
LARLUS: Laparoscopic Augmented Reality

from Laparoscopic Ultrasound

Mohammad Mahdi Kalantari1*, Erol Ozgur1,
Mohammad Alkhatib1, Emmanuel Buc2, Bertrand Le Roy3,
Richard Modrzejewski4, Youcef Mezouar1, Adrien Bartoli2, 4

1Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France.
2University Hospital of Clermont-Ferrand, France.

3University Hospital of Saint-Etienne, France.
4SURGAR, 22 allée Alan Turing, Clermont-Ferrand, France.

*Corresponding author E-mail:
mohammad mahdi.kalantari@sigma-clermont.fr;

Abstract

Purpose. This research endeavors to improve tumor localization in mini-
mally invasive surgeries (MIS), a challenging task primarily attributable to
the absence of tactile feedback and limited visibility. The conventional solu-
tion uses laparoscopic ultrasound (LUS) which has a long learning curve and is
operator-dependent.
Methods. The proposed approach involves augmenting LUS images onto laparo-
scopic images to improve the surgeon’s ability to estimate tumor and internal
organ anatomy. This augmentation relies on LUS pose estimation and filtering.
Results. Experiments conducted with clinical data exhibit successful outcomes
in both the registration and augmentation of LUS images onto laparoscopic
images. Additionally, noteworthy results are observed in filtering, leading to
reduced flickering in augmentations.
Conclusion. The outcomes reveal promising results, suggesting the potential of
LUS augmentation in surgical images to assist surgeons and serve as a training
tool. We have used the LUS probe’s shaft to disambiguate the rotational sym-
metry. However, in the long run, it would be desirable to find more convenient
solutions.
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1 Introduction

Minimally invasive surgery (MIS) has numerous benefits to the patients compared to
open surgery. However, MIS does not allow a surgeon to palpate an organ which in
turn complicates tumor localization. Laparoscopic ultrasonography (LUS) is used to
address this downside. Nonetheless, LUS also has its own drawbacks. It requires a
long learning curve and an expert surgeon for maneuvering the LUS probe. We can
thus expect that an augmented reality (AR) solution offers significant assistance to
surgeons by simplifying the use of LUS. Such an AR solution should be able to work
under default operating room (OR) conditions (i.e., without additional sensors and
markers) so that it is practical. It should also run in real-time and not require any
initialization so that the surgical workflow is not disrupted.

State-of-the-art methods for tumor localization in MIS are not able to form a
practical and disruptionless solution. They use either additional sensors [1], markers,
or fiducials [1, 2], require initialization, or do not work in real time [3]. In contrast, we
propose a practical and disruptionless AR solution.

2 Methods

We first model the LUS probe and present its geometry. Next, we introduce our AR
solution. It relies on several key components including single-shot pose estimation,
filtering, and augmentation. These components are explained briefly in the subsequent
sections.

2.1 LUS Probe Modeling and Geometry

We model the LUS probe geometry as in figure 1. The LUS probe has two levers l1
and l2 on the shaft’s distal end to pivot the head, which is not shown in figure 1.
Lever l1 rotates the head up and down and lever l2 rotates the head left and right
with respect to the shaft. In figure 1, {x,y, z} denote the axes and o the origin of the
camera coordinate frame, t denotes the tip position (i.e., hemisphere center) and the
unit vector h represents the LUS probe’s head axis direction. Similarly, the unit vector
s represents the LUS probe’s shaft axis direction. The vector h×s forms the normal of
the LUS image plane (i.e., the blue plane) when the head’s lateral movement lever is
left constant. The vector m represents the normal of the interpretation plane defined
by head axis line lh and o. The vector n represents the normal of the interpretation
plane defined by shaft axis line ls and o. The rotation angle α around m quantifies the
depth variation of the LUS probe’s head axis direction h on its interpretation plane.
Similarly, the rotation angle β around n quantifies the depth variation of the LUS
probe’s shaft axis direction s on its interpretation plane. Finally, the rotation angle θ
quantifies the LUS probe’s head rotation around its axis direction h.
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Fig. 1 LUS probe geometry and modeling. The mathematical notation is explained in the main text.

2.2 Augmented Reality Solution

Requirement

The proposed AR solution requires 6 DoF LUS pose estimation. However, we can only
estimate 5 DoF poses from the LUS head’s spherocylinder shape. The 6th DoF cannot
be observed directly because of the rotational symmetry around the LUS head’s axis.
Therefore, we assume the following to meet this requirement.

Assumption

We assume that LUS lever l2 is kept intact so that no lateral head rotation happens
with respect to the shaft. This assumption implies by construction that the LUS
imaging plane ΠL, shown in blue in figure 1, remains inside the plane ΠL defined by
the shaft axis line ls and head axis line lh. This is a mild assumption and it can be
easily satisfied by informing the surgeon not to use lever l2 when they maneuver the
LUS probe.

Algorithm

The proposed AR solution’s pseudo implementation is given in algorithm 1. We call
it LARLUS (Laparoscopic Augmented Reality from Laparoscopic Ultrasound).

In algorithm 1, line 1 initializes the pose tensor using zeros vector 06×1 with a
history of 1. Line 2 initializes the pose covariance tensor using a 6× 6 identity matrix
scaled by infinite uncertainty diag(∞)6×6 with a history of 1. Line 3 starts the main
loop. Line 4 grabs synchronously the laparoscopic image ILAP and the LUS image
ILUS . Line 5 estimates the LUS pose ξ and also returns the number of measured
degrees of freedom given the laparoscope’s camera intrinsic calibration matrix K, the
laparoscope image ILAP , and the LUS probe’s spherocylinder radius r. Line 5 uses
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Algorithm 1: LARLUS

1 ξ ← 06×1×1 // Initialize LUS pose history tensor

2 Σ ← diag(∞)6×6×1 // Initialize pose covariance history tensor

3 while not exit do
4 {ILAP , ILUS} ← grab images() // Read laparoscope and LUS images

5 {ξ, ndof} ← LUP∗ (K, ILAP , r) // Single-shot pose estimation

6 {ξ̂, Σ̂} ← filtering on depth variations
(
ξ,Σ, ξ, ndof

)
7 if norm(Σ̂) < τ then display(augment(ILAP , ILUS)) else display(ILAP )

8 ξ ← ξ.add(ξ̂), Σ ← Σ.add(Σ̂) // Stack into the tensors

9 end

the LUP∗ algorithm, which is an improved version of our previous LUP algorithm [4].
Line 6 filters temporally the quadruplets {α, β, θ, ∥t∥} illustrated in figure 1. The
quadruplets are formed by decoupling the pose history. Relative rotation angles α, β,
and θ are computed from two consecutive frames. The quadruplets encode the depth
variations which are also the most sensitive parts of the pose estimation. Once the
filtered quadruplets are available, they are used to compute the updated LUS pose ξ̂
and covariance Σ̂. Line 7 augments the laparoscopic image ILAP with the LUS image
ILUS , if the pose uncertainty norm-2 remains below a threshold value τ . Line 8 stacks
the updated LUS pose and its covariance in the history tensors for the next filtering
step. Line 9 ends the main loop.

2.2.1 Single-shot Pose Estimation

LUP∗ represents an improved version of LUP [4] (Laparoscopic Ultrasound Pose), which
inherits all the advantages of LUP, namely, being free from markers, from extra sensors
beyond the surgical camera, and from the need for (re)initialization, and being able
to run in real-time. The improvements are as follows.

(i) LUP∗ is twice faster than LUP. This owes to two factors. First, LUP∗ uses the
Hough transform to construct line samples for RANSAC. This yields substantially
fewer samples to test compared to the random point sampling for the line construction
in LUP. Second, LUP∗ forms clusters on the contour points not belonging to the lines’
best consensus sets, prior to choosing the cluster that includes the contour points
related to only the hemisphere silhouette of the LUS probe’s tip. This is achieved
by checking the symmetry of clusters with respect to the LUS probe’s head axis,
eliminating many false contour points.

(ii) LUP∗ is more robust than LUP to hard cases. This owes to the second improve-
ment described directly above: eliminating clusters’ points that are not part of the
hemisphere silhouette of the LUS probe’s tip makes the pose estimation more robust.

(iii) LUP∗ is more integrated than LUP, as it directly provides the 6 DoF pose
estimate when the LUS shaft is visible, whereas LUP provides only 5 DoF and would
require an extra processing step to complete the pose.
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2.2.2 Filtering on Depth Variations

We study the LUS probe’s geometry to define the most suitable variables for filtering.
This is for two reasons. First, we want to filter only the most noise-sensitive parts of the
pose estimates. Second, we want to avoid over-filtering on the pose estimates because
of the possible couplings between the variables. Consequently, we ended up forming the
quadruplets {α, β, θ, ∥t∥} given in section 2.1. We consider that they are well decoupled
from each other. The variable ∥t∥ is an absolute value and is estimated at each single
frame. The variables {α, β, θ} are incremental values and are estimated as differences
from two consecutive frames. {α, β, θ} are expressed within the coordinate system of
the subsequent frame. We filtered each variable using a 1D Unscented Kalman Filter
(UKF) with a constant velocity motion model and white noise for the measurements
and the motion model.

2.2.3 Augmented Reality Rendering

Augmentation requires implementing two components: (i) homography computation
between the LUS image and the laparoscopic image; and (ii) blending of the warped
LUS image with the laparoscopic image.

Homography computation

Homography computation requires establishing at least four corresponding points
between ILUS and ILAP . We stipulate those four points as the corners of the LUS
probe’s image plane. We first compute these four points in the laparoscope coordinate
frame as follows. The first point, the top-left corner, is positioned at a predetermined
location relative to the LUS probe’s tip (i.e., the hemisphere center). Once the image
plane’s top-left corner point is located on the LUS probe (e.g., using either calibration,
or LUS probe’s CAD model, or direct measurement), the remaining corner points are
straightforward to compute, given the estimated LUS probe’s pose and the LUS image
plane’s width and height read from the LUS’ machine settings. We then project these
four points onto the laparoscopic image to form the corresponding pairs of points.
These four pairs of points are used to compute the homography mapping.

Blending

We blend the LUS image and the laparoscopic image in five steps. First, the gray-scale
LUS image is converted to a green-scale LUS image to enhance visibility. Second, the
transparency of the green-scale LUS image as we get closer to the edges is increased
linearly. Third, the green-scale LUS image from the second step is warped using the
homography mapping. Fourth, the warped green-scale LUS image is blended with
the laparoscopic image as a linear combination of both. Fifth, the segmented LUS
probe from the laparoscopic image, using the mask generated from the segmentation
network, is overlaid over the blended image as the LUS probe’s head should occlude
the augmented LUS image.
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3 Experimental Results and Discussion

We first present experimental results on single-shot pose estimation, filtering, and
augmentation using laparoscopic liver surgery images. We then discuss the results.

The main dataset used in all of the experiments is a sequence of 144 images. It
is played 4 times, namely twice forward and backward, to form a longer continuous
sequence of 144×4 = 576 images. In addition, there is another sequence of 120 images
from another surgery used in section 3.1.

3.1 Single-shot Pose Estimation Results

We performed 5 DoF pose estimations on a dataset with LUP and LUP∗. The average
time required to estimate pose from the unclassified contour points is 15ms with 3ms
std for LUP∗, while it is 35ms with 10ms std for LUP. The large differences in the
mean and standard deviation confirm the theoretical speed improvement brought by
LUP∗. LUP∗ is also more robust against the failure cases of LUP: it resolves 100% of the
failure cases of LUP in the first dataset (3 out of 3 from the total of 144 frames) and
20% of the failure cases of the second dataset (1 out of 5 from the total of 120 frames).
We illustrate such a case in figure 2. As one can observe, LUP∗ succeeds in estimating
a proper pose while LUP fails. Finally, the ability of LUP∗ to estimate 6 DoF pose in
the presence of the LUS shaft is demonstrated in the ensuing experiments.

Fig. 2 LUP∗ pose estimation (on the left) versus LUP pose estimation (on the right).

3.2 Filtering Results

We compare in figure 4 the filtered and unfiltered depth-related variables used in
pose estimations. We can observe that the filtered variables are less noisy, which in
return improves the augmentations by reducing flickering, as demonstrated in figure 3.
Subsequently, this reduces surgeon’s eyes fatigue.

3.3 Augmentation Results

We demonstrate LARLUS in figure 5. It shows three augmentation instances of
LUS images (green semi-transparent planes) on the laparoscopic liver images. The
augmentations aim to help surgeons localize tumors.
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Fig. 3 The upper row shows the LUS imaging planes without filtering. The lower row shows the
LUS imaging planes with filtering. In each frame, the green contour denotes a current configuration
at an instant k, while the white contour denotes the previous configuration at the instant k− 1. One
can observe that, without filtering, even a slight LUS probe movement might flicker the LUS imaging
plane considerably because of sensitivity to noise.
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Fig. 4 Unfiltered and filtered depth-related variables.
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Fig. 5 Multiple augmentation instances from LARLUS.

3.4 Discussion

We discuss the sensitivity to noise and the limitations of the proposed method.

3.4.1 On Sensitivity to Noise

Depth-related estimates like the quadruplet {α, β, θ, ∥t∥} are about an order of mag-
nitude more sensitive to the image contour segmentation errors than lateral estimates.
This is because the ratio of the LUS probe’s head distance to the laparoscope (i.e.,
about 10 cm) over the LUS’ radius (i.e., about 0.5 cm) is usually high. This ratio forms
an amplification factor on depth errors. Subsequently, this generates flickering on the
augmentations. In short, the better the image contour segmentation, the more accu-
rate the depth-related estimates. Until a better segmentation method is proposed, we
improve the augmentations by filtering the depth-related variables that are decoupled
from each other as much as possible.

3.4.2 On Limitations

LUS shaft visibility

The primary limitation is that LARLUS requires the LUS shaft to be visible during
tumor localization to resolve the 6th pose DoF, which is not always feasible.

Possible solutions

LUS shaft visibility requirement can be mitigated by one or several of the following
leads:

• Solutions with user notification. When the covariance of the lost 6th DoF exceeds
an upper bound, the AR software could use text, sound, or graphics to prompt the
surgeon for the need to show the LUS shaft in order to restore AR. This would
allow the covariance to decrease below the upper bound and to re-estimate the lost
6th DoF with acceptable accuracy.

• Solutions with robotics surgery. A first solution could be to visually servo the robot
to control the camera so that the LUS probe’s shaft is kept in the field of view.
A second solution could be, when the LUS probe is also maneuvered by a robot,
to read the forward kinematics from the robots and use the known relative pose
between their base coordinate frames.

• Solutions from computer vision. A first solution could be to estimate the LUS probe’s
keyhole position on the patient’s abdomen [5]. Knowing the LUS probe’s 5 DoF
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head pose and the LUS probe’s head length, we could then retrieve the 6th DoF
by first computing the intersection point between the head and the shaft, and then
the shaft direction vector from the intersection point’s position and the keyhole
position. The second solution could be to register the preoperative organ 3D model
to the intraoperative LUS image [6]. Assuming that the probe’s tip is in contact
with the organ would then provide an extra constraint to resolve the 6th pose DoF.

4 Conclusion and Future Work

Based on the experimental results and measurements, as well as on direct feedback
from surgeons, LARLUS is deemed to provide promising results. It shows that LUS
augmentation in the surgical image may assist in localizing tumors and training
inexperienced surgeons.

We give two main leads for future work. First, we shall improve the LUS probe
segmentation in the laparoscopic images in LUP∗. Second, we shall improve LARLUS

to reconstruct the 3D tumor volume from the segmented LUS images and augment
it on the laparoscopic images in real-time. For that, because the intraoperative LUS
images are usually very noisy and present artifacts, we shall also consider integrating
the preoperative 3D tumor model into the problem to form a coupled registration-
reconstruction solution for the augmentations.
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