work by estimating pixel-wise depth [35–39].
The DNNs in these methods are trained on a diverse range
of common objects, which eliminates the need for spe-
cific training for each new object. However, when deal-
ing with deformable objects, their efficiency is limited and
was shown to be subpar compared to SfT methods [28].

2.4. Positioning ROBUSfT compared to previous work
Existing methods all have one or several limitations, in-

cluding not covering the whole pipeline, not being wide-
baseline, being limited to a specific texture or geometry,
requiring fine-tuning for a new object, being slow, and
lacking public code access. This information is summa-
rized in Table 1. In contrast, ROBUSfT covers the whole
pipeline and runs fast. It can thus be used to develop ap-
plications requiring real-time 3D shape tracking. It can be
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instantly used for a new deformable object without train-
ing. Only a template containing information regarding
the object’s geometry, appearance and deformation law,
as well as the intrinsic parameters of the monocular cam-
era, are necessary. This is common to all existing and
future SfT methods, by definition. In the next section, we
describe ROBUSfT and all its steps.

3. ROBUSfT

3.1. Overview of the pipeline

The overview of our pipeline is presented in Figure 1.
The pipeline is divided into an offline section and an on-
line section. The offline section deals with the template.
The online section includes four main steps: keypoint ex-
traction and matching, mismatch removal, warp estima-
tion, and 3D shape inference. The images coming di-
rectly from the camera are used as the inputs for the first
step. In this step, the keypoints are extracted and matched
with the ones that were previously extracted from the tem-
plate’s texture map. Then, the mismatches are detected
and removed using our new mismatch removal algorithm
myNeighbor. The list of estimated correct matches is
then transferred to the next step where a warp is estimated
between the template’s texture map and the image. This
warp transfers the template’s registered mesh to the im-
age space, which is finally used as input for the 3D shape
inference algorithm. This process is repeated for each im-
age. Since each image is analyzed independently, repeat-
ing the process in a loop enables tracking-by-detection.

In the following, both the offline and online sections of
the pipeline are described in detail. Afterwards, an im-
plementation permitting a fast execution of the pipeline is
given.

3.2. Offline section: creating a template

We create a template for the surface of the deformable
object that we want to track. We call this surface the track-
ing surface. The template of the tracking surface consists
of the following elements:

• MT : the triangular mesh covering the tracking sur-
face at its rest shape.

• P: the texture map of the tracking surface.

• M: the alignment of MT to P.

The first step in creating the template is to generate the 3D
model of the tracking surface. The 3D model is merely
the textured 3D geometry of the tracking surface in real
dimensions in its rest shape. Once this 3D geometry is
generated, we form MT by triangulating it. The resolu-
tion of MT should be high enough to be well aligned to
the shape of the tracking surface. The next step is to take
an image from the 3D model of the tracking surface while
it is positioned perpendicular to the camera’s optical axis
in a simple texture-less background. In this image, P is
formed by the projection of the texture of the tracking sur-
face and M is formed by the projection of MT . For sim-
ple rectangular thin-shell objects like a piece of paper, the
whole process is straightforward. For other objects, in-
cluding thin-shell objects with arbitrary shape, such as a
shoe sole, and also volumetric objects, 3D reconstruction
software like Agisoft Photoscan [40] can be used.

Next, we extract keypoints on P. These keypoints will
be matched with the ones that will be extracted from the
input image in the online section. We use SIFT [41] for
extracting keypoints but any other feature descriptor could
be swapped in. As the final step, we initialize the pose of
MT in 3D space. This initial pose can be arbitrarily chosen
as it will be used only once in Step 4 of the online section
of the pipeline for the first input image. It will then be
replaced by the inferred 3D shape in the next images.

In order to use the ROBUSfT C++ library, first, an object
of the class ROBUSfT should be created. The whole pro-
cess of forming the template for this object is handled by
the member function build template(). This function
possesses parameters for creating templates for rectangu-
lar and non-rectangular thin-shell objects as well as the
tracking surface of volumetric objects. For thin-shell ob-
jects, the process of forming the template is automatic by
just receiving a handful of inputs from the user. For the
tracking surface of volumetric objects, however, MT , M,
and P should be prepared by the user and imported into
the library.

3.3. Online section: shape tracking

Step 1: keypoint extraction and matching. The first step
of the online section of the pipeline is to extract keypoints
in the input image I. To do so, we use the PopSift li-
brary [42], which is a GPU implementation of the SIFT
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algorithm. We then match these keypoints with the ones
that were previously extracted from P by comparing de-
scriptors, using winner-takes-all and Lowe’s ratio test. In-
evitably, a number of mismatches will be formed between
P and I. The mismatch points in I can be located on
the surface of the deforming object or even in the back-
ground. This is shown as red lines in the Matching step of
Figure 1. These mismatches will be eliminated in Step 2
thanks to myNeighborwhich can cope with a large rate of
mismatches. As a result, in this step, the images coming
from the camera can be used directly without pretrain-
ing on either the image, for segmenting the object from
the background, or the matches, for preselection of the
most reliable ones. In the library, the member function
extract keypoints GPU() handles the keypoint extrac-
tion in I. Then, the member function match() performs
matching.

Step 2: mismatch removal. To remove the possible
mismatches introduced in Step 1, a new mismatch re-
moval algorithm, myNeighbor, was developed. The main
principle used in this algorithm is the preservation of
the neighborhood structure of correct matches on a de-
forming object. In other words, if all of the matches
were correct, by deforming the object, the neighboring
matches of each match should be preserved. On the con-
trary, mismatches lead to differences in the neighboring
matches of each matched point in I in comparison to P.
This was used as a key indication to detect and remove
mismatches. The whole process of myNeighbor is ex-
plained in Section V. In the library, the member function
mismatch removal algorithm() handles the mismatch
removal process. The output is a list of estimated correct
matches.

Step 3: warp estimation. We use the estimated correct
matches to estimate a warp W between P and I. We then
use W to transfer M to I and form M̂. The mesh points
in M̂ will be used as sightline constraints in the 3D shape
inference algorithm in Step 4. The precision of warping
depends on the number of matches, their correctness, and
their distribution over P. Warp W can be estimated in the
most precise way if all the matches are correct between P
and I. However, due to the smoothing nature of the warp-
ing algorithms, the transferring process can cope with a
small percentage of mistakenly selected mismatches. It
should be noted that W cannot be extremely precise in ar-

Figure 2: Implementation of ROBUSfT distributed on the CPU and GPU.
A pure CPU implementation is also available.

eas without matches. As a result, in these areas, the shape
of M̂ might not be aligned well to the shape of the de-
forming object in I. This is worse when the matchless
area is located near the boundaries of P as the alignment
cannot be guided by the surrounding matches. Hence, in
order to use just well-aligned transferred mesh points of
M̂ as the input for the 3D shape inference step, an assess-
ment is performed over all of the mesh points and only the
qualified ones are passed to Step 4. For this, we check M
cell-by-cell. Only the mesh vertices for cells containing at
least one correct match will be qualified as salient mesh
points. The indices of these mesh points and their coor-
dinates in M̂ are passed to Step 4. The other mesh points
are disregarded.

Representing and estimating W can be done with
two well-known types of warp, the Thin-Plate Spline
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Figure 3: Flowchart of FREX, the proposed experimental protocol.

(TPS) [43] and the Bicubic B-Spline (BBS) warps [44],
which we both tested. The former is based on radial ba-
sis functions while the latter is formulated on the tensor
product. Having the same number of matches as input,
the TPS warp proved to be more precise than the BBS
warp; nevertheless, its execution time rises exponentially
with the number of matches. The execution time, how-
ever, remains almost constant for the BBS warp regardless
of the number of matches. Thus, considering the crite-
rion of fast execution of the code, the BBS warp was cho-
sen as the warp function in this step and also in the mis-
match removal step discussed in Section V. In the library,
the process of warp estimation is performed by the func-
tion warp() that calls two functions: BBS Function() and
BBS Evaluation(). The former estimates the warp W
while the latter uses W to transfer M and form M̂. The
process of selecting the salient mesh points is done by the
member function set sightlines().

Step 4: 3D shape inference. We use Particle-SfT [19]
with the improvements for tracking proposed in [10]. In
this algorithm, a particle system is defined from the points
and edges in MT . Then, the sightline and deformation

constraints are applied consecutively on the particles until
they converge to a stable 3D shape. As described in [10],
in order to increase the convergence speed of the algo-
rithm, the stable 3D shape for an image is used as initial
guess for the next image. It should be noted that Particle-
SfT can work even without a close initial guess. If the ob-
ject is invisible in one or several images, the last inferred
3D shape can be used as the initial guess for the upcom-
ing frame containing the object. This results in a slightly
longer computation time in that image. For the next up-
coming images the normal computation time is resumed.
This capability brings about two of the major advantages
of our pipeline, which are being wide-baseline and robust
to video discontinuities. In the library, the whole pro-
cess of shape inference is handled by the member function
shapeInference().

As mentioned in [10], one of the optional input data
that can significantly improve the convergence of Particle-
SfT is the existence of known 3D coordinates for one or
several particles. This is shown in Figure 1. The known
3D coordinates can be fixed in space or move on a certain
trajectory. The latter happens when the deforming object
is manipulated by tools with known poses in 3D space
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such as robotic end-effectors.

3.4. Implementation
In order to optimize the implementation of ROBUSfT, it

was coded in C++ in two parallel loops: one on the GPU,
and one on the CPU. The GPU loop handles keypoint ex-
traction in the images. These keypoints are transferred to
the CPU loop where the rest of the steps of the pipeline
are executed. A pure CPU implementation is also avail-
able. This is shown in Figure 2. Any arbitrary resolution
can be considered for the captured images; nevertheless,
we obtained the best performance by using 640× 480 im-
ages. The code runs on a Dell laptop with an Intel Core i7
2.60 GHz CPU and a Quadro T1000 GPU.

4. Fake but Realistic Experiment (FREX)

We introduce FREX, a novel experimental protocol,
which we used for evaluating myNeighbor and ROBUSfT
in comparison to existing methods. A single execution
of this protocol provides a large collection of scenes of
an isometrically deforming object in various conditions,
with known 2D and 3D ground truth. This collection
can be used to evaluate, compare, train, and validate new
algorithms regarding isometrically deforming objects for
tasks such as mismatch removal, 2D image registration,
and isometric 3D shape inference. In contrast to other ar-
tificially generated scenes of an isometrically deforming
surface, the generated images in our protocol are the re-
sult of real object deformations. Since it generates succes-
sive images with continuous deformation, FREX can also
be used for algorithms which exploit feature and shape
tracking. In addition, object occlusion and invisibility can
be easily simulated, by dropping frames or overlaying an
occluder.

The protocol flowchart is shown in Figure 3. First, we
form the Aruco template by randomly distributing a set
of Aruco markers all over a blank image. We then print
the Aruco template on a standard A4 paper. These mark-
ers should be big enough to be recognizable by the user’s
camera at the desired distance. In order to improve recog-
nition, there should be white space between the markers
on the paper. In our experiments, we used 100 markers
with a width of 1.4 cm each. The OpenCV library was
used to identify the markers. These markers were rec-
ognizable by a 720p RGB camera from an approximate

distance of 0.6 m. The next step is to deform the printed
Aruco template in front of the camera. In each frame, the
2D and 3D coordinates of the markers’ centers are esti-
mated. Because each marker has its own unique ID, they
can be used as correspondences between the Aruco tem-
plate and each image of the video. We exploit the 2D
coordinates of these recognized correspondences to esti-
mate a warp with which we can transfer an arbitrary tex-
ture map to the video image space. This is done firstly
by resizing the arbitrary texture to the size of the Aruco
template. In order to keep the aspect ratio of the arbi-
trary texture map, white margins can also be added before
resizing. Then, an inverse warping process with bilinear
interpolation is used to transfer the pixel color informa-
tion from the arbitrary texture map to the corresponding
pixels in the video images. The whole procedure results
in a scene with the arbitrary texture map being deformed
exactly on top of the Aruco template. It is also possible to
add further modifications; for instance, one can transfer
the arbitrary texture map to another scene with any differ-
ent background. Besides, as in [45], artificial lighting can
also be added to form different variations of the scene.

For evaluating algorithms, one can use the 2D and 3D
ground truth estimated in each frame of the video. Re-
garding the 2D ground truth, the estimated warp can be
used to identify the 2D corresponding point of each pixel
of the arbitrary texture map in the image. As for the 3D
ground truth, one can exploit the 3D estimated coordi-
nates of the Aruco markers in each frame, which can be
obtained using the OpenCV library.

5. myNeighbor

We describe myNeighbor, our novel mismatch removal
algorithm. It works based on two main principles:

• Given a sample set of correct matches between an
image of a textured surface and another image of that
surface undergoing a deformation, one can estimate
a sufficiently accurate transfer function between the
images such that the correctness of all the matches
can be judged. Consequently, there is no need to re-
move all the mismatches.

• This sample set of correct matches can be extracted
from the images considering that the neighborhood
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structure among the points on a deforming surface is
preserved.

We show that by using these two principles, the mis-
matches can be detected and removed in a fast and effi-
cient way. The proposed algorithm is illustrated in Fig-
ure 4. It consists of three steps. First, a set of matches,
which is highly probable to include only correct matches,
is selected. This selection is done by forming two trian-
gulations using match points, one in P and one in I, and
then choosing matches with high similarity in the list of
their neighbors. Second, a small percentage of possible
mismatches among the selected matches is identified and
removed. This is done by transferring the selected match
points from P to I and then removing those with large
distances from their correspondences in I. Third, all the
match points are transferred fromP toI using a warp esti-
mated based on the clean set of selected matches from the
second step. The distance between the transferred tem-
plate match points and their correspondences in I is used
as the criterion to distinguish estimated mismatches from
estimated correct matches.

In order to analyze the performance of myNeighbor
and calibrate the parameters in the different steps, we used
synthetic data experiments. In the following section, we
describe the design of these experiments. Afterwards, we
describe in detail the different steps of myNeighbor.

5.1. Empirical parameter calibration

These experiments are conducted by synthetically
forming two images of a mesh MT and a series of matches
between the two images. The first image shows MT in its
flat rest shape with all its keypoints on it. We call this
image IF . In IF , the keypoints can be considered as the
extracted keypoints from P, and the 2D mesh is equiva-
lent to M. The second image simulates I and shows MT

having undergone a random 3D deformation. We call this
deformed mesh MG. The keypoints in this image can be
positioned in their correct locations on the mesh (correct
matches) or be displaced in the image area (mismatches).

We consider MT as a regular triangular mesh with 10×6
points in 3D space. In order to deform MT , we use the
same method as in [10]. Concretely, we apply two 3D de-
formations containing random translations and rotations
to two mesh cells at both sides of MT . The deformation is
calculated in an iterative process based on position-based

Figure 4: Flowchart of myNeighbor.
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Figure 5: Two sample results of the steps for empirical parameter calibration. The first row is an experiment with 100 matches and a mismatch
percentage of 30%. The second row is an experiment with 1000 matches and a mismatch percentage of 30%. The first and second columns represent
IF and I with correct matches in green and mismatches in red. The third column is the result of Step I. The wrongly chosen mismatches are shown
in red. The fourth column is the result of Step II. The mismatches along with a small percentage of correct matches are removed. The fifth column
is the separation of the estimated correct matches and the estimated mismatches from Step III. The transferred meshes M̂1, M̂2, and M̂3 are shown
in orange, yellow, and cyan for the three steps.

dynamics [46, 47]. As for generating keypoints, we first
randomly place keypoints in the inner area of M in IF .
In order to create the matches between IF and I, we then
transfer the keypoints from IF to I using a three-step pro-
cess: calculating barycentric coordinates of the keypoints
in M, transferring the keypoints to the 3D deformed mesh
using the barycentric coordinates and the new 3D mesh
points of the deformed MT , and eventually projecting the
transferred keypoints on I. To generate mismatches, an
arbitrary percentage of the transferred keypoints is cor-
rupted by randomly distributing the keypoints all over the
area of I. Two samples of the generated images for 100
and 1000 matches each with 30% mismatches are shown
in the two first columns of Figure 5.

5.2. Methodology
The algorithm myNeighbor is applied on Nm matches

denoted as Cp ↔ Cq between P and I, with:

Cp = {p1, ..., pNm }, pi = (xi, yi) (1)

Cq = {q1, ..., qNm }, qi = (ui, vi) (2)

A pair (pi, qi) of points with the same index forms a match
pi ↔ qi. We define the set of correct matches S in as the
collection of matches pi ↔ qi where pi and qi point to
the same location on the deforming surface in P and I.
On the contrary, when the pointing locations of the match
points are different, they are categorized as mismatches
S out. The goal of myNeighbor is to form and remove the
subsets Op ⊂ Cp and Oq ⊂ Cq which have the largest pos-
sible number of matches belonging to S out and smallest
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Figure 6: Histogram of MF values for three sample synthetic data exper-
iments with 1000 matches and 30%, 60% and 90% of correct matches.

possible number of matches belonging to S in. We explain
the steps of our algorithm to fulfill this goal.

5.2.1. Step I – Neighbor-based correct match selection
We select subsets Cps ⊂ Cp and Cqs ⊂ Cq which are

highly probable to form correct matches. We start by
defining WG as the ground-truth warp between P and I
that can transfer all the match points Cp from P to their
correct locations in I. With this definition, we have the

set of correct matches S in as:

S in = {(pi, qi) | i ∈ R}, (3)

where:
R = {i | ∥WG(pi) − qi∥ < ϵ}, (4)

where ϵ is a small positive number. Warp WG is an
unknown composition of an isometric deformation map-
ping and a perspective projection mapping. The isomet-
ric deformation mapping preserves the geodesic distances
among the points and their topological structure on the ob-
ject’s surface. However, with the addition of the perspec-
tive projection mapping, only the topological structure of
the points remains preserved in the visible areas. This
implies that by applying WG, the neighborhood structure
among the points on the object in P and I should be pre-
served. We exploit this characteristic of WG to estimate
R̂ as the set of indices of highly probably correct matches
Cps ↔ Cqs . To do so, first, we form two Delaunay triangu-
lations, Tp = D(Cp) in P, and Tq = D(Cq) in I. Then, for
each match i, we calculate two sets of first-order neigh-
bors Qp(i) and Qq(i) in P and I, respectively. We then
define the Mismatch Factor (MF) criterion for match i as:

MF(i) =
|Qp(i) ∪ Qq(i) − Qp(i) ∩ Qq(i)|

|Qp(i) ∪ Qq(i)|
× 100 (5)

For each match, MF measures the difference in the neigh-
bor points between P and I as a percentage. Ideally, we
expect that for all the matches MF = 0, which implies
that there is no difference in the neighbors of each match
during a deformation. However, in practice, there are two
reasons which rather put MF values in a range from 0 to
100: the presence of mismatches and variations in trian-
gulation. The presence of mismatches can affect the value
of MF in two ways. First, when the match point i in I is a
mismatch and thus located in a wrong location. And sec-
ond, when the match point i in I is a correct match but
one, several, or all of its neighbors are mismatches. Both
of these cases result in different neighbors in I in compar-
ison toP. As for the two triangulations, it should be noted
that even in the absence of mismatches, the neighborhood
structures in Tp and Tq do not necessarily coincide. This
is because of surface deformation, change in viewpoint,
and occlusions.

Calculating MF for all the matches, we can have a fair
estimation regarding the state of the matches. A lower
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Figure 7: Results of applying the first two steps of the algorithm myNeighbor in synthetic data experiments in three different scenarios: Dense (1000
matches), Moderate (200 matches), and Sparse (50 matches). Each curve is the average result of 1000 trials. The first row gives ns and AoS from
Step I for two different values of MFT H . The second row gives the results of Step II in comparison to the results of Step I with MFth = mean(MF).

value of MF(i) indicates that the match i is surrounded
by similar matches in P and I and has a higher proba-
bility of being placed in its correct location and thus be-
ing a correct match. On the contrary, a higher value of
MF(i) can stem from the wrong location of the match i in
comparison to its neighbors, which strengthens the possi-
bility of it being a mismatch. The basic idea in this step
is to form Cps ↔ Cqs by selecting pairs of highly prob-
ably correct matches ps ↔ qs. This is done by choos-
ing the matches with lower values of MF. We examined
the validity of this reasoning by evaluating three different
synthetic data experiments, each with 1000 matches and
different rates of correct matches (30%, 60%, and 90%).
Figure 6 shows the histogram of MF for each case. We
observe that the dispersion of MF spans a wider range
as the value of the correct match rate grows. For higher
numbers of correct matches, there are more similarities in
the neighbor lists of each match and, consequently, MF

decreases. Furthermore, regardless of the values of the
correct match rate, the majority of the mismatches are ac-
cumulated in the top bins of the graphs, which correspond
to higher values of MF. This is shown in more detail for
the case with the correct match percentage of 30% by ex-
panding the last two bins of the graph in Figure 6.a. This
validates our prior reasoning that by selecting the matches
with MF below a certain threshold MFth, we can have a
set of matches that is highly probable to include the cor-
rect matches. To quantify the appropriateness of this se-
lection, we define two criteria, based on the following two
quantities. The first quantity is ns, which is the percentage
of the selected matches compared to the total number of
matches:

ns =
|Cs|

Nm
× 100, (6)

where Cs = {(pi, qi) | i ∈ R̂} is the set of selected matches.
The second quantity is AoS , which is the Accuracy of Se-
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lection, defined as:

AoS =
|Cs ∩ S in|

|Cs|
× 100. (7)

Our goal is to choose the value of MFth so that both of
these quantities are as high as possible, which means se-
lecting a high percentage of matches with high accuracy.
However, practically, these two criteria work in reverse.
By choosing a higher value for MFth, more matches are
selected (higher ns) but with less accuracy (lower AoS )
and vice versa. In order to choose the proper value for
MFth, we analyzed the behavior of these two criteria for
a series of synthetic data experiments. We consider three
scenarios for these experiments based on the number of
matches, i.e. Dense, Moderate, and Sparse with in turn
1000, 200, and 50 total number of matches. The exper-
iments were done in a wide range of correct match per-
centages (10% to 100%) for each scenario. Two differ-
ent values of the criterion MFth were studied: mean and
0.9 × mean, where mean is the mean of all MF values in
each experiment. The results are presented in Figures 7.a
and 7.b. Each point in the graph is the average result of
1000 trials. The first point that should be noted here is
that, generally, the proposed match selection method in
this step is more reliable as the number of total matches
grows. This can be deduced by comparing the higher val-
ues of AoS in the Dense case with the ones in the Moder-
ate and Sparse cases. As for choosing MFth, it should be
noted that setting MFth = 0.9 × mean leads to higher val-
ues of AoS in comparison to the case with MFth = mean.
Nevertheless, as shown in Figure 7.a, this sacrifices a high
percentage of matches by reducing ns significantly, which
is undesirable. Hence, in this step, we choose mean as the
value of MFth and form R̂ as the set of indices of prob-
ably correct matches. While this choice implies a higher
number of selected mismatches (lower AoS ), we note that
these mismatches can be removed in Step II.

As the final operation in this step, we estimate the
warp W1 between P and I using the selected matches
Cps ↔ Cqs . We then exploit this warp to transfer M to
I. We call this new mesh M̂1. As can be seen in the
third column of Figure 5, the mesh M̂1 (shown in orange)
may not be totally faithful to the deformation of MG in I,
which is due to the inaccuracies in the calculation of the
warp W1. This stems from two main reasons: the exis-
tence of mismatches in the selection (shown as red dots),

and the insufficient number of correct matches in some
areas. In the next step, we exploit the transferred mesh
M̂1 to remove the possible remaining mismatches from
the selected matches.

5.2.2. Step II – Removing mismatches from the list of se-
lected matches

This step removes the possible mismatches from the se-
lected matches Cps ↔ Cqs . We first form the set Cq̂s by
transferring Cps to I. This is done by finding the barycen-
tric coordinates of each selected match psi ∈ Cps with re-
spect to M and applying them on the transferred 2D mesh
M̂1 from Step I. We then use the following decision crite-
rion to identify and remove possible mismatches one by
one from the selected matches Cps ↔ Cqs :∣∣∣∣d2(i) −median

(
{d2( j)}

)∣∣∣∣ ⩾ 2.5 MAD, (8)

where d2(i) = ∥q̂si − qsi∥ with i ∈ R̂. MAD (Median of
Absolute Deviations from Median) is calculated as:

MAD = k median
({∣∣∣∣d2(i) −median

(
{d2( j)}

)∣∣∣∣}), (9)

where k = 1.4826 is a constant number. The values of
d2 are relatively larger for mismatches in comparison to
correct matches. This stems from two reasons. The first
reason is the small percentage of mismatches compared to
the great majority of correct matches coming from Step I
and thus the smaller influence of mismatches in the esti-
mation of warp W1. The second reason is the inconsistent
location of mismatches in P and I. The decision criterion
in equation (8) is chosen due to the distribution type of d2,
with the presence of just a small percentage of large val-
ues among the majority of small values. Figure 7.c and d
illustrate the result of this step. As can be seen, unlike the
previous strategy of choosing a smaller MFth, this method
results in improvement of AoS without losing a consider-
able percentage of selected matches. This can be clearly
observed by comparing ns in Figures 7.a and c.

As the last operation in this step, warp W2 is calculated
using the purified selected matches Cps ↔ Cqs . This warp
is then used to transfer M to the image space and form M̂2.
The result of removing possible mismatches in this step
along with the transferred mesh M̂2 is shown in the fourth
column of Figure 5. As can be observed, in comparison
to M̂1, M̂2 has a better compliance to MG.
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Figure 8: ROC curves resulting from the algorithm myNeighbor in synthetic data experiments in three scenarios: Dense (1000 matches), Moderate
(200 matches), and Sparse (50 matches). Each point is the average result of 1000 trials calculated with a specific value of d3th .

5.2.3. Step III – Extracting mismatches from the list of all
the matches

We exploit the transferred mesh M̂2 to extract the mis-
matches Op ↔ Oq from the total matches Cp ↔ Cq. The
process is similar to Step II except that this time all of the
matches are checked. We first transfer the template match
points Cp to the image space and form the set Cq̂. This
is done by calculating barycentric coordinates of all the
match points Cp with respect to M and applying them on
the new transferred mesh M̂2. We define the following
decision criterion to detect and remove mismatches:

d3(i) =
(
∥q̂i − qi∥ ⩾ d3th

)
(10)

Unlike Step II where we used the MAD criterion to re-
move just a small rate of mismatches, this time we use a
constant threshold d3th . This is due to the higher percent-
age of mismatches compared to Step II. In order to make
this distinction method more robust, we consider d3th as
the multiplication of a sample length ls and a constant co-
efficient αs. The sample length ls is a measure of the size
of the object in the image in pixels, and is calculated as
the average distance between all the mesh points in the
transferred mesh M̂2. To choose a proper value for the
constant coefficient αs, synthetic data experiments with
the same three scenarios as before (Dense, Moderate, and
Sparse) and four different correct match rates were per-
formed. The results are presented as ROC (Receiver Op-
erating Characteristic) curves in Figure 8.a-c. Each point
represents the average TPR (True Positive Rate) versus
the average FPR (False Positive Rate) computed in 1000
trials using a specific value of αs in the range [0, 1]. TPR
is calculated as the number of selected true mismatches

over the number of all true mismatches, and FPR is cal-
culated as the number of true correct matches mistakenly
selected as mismatches over the number of all true cor-
rect matches. Ideally, all the mismatches should be dis-
carded (with a TPR of 100%) without discarding any cor-
rect matches (with an FPR of 0%). Hence, the most favor-
able αs in a single ROC curve is the one that results in the
maximum possible TPR leaving the FPR below a reason-
able value. We choose αs = 0.15 which keeps TPR above
90% while FPR remains below 10% for most of the cases.
The last column of Figure 5 illustrates the estimated cor-
rect matches (in green) and the estimated mismatches (in
red) for each case. We also use the estimated correct
matches to estimate warp W3 and transfer M to I and
form M̂3 (shown in cyan). As can be seen, there is a high
compliance between M̂3 and MG. It should be noted that
estimating W3 and M̂3 is not necessary in myNeighbor
and we merely estimate them to visually present the ef-
fectiveness of the algorithm in removing the mismatches.
However, considering myNeighbor as a step in ROBUSfT,
due to the fact that the final estimated correct matches are
passed from this step to Step 3 (warping) of ROBUSfT, W3
and M̂3 can also represent W and M̂ in the warping step,
respectively.

5.3. Mismatch removal results

We study the efficiency of myNeighbor by evaluat-
ing its performance through various tests. We first com-
pare the results of the algorithm with the existing ones
by testing them through FREX. The experiment includes
60 frames of continuous deformation of the Aruco tem-
plate in front of the camera. Five datasets were gen-
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Figure 9: Performance evaluation of our mismatch removal method myNeighbor in comparison to the existing methods (Tran et al. [32], Pizarro
et al. [30], Famouri et al. [17]) using the FREX protocol. The first row shows the Aruco template and three selected images (14, 47, 60) of the
deformation of the printed Aruco template. The following rows show five datasets of generated scenes with the texture map in the first column,
three generated images corresponding to the first row in the next columns, and the ROC curves of the mismatch removal algorithms in the last
column. For each of the images M̂3 from myNeighbor is overlaid.

erated in this experiment, each with an arbitrary texture
with a challenging pattern. Three different types of back-
grounds were also considered for these five cases; specif-
ically, two original backgrounds, two white backgrounds,
and a background with a pattern similar to one of the
texture maps. We apply all the mismatch removal algo-
rithms on all datasets. For each dataset, the correspond-
ing arbitrary texture was used as the texture map for the

mismatch removal algorithms. The matches between the
texture map and each image of the dataset are extracted
using SIFT. The results are presented in Figure 9. The
first row illustrates the Aruco template and also three se-
lected original images of its deformation in front of the
camera. The lower rows represent the five datasets gen-
erated by FREX. Each row shows the arbitrary texture of
the dataset in the first column, the three selected gener-
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Figure 10: Applying myNeighbor on four real cases: a cushion, a Spiderman poster, a shoe sole, and an elastic shirt. The first column shows the
texture maps. The second column shows Step I. All the matches are shown in this column while the selected matches in Step I are shown in green.
These selected matches are transferred to column three that shows Step II. In this column, those matches which are chosen as possible mismatches
are shown in red. The last column is the distinction between the estimated correct matches (in green) and the estimated mismatches (in red) in Step
III. The meshes M̂1, M̂2, and M̂3 are overlaid to illustrate the computed warps.

ated images, and eventually the resulting ROC curves for
all the mismatch removal algorithms on the dataset. In the
ROC curves, for a certain algorithm and a certain dataset,
each point is the average value of TPR and FPR over all 60
images of that dataset using a specific value for the thresh-
old used in the algorithm. As can be seen, in all cases, our

algorithm outperforms the other algorithms. In order to
show the performance of our algorithm visually, for each
dataset, we overlaid M̂3 for the three selected frames. As
can be observed, the transferred meshes are visually well-
aligned to the 2D deformed shape of the object. In some
cases, a small number of irregularities can be observed in
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Method Average run-time (s)

myNeighbor 0.0139
Tran et al. [32] 0.0206

Pizarro et al. [30] 1.8925
Famouri et al. [17] 0.0171

Table 2: Comparison of the average run-time of the mismatch removal
algorithms for processing all the images of all the datasets.

certain areas (for example in the Matrix poster). This is
because of the presence of a small number of mismatches
in our list of estimated correct matches and the lack of
matches in those areas. As for comparing the execution
speed of different mismatch removal algorithms, the pro-
cessing run-times for all the frames of all datasets were
averaged and tabulated in Table 2. This comparison shows
that our algorithm is faster than the others. It should be
however noted that our algorithm is implemented in C++
while the others are in Matlab.

After validating the efficiency of myNeighbor in com-
parison to the existing algorithms, we evaluate its perfor-
mance in real cases. To this end, we applied our algorithm
to four real deforming objects, shown in Figure 10. We
chose these cases in such a way that each one is challeng-
ing in a special way. The cases include a cushion with
non-smooth surface and severe deformation, a Spiderman
poster deformed in a scene with background covered with
very similar posters, a shoe sole with an almost repetitive
texture, and a shirt with elastic deformation. The texture
maps are shown in the first column of Figure 10. The sec-
ond to fourth columns show the results of Step I to Step
III of myNeighbor. In each step, the alignment of the
corresponding transferred mesh to the 2D shape of the de-
forming object indicates the correctness and abundance of
the estimated correct matches. Like in the synthetic data
experiments, this alignment improves progressively in the
steps of our algorithm. Importantly, the shirt (the last case
in Figure 10) is elastic. We exert a non-isometric defor-
mation on it by pulling from both sides, and myNeighbor
still works. This is due to the fact that we did not make
any assumptions regarding isometry. In fact, the only as-
sumption that we made is the preservation of the neigh-
borhood structure in the deforming object. As a result,
myNeighbor also works with non-isometric deformations
which preserve just the neighborhood structure.

Figure 11: Results of applying ROBUSfT to experiments performed with
FREX in three different scenarios: Dense (1000 matches), Moderate (200
matches), and Sparse (50 matches). Each curve represents the average
result of all 60 frames of FREX with 20 trials for each frame. The solid
lines indicate the use of myNeighbor to estimate correct matches, while
the dotted and dashed lines represent the use of a non-optimal version of
myNeighbor and the ground-truth correct matches, respectively.

6. Experimental Results

We evaluate the performance of ROBUSfT on different
deforming objects in various conditions. We divide this
section into three main parts: first, analyzing the robust-
ness of ROBUSfT using FREX, then comparing the results
with the state-of-the-art methods and finally evaluating
ROBUSfT in several other challenging cases.

6.1. Robustness analysis

We analyze the robustness of ROBUSfT through several
experiments using FREX. For these experiments, we uti-
lize 60 images of the deforming Aruco marker paper sheet
from Section 5.3. The experiments are designed with
three different scenarios based on the number of matches,
namely Dense, Moderate, and Sparse, with 1000, 200, and
50 matches, respectively. The richness of the object’s tex-
ture, the level of occlusion, the lighting conditions, the
choice of keypoint detection and matching algorithm, and
the sensor noise can affect the number and correctness
of matches in different parts of the image. Therefore, in
each frame, we use a random selection of matches with a
varying correct match rate, ranging from 10% to 100%.
ROBUSfT is then applied to these matches to infer the
3D shape of the 8 × 8 Aruco template mesh. The Root
Mean Squared Error (RMSE) in millimeters between the
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Figure 12: Comparing the accuracy of the 3D shape inference methods with Particle-SfT using three datasets obtained by FREX. The 3D shape
inference methods are Brunet et al. [18], Chhatkuli et al. [48], Bartoli et al. [15], Ostlund et al. [21], and Salzmann et al. [20].

inferred shape and the ground-truth deformed 3D mesh
is calculated. Each experiment is repeated 20 times, and
we report the average error of all frames and trials as the
final error. The results are shown in Figure 11 as solid
lines. Our findings demonstrate that ROBUSfT exhibits
outstanding performance in all scenarios, with a 3D er-
ror lower than 10 mm with only 30%, 40% and 60% of
correct matches, in the Dense, Moderate and Sparse sce-
narios respectively. This remarkable robustness can be at-
tributed to the efficiency of myNeighbor in handling large
percentages of mismatches.

Additionally, we compare these results with two other
series of experiments. (i) Experiments using a non-
optimal version of myNeighbor (indicated by dotted
lines). In these experiments, we change the value of
αs from an optimal value of 0.15 to a non-optimal
value of 0.8 (see Section 5.2.3). This adjustment causes
myNeighbor to detect and remove a lower number of mis-

matches. As can be observed, this has a pronounced neg-
ative impact on the performance of ROBUSfT. (ii) Ideal-
ized experiments where all correct matches are accurately
identified (indicated by dashed lines). In these experi-
ments, we directly use the ground-truth correct matches.
In fact, these experiments represent the usage of an
ideal mismatch removal algorithm. Figure 11 effectively
demonstrates the significance of our novel mismatch re-
moval algorithm, myNeighbor, in enhancing the accuracy
of ROBUSfT. Comparing the outcomes of ROBUSfT with
the idealized experiments highlights that ROBUSfT attains
its optimal performance when the percentage of correct
matches surpasses certain thresholds for each scenario.
Specifically, these thresholds are 50%, 60%, and 80% for
the Dense, Moderate, and Sparse scenarios, respectively.
These threshold values are both reasonable and applicable
in real-world situations.
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Figure 13: Comparison between the results of applying ROBUSfT and
the integrated methods, i.e. Famouri et al. [17] and Ngo et al [22] on
the public dataset provided in [45]. (a) Average 3D error between the
inferred shape and the ground truth. (b) Execution time in milliseconds.

Figure 14: Comparison between the depth map from ROBUSfT

and the deep object-generic monocular reconstruction methods,
i.e. DenseDepth [35] and BTS [36], on one frame of the dataset pro-
vided in [45]. To make a fair comparison, the depth RMSE is calculated
using the pixels from the segmentation mask. This segmentation mask
is estimated in the registration step of ROBUSfT.

6.2. Comparison to existing methods

We compare ROBUSfT with existing methods through
two different tests. The first test is conducted among the
shape inference methods (G1). The second test is car-
ried out among the integrated methods (G2) and the DNN-
based methods (G3).

Comparison to G1 methods. We use FREX to conduct this
test. To this end, the same 60 images of a deforming
Aruco marker paper sheet are used. We create three differ-
ent datasets using three arbitrary texture maps and apply
a white background to all the scenes. The arbitrary tex-
ture maps include a painting, the Joker poster, and a paper
sheet filled with basic geometric shapes. These images are
shown in Figure 12. In each dataset, we compare the re-
sult of the last two steps of ROBUSfT (warp estimation and
3D shape inference) with five other shape inference meth-
ods from Brunet et al. [18], Chhatkuli et al. [48], Bartoli
et al. [15], Ostlund et al. [21], and Salzmann et al. [20]. A
similar comparison was made in [19] on another dataset.
However, in [19], a random 3D shape was used as the ini-
tial guess for the Particle-SfT algorithm in each image of
the video; in contrast, we use the 3D inferred shape of
the object in each image as the initial guess for the next
image. In each dataset, the matches between P and each
image are extracted using SIFT. We then separate the cor-
rect matches and use them as the input for all the methods.
If required by a shape inference method, a BBS warp is
estimated based on these correct matches and used as the
input to that shape inference method. The results for all
three datasets are presented in Figure 12 as the average
3D error between the 3D inferred shapes and the ground
truth. As can be observed, Particle-SfT provides the low-
est value of 3D error in comparison to the other methods.
This is more apparent in the datasets with lower numbers
of matches. In the last dataset, there are several disconti-
nuities in the 3D error graph of existing methods. This is
due to the failure of shape inference in those images of the
video by those methods. Particle-SfT, however, success-
fully infers the 3D shape of the object in all of the images
with a reasonable error.

Comparison to G2 and G3 methods. For the second test,
we ran ROBUSfT on the public dataset provided in [45].
The dataset includes the 2D correspondences as well as
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3D Kinect data of 193 consecutive images of a deform-
ing paper. The paper is planar and no occlusion appears
in the series of images. We compared our results with
the integrated and DNN-based methods. This is shown in
Figures 13 and 14, and Table 3. The integrated methods
include Famouri et al. [17] and Ngo et al. [22]. We use
the results of these methods on all the dataset frames pro-
vided in [17]. As can be observed in Figure 13, ROBUSfT
is more precise in most of the frames. It is also faster than
the compared methods. It should be noted that ROBUSfT
uses images directly as input and covered the whole pro-
cess from extracting keypoints to 3D shape inference. In
contrast, the two integrated methods use the already avail-
able correspondences in the dataset. Next, we compare
ROBUSfT with two deep object-generic monocular recon-
struction methods, i.e. DenseDepth [35] and BTS [36].
The importance of these methods is that, similarly to
ROBUSfT, they do not need to be trained for a new object.
For both methods, we use the model pre-trained with the
NYUDepth dataset [49], which is a collection of RGB-D
images from indoor scenes with various common objects.
We compare the resulting depth maps from ROBUSfT and
these two methods. This comparison is shown for one
frame of our test dataset in Figure 14. To make a fair
comparison, the depth error is computed only for the ob-
ject’s surface and not the whole scene. This is done by
considering the pixels from the segmentation mask which
is estimated in the registration step of ROBUSfT. As can be
observed, the deep object-generic monocular reconstruc-
tion methods are unable to predict the depth of the object.
This is also discussed in [28], where it was shown that
these methods require fine-tuning to be able to estimate
the deformation of specific objects. Another issue with
these methods is the lack of registration. In other words,
these methods only provide the depth map and not the
shape of the object in 3D space. Consequently, an addi-
tional registration method should be used to register the
object to the depth map so that the 3D shape of the ob-
ject can be estimated. Our last comparison is with the
DNN-based SfT methods. In contrast to the deep object-
generic monocular reconstruction methods, DNN-based
SfT methods are trained for specific objects using syn-
thetic and real datasets and are capable of handling both
registration and reconstruction. The compared methods
include HDM-Net [26], IsMo-GAN [27], DeepSfT [28],
and RRNet [29]. The comparison is shown in Table 3.

Method Average error (mm) Average execution time (ms)

ROBUSfT 3.56 50
HDM-Net [26] 17.92 40
IsMo-GAN[27] 15.91 96
DeepSfT[28] 6.97 49
RRNet[29] 8.63 16

Table 3: Comparison between the average 3D error from applying
ROBUSfT and the DNN-based SfT methods, i.e. HDM-Net [26], IsMo-
GAN [27], DeepSfT [28], and RRNet [29], on 50 frames of the public
dataset provided in [45].

We compare the average errors of applying these meth-
ods on 50 frames of the dataset [45] presented in [29]
to the average error of applying ROBUSfT on the same
frames. As can be seen, ROBUSfT is more precise than
the DNN-based SfT methods. Importantly, as explained
in [29], the DNN-based SfT methods are specifically
trained on this dataset. ROBUSfT, however, does not need
any prior training. In terms of execution speed, several
of the DNN-based SfT methods are faster than ROBUSfT.
We, however, note that in this test, we use a serial CPU-
GPU architecture instead of a parallel one. This is done
to make sure that the captured image that we analyze and
the ground truth that we compare to are for the same im-
age. This consequently reduces the execution speed of
our code compared to the parallel architecture. In con-
clusion, considering generalizability, efficiency, and ex-
ecution speed, ROBUSfT achieves better performance in
comparison to existing methods.

6.3. Evaluation of ROBUSfT

Evaluation on daily objects. We first evaluate the effi-
ciency of ROBUSfT in three real cases. These cases are
shown in Figure 15. The tested objects are a Spiderman
poster, a chopping mat, and a T-shirt. In each case, the
object is deformed in front of a 3D camera with which
we capture both an RGB image and the depth of each
point on the object. We use the measured depth as ground
truth for evaluating the reconstructed 3D shape. We use
the Intel RealSense D435 depth camera and built-in li-
braries for aligning the depth map to the RGB image. For
each case, four images of the experiment are shown in
Figure 15. In the first case, we set the resolution of the
camera to 640×480. In the second and third cases, we in-
creased it to 1280 × 720 due to the insufficient number of
detected keypoints using the previous resolution. Below
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Figure 15: Evaluating ROBUSfT in three real data experiments: a Spiderman poster, a chopping mat, and a T-shirt. The texture maps of the templates
are shown in the first column. For each case, four images are shown. Below each frame, the reconstructed 3D shape of the deforming object with
the estimated 3D coordinates of the estimated correct matches (red particles) as well as their ground truth (green particles) are shown. The 2D
projections of the 3D inferred shapes are also overlaid on the image. For each image, the median Euclidean distance between the estimated 3D
coordinates of the estimated correct matches and their ground truth is given below the reconstructed shape.

each image, the reconstructed 3D shape of the deforming
object along with the 3D coordinates of the estimated cor-
rect matches (red particles) as well as their ground truth
(green particles) are shown. The 3D coordinates of the es-
timated correct matches are estimated by calculating their

barycentric coordinates in P with respect to M and apply-
ing these coordinates on the 3D reconstructed mesh of the
object. The number written below each frame is the me-
dian distance between the reconstructed 3D coordinates of
the estimated correct matches and their ground truth. The
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Figure 16: Evaluating ROBUSfT in a real data experiment with two
robotic arms; soft constraints are applied to bind the constrained mesh
points to the grippers. Each row shows three images: the original camera
view, the projection of the 3D reconstructed mesh on the camera view,
and the 3D reconstructed mesh with the robots in the RViz environment.

median is chosen due to the probable existence of mis-
matches among the list of estimated correct matches. In
3D space, the ground truth of these mismatches can be lo-
cated in the background and not on the object itself. This
significantly increases the 3D shape error. Using the me-
dian gives a better estimate of the 3D shape error consid-
ering the existence of this small percentage of mismatches
with large 3D errors.

As can be observed, the pipeline successfully infers the
3D shape of the object in all cases. Regarding the Spi-
derman poster case, it should be noted that there are self-
occlusions in the first and third illustrated images. In these
images, the 3D shape of the object in the occluded areas
is estimated by the deformation constraints implemented
in Particle-SfT. These constraints preserve the geodesic
distance between each pair of mesh points as equal to its
initial value in MT . Regarding the run-time, using the par-
allel architecture and 640×480 captured frames as the in-
put (as in the Spiderman poster case), the execution speed
reaches 30 fps.

Evaluation on a robotic use case. The last experiment is
a practical use case with robots. The experiment aims
at highlighting the advantage of using known 3D coordi-
nates in ROBUSfT. As mentioned in Step 4 and shown
in Figure 16, these known coordinates are an optional
input to the last step of ROBUSfT. Their usage can in-

crease the robustness of the tracking process. The setup
of this experiment is the same as in [50], where we ap-
plied ROBUSfT in a robotic use case; specifically, con-
trolling the shape of deformable objects. The setup con-
sists of two robotic arms grasping and manipulating the
Spiderman poster from both sides and a top camera fac-
ing the manipulation area. The 3D positions of the two
robotic grippers are known in camera coordinates, thanks
to the known pose of each gripper in the robots’ coordi-
nate frames and also the external calibration between the
robots and the camera. For each gripper, we consider the
closest mesh point to the gripper as a constrained mesh
point. These mesh points should be bound to their corre-
sponding gripper and move with it. As described in [50],
this binding is performed using a soft constraint. In this
soft constraint, for each gripper, a sphere with a small ra-
dius centered at the gripper’s 3D position is considered.
Then, in each iteration of Particle-SfT, if the correspond-
ing mesh point is outside this sphere, it will be absorbed
to the closest point on the sphere surface. This soft con-
straint has two main advantages over rigidly binding the
constrained mesh points to the grippers. First, it allows
the position-based dynamic equations in Particle-SfT that
preserve the distances between the mesh points to be ap-
plied on the constrained mesh points, which leads to a
smoother reconstructed shape. Second, it allows one to
cope with small possible errors in robot-camera calibra-
tion. In fact, a wrong robot-camera calibration leads to a
wrong transfer of the grippers’ 3D coordinates to the cam-
era coordinate frame which eventually results in wrong
coordinates of the constrained mesh points. By using the
soft constraint and considering a sphere rather than a rigid
bind, we give a certain degree of flexibility to the con-
strained mesh points to move in close proximity to the
gripper’s coordinates. This can compensate for slightly
inaccurate coordinates of the grippers.

7. Conclusion

We have proposed ROBUSfT, a publicly available C++
library that can effectively track the 3D shape of an iso-
metrically deforming object using a monocular 2D cam-
era. ROBUSfT outperforms the state-of-the-art methods.
The proposed pipeline addresses the well-known chal-
lenges in this area. These challenges include ambiguities
in inferring the 3D shape of the deforming object from a
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single 2D image, and real-time implementation. We have
introduced myNeighbor, a novel mismatch removal algo-
rithm for deforming objects, which works based on the
preservation of the neighborhood structure of matches.
We validated the efficiency of myNeighbor in compari-
son to existing algorithms in numerous experiments. In
order to compare ROBUSfT and myNeighbor with exist-
ing methods, we have presented a novel type of experi-
mental protocol called FREX (Fake but Realistic Experi-
ment). A single execution of this protocol provides a col-
lection of scenes of an isometrically deforming object in
various conditions with 2D and 3D ground truth. This
collection can be used to evaluate, compare, and validate
algorithms regarding isometrically deforming objects. In
addition, the provided 2D and 3D ground truth may be
used for training learning-based algorithms. In contrast to
other artificially made scenes of an isometrically deform-
ing surface, the generated images in FREX are the result of
real isometric deformations.

The primary limitation of ROBUSfT is that it is restricted
to surface object models, which can appropriately model
thin-shell objects and the surface of volumetric objects.
As future work, we plan to extend ROBUSfT to handle
volumetric object models. This would allow ROBUSfT to
exploit the deformation constraints that exist inside thick
deformable objects, and should improve its accuracy com-
pared to the current surface model. A secondary limita-
tion is that ROBUSfT requires textured object surfaces to
establish correspondences, even though it is able to cope
with reasonably low numbers of correspondences. As fu-
ture work, we plan to use the object’s silhouette, in other
words, the occluding contour, to complement the corre-
spondences. Importantly, these two limitations also apply
to the vast majority of existing SfT methods.
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