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EnCoV-Institut Pascal, CNRS/Université Clermont-Auvergne, Clermont-Ferrand 63000, France

ABSTRACT

Specularities are numerous in endoscopic images. They oc-
cur as many white small elliptic spots, which are generally
ruled out as nuisance in image analysis and computer vision
methods. Instead, we propose to use specularities as cues for
3D perception. Specifically, we propose a new method to re-
construct, at each specularity, the observed tissue’s normal
direction (i.e., its orientation) and shape (i.e., its curvature)
from a single image. We show results on simulated and real
interventional images.

Index Terms— Specular, shape operator, endoscopy

1. INTRODUCTION

Specularities on smooth reflecting surfaces depend on the sur-
face’s local orientation and curvature, on the light source and
on the camera position [1, Chapter 2]. In the general set-
ting, all these contain far too many unknowns to allow one to
exploit specularities effectively in 3D reconstruction. How-
ever, endoscopy is a particular case where the light source
and camera form a collocated rig. Specularities are numer-
ous in endoscopy, where the moist tissue causes specular re-
flection. However, they are generally considered as artifacts
in endoscopic 3D reconstruction methods, both in classical
methods such as Shape-from-Shading (SfS) [2] and learning-
based methods such as direct depth estimation [3]. More re-
cently, it has been understood that specularities could form
useful cues for 3D reconstruction. The study [4] has shown
that training a learning-based reconstruction model from syn-
thetic data which can eventually deal with real data requires
one to generate specularities. Concretely, we have recently
shown that the surface normal could be reconstructed at each
specularity [5, 6], with a two-fold ambiguity. The reconstruc-
tion method uses the specular isophote, which is the curve
enclosing the specularity in the image. Based on the assump-
tion that the surface underlying the specularity is flat, we have
used a mathematical model to show that the isophote is el-
liptic. This approach has advantages: the method runs fast
and can process high resolution images, in contrast to the
learning-based approach which is currently limited to lower
image resolution to keep runtime reasonable (the available
datasets such as the EndoSLAM [7] and UCL [8] ones are
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at lower resolution). However, it also has strong limitations.
First, the reconstruction is up to a two-fold ambiguity: only
one of the two directions found at each point is the correct nor-
mal. Second, the local planarity assumption is unreasonable,
as specularities typically appear near highly curved surface
patches. Is an ambiguous surface normal all one can recon-
struct from a specularity?

We propose to move a step ahead by using a more ad-
vanced local surface model. Specifically, we leave the restric-
tive flat surface to adopt a curved surface model. We show
that with this model, the specular isophote is still elliptic in
the image, albeit that its eccentricity is not just due to surface
orientation as in past work, but to both surface orientation
and curvature. We show that one can reconstruct the surface
normal from just the specularity’s Brightest Point (BP) and
the surface curvature from the elliptic isophote. Specifically,
we show that the principal curvature directions (the directions
of minimum and maximum curvatures on the tangent plane)
and the curvature ratio can be reconstructed. Therefore, the
specular isophote contains much more information than one
could think from past work. We propose an automatic recon-
struction method, which, from an endoscopic image and the
camera’s intrinsic parameters, detects the specularities and re-
constructs the local surface orientation and curvature ratio at
each specularity. This reconstruction can be used to imple-
ment downstream tasks such as computer-aided navigation, to
bootstrap other reconstruction methods such as Shape-from-
Shading (SfS) and to train depth estimation networks. We
evaluate the method on realistic simulated colonoscopic data
from Blender and surgical laparoscopy images.

2. THEORY AND METHODS

2.1. Mathematical Model

We consider a calibrated perspective camera model with in-
trinsic parameters in matrix K ∈ R3×3 and a point light
source near the camera centre located at the origin. We con-
sider a smooth specular surface and assume that the bright-
ness reflected along the sightline direction V is a function
of V · P , where P is the specular direction, also known as
the direction of a perfect specular reflection. This assump-
tion is commonly used in reflection models such as Blinn-
Phong [9] and the physics-based BSDF model popularised



by Disney [10]. In these models, each specularity has a BP,
approximately located at its centre, where the reflected light
energy is the highest. Let L be the lighting direction; it is
known that, from the fact that the vectors L, V and P have
unit length [1, 9, 10], the half-angle direction H = (L+V )/2
is collinear with the surface normal N at the specularity’s BP.
In endoscopy, as we have L ≈ V , the surface normal is thus
collinear with the sightline V .

We model the observed tissue as a collection of 3D sur-
face patches. We model each patch by three components, as
shown in figure 1 (left): 1) its normal direction N, 2) its tan-
gent plane, with basis vectors u1,u2 chosen along the patch’s
principal directions, and 3) its curvature ratio, which is the
ratio of the minimal to the maximal curvatures. We instanti-
ate one patch per specularity. We assume the specularity to
conform to the elliptic model, which is widely applicable in
endoscopic images, where they occur as small isolated white
blobs [1, 5].
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Fig. 1: Left: local coordinate system at the BP oriented using
the normal and principal directions. The light and camera
are collocated. Elliptic specular isophotes are shown in cyan.
Right: example of three neighbouring surface patches from
a real endoscopic image, showing the difficulty to determine
the BP directly from image intensities.

2.2. Reconstruction Method

Our reconstruction method has three main steps given as Al-
gorithm 1. The first step, which is as in [6], uses a learning-
based specularity detector and ellipse fitting to retrieve an
isophote for each specularity. We perform a simple ellipticity
test based on the fitting residual. The second and third steps
are geometry-based reconstruction given directly below.

2.2.1. Sightline-based Normal Reconstruction

We exploit the property that, at the BP, the surface normal
is collinear with the sightline. We approximate the BP by
the elliptic isophote’s centre (x0, y0) in image pixel coordi-
nates, as shown in figure 1 (right). The sightline is trivially
found using the camera model, giving the surface normal di-
rection N ∈ S2 as N ∝ K−1(x0, y0, 1)

⊤, where S2 is the

set of direction vectors in 3-space. Obviously, the reconstruc-
tion accuracy directly depends on the accuracy of the BP es-
timate. However, determining the exact location of the BP is
challenging because of camera saturation at specularities. As
seen in the right side of figure 1, all the red pixels have the
maximal intensity for the selected surface patch. In contrast,
it is much easier to detect an isophote whose centre and the
unknown BP are nearly coincident.

2.2.2. Ellipse-based Shape Reconstruction

We represent a specular isophote ellipse by its standard
3 × 3 real symmetric matrix form C. This satisfies
(x, y, 1)C(x, y, 1)⊤ = 0 for the image pixel coordinates
(x, y) of an isophote point. Next, we map the conic C to
the normalised image plane1 as C ′ = K⊤CK, which is also
a 3× 3 real symmetric matrix. It thus has the following prop-
erties: 1) it is always diagonalisable, 2) it has real eigenval-
ues, and 3) its eigenvectors are orthogonal. We diagonalise
C ′ as C ′ = R⊤diag(λ1, λ2, λ3)R, where {λ1, λ2, λ3} are
the eigenvalues sorted in ascending order. The corresponding
eigenvector set {v⃗1, v⃗2, v⃗3} forms an orthonormal basis of R3.
We have that R = (v⃗1, v⃗2, v⃗3) is a 3D rotation of the standard
camera coordinate system to the so-called eigenvector-frame.
It aligns the principal directions on the tangent plane at the BP
with the ellipse’s major and minor axes, with the normal di-
rection N being aligned with the cross product v⃗3 = v⃗1 × v⃗2.
The principal directions on the tangent plane are therefore
given by u1,u2 = v⃗1, v⃗2. The ratio of principal curvatures
|λ1/λ2| can be derived from the ellipse’s eccentricity, defined
as ϵ =

√
1− (λ1/λ2)2.

3. EXPERIMENTAL RESULTS

3.1. Synthetic Colonoscopic Data

3.1.1. Model

We use the modelling and rendering software suite Blender to
synthesise images using a wide-angle perspective camera of
10 mm focal length. We use a spotlight located at the cam-
era centre with a radius of 0.1 mm and projected to a 120◦

cone. We generate a colon-like deforming surface with free-
form deformation [11]. The generated surface is represented
by a triangular mesh with 502,502 vertices and 1,002,000
faces. We deform it over 250 frames. The surface is imparted
with a strong ‘clearcoat’ to boost specular reflections. We use
the anisotropic principled BSDF model [10], mimicking real-
world shading and specularities.

1The origin is at the principal point and the distances are measured in
units of focal length.



Algorithm 1 Single-image specular normals and shapes re-
construction
Input: Image I , camera intrinsics K
Output: Sets of Brightest Points (BP), normals N, principal

directions u1,u2, curvature ratios ϵ
- Use the neural network to segment the specular mask M
from I ▷ [6]
for each connected component c ∈M do

- find the specular isophote as the outer boundary of c
- smooth the isophote using a cubic B-spline
- fit an ellipse to the isophote, with matrix representa-
tion C and fitting residual r

if r ≤ t then ▷ ellipticity test with threshold t
- find the BP (x0, y0) as the ellipse centre
- compute normal direction N = K−1(x0, y0, 1)

⊤

- normalise it as N = N/∥N∥
- transfer the ellipse to the normalised image plane
as C ′ ← K⊤CK
- retrieve the ellipse axes by eigendecomposition as
C ′ = R⊤diag(λ1, λ2, λ3)R, with eigenvalues λ1 ≤
λ2 ≤ λ3 and eigenvectors R = (v⃗1, v⃗2, v⃗3)
- determine the principal directions on the tangent
plane as u1,u2 = v⃗1, v⃗2
- compute the curvature ratio from the ellipse eccen-
tricity ϵ

end if
end for

3.1.2. Normal Reconstruction

Our method found 1,500 elliptic specularities. The recon-
structed normals using the proposed sightline-based method
are compared with the true mesh normals, at mesh vertices
corresponding to the set of detected BPs. The histogram of
errors in normal estimates is shown in figure 3.

3.1.3. Shape Reconstruction

We estimate the true principal curvatures κ1 and κ2 as the
eigenvalues of the second fundamental form that we compute
numerically [12], from which we obtain the true curvature
ratio. We also compute the true principal directions, as the
eigenvectors of the second fundamental form. A representa-
tive example is shown in figure 2 (top right), showing that the
specular ellipse’s axes match the principal directions. We per-
form a sanity check by verifying that the reconstructed nor-
mal is orthogonal to the reconstructed principal directions on
the tangent plane, confirming that they together form an or-
thonormal local coordinate system. The histogram of errors
in principal direction estimates is shown in figure 4.

3.2. Real Data

The applicability of our reconstruction approach to real data
is evaluated in 2D laparoscopic views of the liver, where a
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Fig. 2: Colon-like synthetic sequence. The available 2D-3D
correspondences (in magenta) are used to compare between
our reconstruction of the normal, the principal curvature ratio
and the principal directions for the surface at the specularity’s
brightest point and the same quantities estimated from the 3D
model using the method of Rusinkiewicz [12].

Fig. 3: Error histogram:
angle between reconstructed
and true normals (in degrees).

Fig. 4: angle between recon-
structed normals and v⃗1 × v⃗2
(in degrees).

sparse set of specular highlights is detected and for which we
have 3D reference models. These references models are ob-
tained by 3D-to-2D registration of a virtual patient model seg-
mented from a preoperative CT scan by experts. The registra-
tion is solved by the method [13] to a satisfying accuracy. We
use three images extracted from three procedures collected in
our hospital under ethical approval IRB00008526-2019-CE58
issued by CPP Sud-Est VI in Clermont-Ferrand, France. A
representative example is shown in figure 5.

3.2.1. Normal Reconstruction

Contrary to [5] in which a small set of isolated specularities is
manually selected to then detect isophotes using the marching
squares, we automatically detect numerous specular isophotes
from our neural network [6]. An example showing elliptic
isophotes is shown in figure 5. A total of 193 small ellip-
tic specularities are kept from the three selected images ac-
cording to the ellipticity criterion and used to compare the
reconstructed normals with two other estimates: 1) the nor-
mals produced by the pose from circle method [5], and 2) the
normals directly determined from the registered virtual 3D
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Fig. 5: Qualitative results for the liver data.

model. The histograms of figure 6 show a good agreement
between the three methods. The green histogram shows an
angular error centred at 2.5◦, which confirms the efficiency of
both the proposed and the registration methods [14]. The im-
provement is partly due to the ellipticity, which is not present
in [6]. Nevertheless, the magenta histogram shows an angular
error centred at 3◦, which shows a fair agreement between the
proposed and the previous methods.

Fig. 6: Evaluation of normal reconstruction for the laparo-
scopic liver images. The histograms show the absolute angu-
lar difference (in degrees).

3.2.2. Principal Directions and Principal Curvature Ratio

First, in order to evaluate the quality of our reconstructed
principal directions {v⃗1, v⃗2}, we compared them to the prin-
cipal directions {u1,u2} estimated using [12] from the tri-
angle mesh. An easy way to do that is to quantify the an-
gle between their cross products since both of them are sup-
posed to be aligned with the normal direction. Let θe =
∠(u1 × u2, v⃗1 × v⃗2) be this angle expressed in degrees. We
then consider its absolute value |θe| to quantify the degree of
agreement between the two methods, leading to the histogram
error illustrated in figure 7(a). This histogram shows a small

error which is always lower than 3◦ for the same specularities
as in section 3.2.1 for normal reconstruction evaluation.

Second, we evaluated the differences between the two
estimated curvature ratios (proportional to the eccentricity)
as d = ||λ1/λ2| − |κ1/κ2|| where κ1 and κ2 are the min-
imum and maximum curvatures estimated using [12]. The
histogram of figure 7(b) shows that the error was almost com-
prised between 0 and 0.2 (and mostly close to zero) which
is still very acceptable since the eccentricity of an ellipse al-
ways lies between 0 (a perfect circle) and 1 (a straight line).
The example presented in figure 5 (top right) show that the
reconstructed normals and principal directions are reliable.

(a) principal directions
(differences |θe| in degrees)

(b) principal curvature ratio
(differences d in a.u.)

Fig. 7: Evaluation of shape reconstruction: direct comparison
between our method and [12].

Figure 8 shows qualitative results for a colonoscopic im-
age extracted from the EndoMapper database [15] and for
which high quality 3D models are not available.

Fig. 8: Colonoscopy. From left to right: image I , neu-
ral mask M , the third and fourth images show some recon-
structed principal directions (red) and normals (blue).

4. CONCLUSION

We have presented a mathematical model based on a second-
order model of the tissue surface at specularities. This model
leads to a reconstruction method which can infer the local
surface normal, principal directions and curvature ratio. The
method is simple and fast. It produces normal estimates with
accuracy on par with previous methods, solves the local two-
fold ambiguity and estimates an additional level of local shape
information. As it works from a single image, we plan to use
it to boost the NRSfM method in the endoscopic case.
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