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Abstract

Background and objective. Image segmentation is an essential component in
medical image analysis. The case of 3D images such as MRI is particularly
challenging and time consuming. Interactive or semi-automatic methods are
thus highly desirable. However, existing methods do not exploit the typical
sequentiality of real user interactions. This is due to the interaction memory
used in these systems, which discards ordering. In contrast, we argue that
the order of the user corrections should be used for training and lead to per-
formance improvements.

Methods. We contribute to solving this problem by proposing a general
multi-class deep learning-based interactive framework for image segmenta-
tion, which embeds a base network in a user interaction loop with a user
feedback memory. We propose to model the memory explicitly as a sequence
of consecutive system states, from which the features can be learned, gener-
ally learning from the segmentation refinement process. Training is a major
difficulty owing to the network’s input being dependent on the previous out-
put. We adapt the network to this loop by introducing a virtual user in
the training process, modelled by dynamically simulating the iterative user
feedback.

Results. We evaluated our framework against existing methods on the com-
plex task of multi-class semantic instance female pelvis MRI segmentation
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with 5 classes, including up to 27 tumour instances, using a segmentation
dataset collected in our hospital, and on liver and pancreas CT segmentation,
using public datasets. We conducted a user evaluation, involving both senior
and junior medical personnel in matching and adjacent areas of expertise. We
observed an annotation time reduction with 5’56” for our framework against
25" on average for classical tools. We systematically evaluated the influence
of the number of clicks on the segmentation accuracy. A single interaction
round our framework outperforms existing automatic systems with a com-
parable setup. We provide an ablation study and show that our framework
outperforms existing interactive systems.

Conclusions. Our framework largely outperforms existing systems in ac-
curacy, with the largest impact on the smallest, most difficult classes, and
drastically reduces the average user segmentation time with fast inference at
47.2 & 6.2 ms per image.
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1. Introduction

Image segmentation is an essential component of many visual processing
systems, which involves classifying each pixel or, equivalently, delineating
the regions containing pixels of the same class. In medical image analysis,
the images are often patient scans from modalities such as MRI (Magnetic
Resonance Imaging) or CT (Computed Tomography). MRI segmentation is
a tremendously difficult task, owing to it being 3D, low contrast, noisy, low
resolution and artifacted. Existing segmentation approaches can be divided
into three settings based on user involvement: manual, automatic and inter-
active. The manual approach is the most time-consuming, as each pixel has
to be attributed a label independently, which may require hours for a single
MRI. It is error-prone and infeasible in the clinical environment. At the other
extreme lies the automatic approach, which works without user involvement.
This strongly limits its applicability, as a clinician operator shall validate
and possibly edit the result before its use in a therapeutic act. The interac-
tive approach trades-off manual and automatic features: it typically involves
an automatic part with an extent of user control. Both aspects are crucial
for systems designed for the clinical environment, where there generally are
three main constraints: (1) decision-making should be human-controlled; (2)
time is limited; (3) high accuracy is desired. Creating interactive systems



addressing these three concerns is therefore essential to simplify, speed up
and secure segmentation in the clinical environment.

The automatic approach is largely dominated by deep learning, which
overturned classical methods over the last decade in many segmentation
tasks [4, 35]. In contrast, interactive deep learning methods present specific
difficulties and have yet received relatively limited attention [36]. Concretely,
deep learning interactive segmentation requires embedding a network in an
interactive-loop system allowing the user to interact. Indeed, the network
inputs must include the user feedback, which depends on the network out-
puts. This creates a dependency between the inputs and outputs of the
network, which is poorly resolved by a regular training process from static
data. Specifically, the input configuration and training process of interac-
tive existing deep learning methods do not reflect how the user interactions
are provided at test time. They consequently do not take full advantage
of having user interactions as input, missing two key aspects: (a) realistic
interaction simulation - real interactions are positioned rationally, but often
scarcely and randomly distributed, an aspect which is not modelled in exist-
ing simulation approaches for training; (b) temporal interaction information
- inherently present at all times in the real world, but overlooked by the
existing interactive segmentation methods.

Dynamics or temporal information are additional cues typically used in
video segmentation and tracking methods, which take advantage of the order
and similarity of adjacent video frames. In interactive segmentation, a user
interacts depending on the current segmentation result they observe, which is
conditioned by both their interactions and the system’s result so far. Hence,
the ordering of interactions is highly important and should not be altered, as
they otherwise become less informative. Intuitively, capturing the interaction
order should be beneficial in any interactive framework, including interactive
segmentation. We propose a general deep learning interactive segmentation
framework and training methods for multi-class semantic instance segmen-
tation. Our system consists of an embedded network, a user interaction loop
and an interaction memory. First, the user reviews the current segmenta-
tion result and, if satisfied, accepts. Otherwise, the user may quickly make
simple corrections by placing points or strokes to refine the segmentation,
which is achieved by a special input configuration of the embedded network.
Indeed, this network inputs the image, user correction masks, and possi-
bly other memorised parameters, and outputs the segmentation probability
maps. The system then loops back to the user review step, whilst updating



the interaction memory to keep track of the user corrections throughout the
interactions.

In practice, the additional temporal information is represented by a neu-
ral network input structured differently than existing work. Existing works
store all the interactions in the same mask, discarding the order of the inter-
actions and hence the temporal information. We call such input structures
Cumulative Interaction Memory (CIM). In contrast, we propose Sequential
Interaction Memory (SIM), which stores a sequence of states instead, where
each state is a pair of user input and corresponding segmentation output.
Simply put, SIM is a sequence of ordered user actions and their results in
time and carries temporal information by definition. The proposed architec-
ture takes an image and a SIM as inputs and produces a segmentation as
output. The system then adds this segmentation along with the latest user
interaction mask to the SIM and proceeds to the next interaction round. In
practice, SIM is represented by a tensor of a certain size, depending on the
memory size, and is used as an input to the network at all times.

Our contributions are threefold. First, we propose a general deep learning-
based interactive multi-class semantic image segmentation framework with a
user interaction loop. Second, we propose a sequential interaction memory,
which keeps track of the segmentation results and user corrections, maintain-
ing sequentiality within the system. Third, we propose a general dynamic
data training process, which simulates the correction-focused and sequential
nature of human user feedback by learning from interaction sequences of a
virtual user and minimises interaction-dependence, improving performance.

We demonstrate our framework in three tasks. The first task is multi-class
semantic MRI segmentation of the female pelvis, for which we created a new
dataset collected in our hospital. We validate the results against automatic
and existing interactive systems with the standard metrics and perform an
ablation study of our system’s components. We report results of a user
study conducted with both senior and junior medical users in terms of both
standard metrics and elapsed time, using a specifically developed graphical
user interface connected to our system. The second and third tasks are
respectively the multi-class semantic liver and pancreas CT segmentation,
using the “Liver Tumours” and “Pancreas Tumour” medical segmentation
decathlon datasets [45]. We validate the results against automatic approaches
participating in the ongoing medical segmentation decathlon challenge [2].
For these tasks, we instantiate our system with an existing encoder-decoder
architecture optionally featuring RNN [39] modules.
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Figure 1: Female pelvis MRI dataset samples, with main difficulties indicated with green
arrows, series 1 to 5: (1) presence of an IUD, not seen in the training set; (2,5) unclear
contours, blurriness of the uterine cavity; (3) similarity of the uterine (left) and cervix
cavities (right); (4) strong uterus deformation due to the tumours, with here five tumours.

This paper extends a shorter workshop version [33]. Specifically, we have
extended it along five ways. First, we have included a third contribution, the
dynamic data generation process, focused on improving generalisation and
the impact of individual interactions on the performance. Second, we have
extended the experimental evaluation comparison with existing approaches
for all three datasets. Third, we have included a study of the influence of
the number of provided user interactions on the framework’s performance,
including when using the framework in the automatic mode with 0 clicks
provided. Fourth, we have finalised the initial preliminary user study, ex-
tending it from three to eight medical experts. Lastly, we have refined the
presentation of the overall framework’s architecture and its details.

2. Related Work

We review classical and deep learning approaches to medical image seg-
mentation, distinguishing automatic and interactive approaches for each.
Classical automatic segmentation encompasses a wide variety of methods [54].
Their performance is usually insufficient to achieve clinically-acceptable ac-
curacy and they have been largely taken over by deep learning in many
tasks [4]. In contrast, classical interactive methods are still widely used. The
most well known ones are probably the Graph Cuts [3], Random Walker [16]
and Geodesic Image Segmentation (GeoS) [10]. They achieve acceptable per-
formance for simple cases. However, medical data often feature structures
with complex shapes and poorly defined contours, noise and artefacts. This
results in a substantial increase of user time required to perform segmentation
and limited achievable accuracy.



Deep learning-based automatic segmentation includes a multitude of meth-
ods. A review and evaluation of over 100 methods [34] was conducted with
ResNet [19] extensively used as a backbone, represented by EMANet [29]. It
achieved top scores on the PASCAL VOC dataset together with [55], which
adopts NAS-FPN [14] with EfficientNet-L2 [51]. Most of the models use
an encoder-decoder architecture [34]. This includes the U-Net [37], with a
wide spectrum of applications [43], and recent variants [13, 44| reaching top
positions in the BraTS challenge 2021. Automatic MRI segmentation was
attempted for various targets, including the kidney [25], the prostate [17]
and brain tumours [18]. These methods demonstrate state-of-the-art perfor-
mance in their respective tasks. However, they are automatic and do not
allow the user to interact. Automatic segmentation is highly appropriate in
applications which cannot involve user interactions in essence, such as real-
time organ tracking. In contrast, many applications require validation and
corrections from a certified user. For such applications, the direct use of
automatic deep learning methods is inappropriate.

The integration of deep learning within interactive segmentation sys-
tems is a major challenge. A simple approach is to use a classical inter-
active method to post-process the result from an automatic deep learning
method [49] or correct it manually [41]. Such systems inherit the intrinsic
limitations of the chosen classical method. A more advanced approach is
to use a neural network to process user feedback in an interactive-loop sys-
tem [1, 50, 52, 53, 30, 40, 21]. These methods use a network which takes the
image and user interaction masks as inputs. Training is challenging owing to
the loop. Existing approaches generate user interaction masks from labelled
data, either statically before training or dynamically during training, or at-
tempt to avoid training altogether. Static data training methods [50, 52, 53]
limit the system’s generalisation and interaction effectiveness. Intuitively, a
real user interacts based on the current segmentation they observe. In other
words, the goal of the user is to improve upon what is already there. Hence, it
is sound that mimicking this mechanism of acting sequentially is more faith-
ful and true-to-practice than the previous mechanism, namely Static Data
Generation (SDG), not taking past segmentations into account.

Dynamic data training methods [1, 30, 47, 21, 26] mimic this mecha-
nism and simulate user interactions by sampling missegmented regions. This
is done once from a single prediction [1] or from the latest segmentation
result [30, 47]. Usually, such methods rely on a virtual user, which gen-
erates user input artificially at training time, since the involvement of real
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users is not feasible. These methods diversify the training data and im-
prove performance. However, previous works using dynamic data training
have two shortcomings: first, they consider only individual classes for click
placement, which is not well-adapted to the medical scan data naturally
containing multi-instance or multi-component structures, and second, they
do not handle multi-class multi-label multi-instance problems with multiple
components per class. These problems make medical scan segmentation chal-
lenging, as they incur the fragmentation of classes into multiple components,
all compounded by the inherent noise, variability and complexity of medical
image scenes. In order to exemplify their terms, consider for instance, the
female pelvis MRI dataset we assembled. It has multiple properties typical
for medical scan datasets, namely (1) multi-class - the dataset contains mul-
tiple classes (that is, uterus, bladder, tumour and cavity); (2) multi-label -
certain classes overlap (e.g. uterus contains tumour and cavity); (3) multi-
instance - certain classes contain multiple instances (there can be multiple
tumours per image); (4) multi-component - an instance of each class in the
image might be split into multiple closed contours due to medical scan slicing
and the shape of the object in question.

Alternatively, training-less methods were proposed to bypass the training
challenges [22, 46]. Specifically, they use an automatic segmentation net-
work interactively via inference-time optimisation and improve performance.
However, these methods have certain drawbacks. First, they require back-
ward passes using gradients, leading to a computational overhead. Second,
their applicability is limited because widely used frameworks often lack sup-
port for the backward passes on mobile devices. These two factors make it
difficult to apply them in practice, provided the limited availability of the
high-performance GPUs in clinical workstations and laptops. An open-source
interactive segmentation platform [12] was recently made available, which of-
fers both deep learning-based [49, 40] and classical methods [3], inheriting
their limitations.

The existing methods do not reproduce the typical sequentiality of real
user interactions. The lack of sequentiality is a consequence of the inter-
action memory used in these systems, which simply accumulates the user
corrections, discarding ordering. In contrast, we argue that the order of the
user corrections can be directly used for training and lead to performance
improvements. In short, the rationale is that the order in which the user
corrects the segmentation in an interactive system depends on the current
segmentation estimate. The order of interactions can thus not be changed
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Figure 2: Proposed interactive system, featuring a network embedded in a user interaction
loop and an interaction memory.

and forms an important piece of information to the system. A sequential
memory was used in [53] to ‘transfer’ the user interaction recorded on one
slice to the other slices, but was not used to exploit sequentiality during slice
segmentation.

In contrast to existing work, our framework uses a sequential interac-
tion memory which captures the sequentiality of user interactions at training
and inference times. Furthermore, the proposed framework does not require
specific modifications for inference and preserves low inference time. Addi-
tionally, the proposed dynamic data training specifically targets higher au-
tomatisation and generalisation at testing time by introducing a set of rules
allowing for extreme variability of simulated inputs.

3. Applicative Scope

While our framework may be applied to numerous segmentation prob-
lems, we focus on the interactive slice-by-slice female pelvis MRI segmenta-
tion, involving five classes: uterus, bladder, uterine cavity, tumour and
background. The intended use is surgical planning and surgical augmented
reality [9]. We created a female pelvis MRI dataset, consisting of 97 MRI
series with 3066 slices in total, manually annotated in 3D Slicer [24] and
in MITK [15] by expert radiologists. This took from 10" to 50° per series
with 25’ on average with certain series (for instance with strong uterus de-
formation as in (4) in figure 1) taking more than 1 hour, which is clearly



Figure 3: Interaction memory differences: (1) three individual interactions provided one-
by-one with respective intermediate segmentation results obtained; (2) the Cumulative
Interaction Memory (CIM) and Sequential Interaction Memory (SIM) are shown, which
memorise the interactions from (1).

infeasible in the clinical setting. The segmentation of anatomical structures
of the female pelvis is particularly challenging due to a large variance in
their representation, including shape, size, position, orientation and texture
among the patients, with and without pathologies. Moreover, it is typical
for MRI data to suffer from non-uniformities of the low frequency intensity
areas, which is detrimental to the network learning capabilities. Difficult
samples can be seen in figure 1. On top of that, the target anatomical struc-
tures form a naturally imbalanced dataset, where background takes 96.15%,
uterus 2.11%, bladder 1.02%, tumour 0.67% and uterine cavity 0.05%.
The strongest imbalance is observed for uterine cavity and background,
whose average ratio of volumes is 0.057%. The classes are also unevenly dis-
tributed throughout the dataset due to the number of the tumours varying
among the series between 0 and 27. These factors further complicate learn-
ing and generally result in much lower performance on smaller classes if no
mitigation against class imbalance is introduced. Our objective is to develop
a segmentation system which minimises the time required to complete the
segmentation with acceptable accuracy, while allowing an expert reviewer to
have control and guide the segmentation, as and when necessary.

4. Methodology

We describe the system and then the training process.



4.1. System

We give the system’s general structure and then the internal memory’s
structure.

4.1.1. Structure

We build the proposed system shown in figure 2 starting with a basic
interactive segmentation system named base, featuring an interaction loop.
This system does not have a memory of user corrections or previous segmen-
tation results and processes each set of user corrections in isolation. The
interaction loop allows iterative refinement by forming new inputs through a
combination of network outputs and user corrections. The system is generic
as it does not depend on a specific network architecture, as long as the net-
work takes both the image and the user corrections as inputs. The user
corrections are represented by N binary masks, where N is the number of
classes. The network inputs are concatenated into a single tensor of size
H xW x ', where H x W is the image size and C' is the number of channels,
varying depending on the system. For the base system C},,sc = 1+ N. Indeed,
as there is no memory in this system, the network takes the image as the
first channel and the binary masks of the user corrections for the N classes
as the next NV channels. This strongly harms user experience as the past user
corrections are forgotten by the system at the next interaction [50, 49].

4.1.2. Cumulative and Sequential Interaction Memory

We introduce an interaction memory, whose role is to keep track of user
corrections. For that, we define a system state as a combination of user cor-
rections and the corresponding network outputs. For the task of multi-class
segmentation, a single state consists of a probability map for the network
outputs and a binary mask for the user corrections, for each of the N classes.
It is important to make a distinction between the interaction memory and
the internal memory found in the RNN. The interaction memory tracks and
stores system states, represented by inputs and outputs of the network. In-
deed, the interaction memory is external to the network and does not depend
on a specific network architecture. The RNN memory, however, is internal
and specific to the network architecture, enabled by passing hidden states
from step to step and represented by weights.

Existing works use an interaction memory, which aggregates the system
states by merging the successive interaction masks [1, 52, 30]. We call this
a cumulative interaction memory (CIM). The network takes the image and
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the merged user correction masks, and its input tensor thus has Cgu, =
Chase = 1 + N channels. This type of memory discards the ordering of
interactions - the sequentiality, typical of user corrections. We introduce
a second type of interaction memory which, in contrast to CIM, preserves
the past D system states, hence the user’s sequential behaviour. We call
this a sequential interaction memory (SIM), and the number of states D the
SIM’s size or depth. The network takes an image and the SIM as inputs,
which are combined to form the input tensor with Cg,, = 1+ 2DN channels.
The factor 2 comes from each state containing both N interaction masks
and N probability maps of intermediate segmentation results. Simply put,
SIM is a container for naturally ordered input-output pairs both at training
and at testing times. In other words, it is a representation of the temporal
information associated with user inputs. The general differences between
CIM and SIM are schematically shown in figure 3.

In our ablation study we show that RNN’s suitability for sequential data
may further reinforce the proposed framework. We note that the SIM does
not change the system’s applicability, which remains generic with respect to
the data type and embedded network architecture.

4.2. Training with Dynamic Data Generation

In an interactive-loop system with an embedded network, the inputs de-
pend on the outputs. This means that a regular training process from static
data will poorly reproduce the real system usage at test time, limiting the
achievable accuracy and user interaction efficiency. To resolve this, we pro-
pose a dynamic training approach, where the training data is generated from
the labelled dataset during training by a virtual user. The basic idea of the
virtual user is to generate a set of corrections similarly to a real user, whose
involvement in training is not feasible. These corrections are represented by
one binary mask per class, populated by foreground clicks for each class, in-
cluding the background class. The click is handled by an interaction-control
process, which exploits the difference image between the latest network out-
put and the ground truth. This difference image gives a set of mislabelled
regions, containing both under- and over-segmented regions. The position
of the click is chosen randomly in the largest region, following a probability
map whose maximum is at the region centre, decreasing towards the region
boundary and vanishing outside the region. A general schematic of the Dy-
namic Data Generation process can be seen in figure 4. It shows an example
of interaction generation for a single image containing 4 tumour instances
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Figure 4: An example of Dynamic Data Generation (DDG) for a single input image.
DDG is applied to each image each time it is encountered in the dataset. Precisely, DDG
simulates a virtual user to generate the maximum of n interactions for a component of
a single class. The class is represented here by 4 tumour instances (in red). At each
interaction round, inference is performed to obtain an intermediate segmentation result,
which is then compared with the ground truth to generate a new interaction based on their
discrepancy. Clicks at previous interaction rounds are stored in SIM and carried over to the
next round. Backpropagation is performed when all n interactions were simulated. The
actions of the virtual user are marked in green. DDG is applied to all classes simultaneously
following the rules in section 4.2.

with a single click generated per interaction round. In practice, the process
seen in figure 4 is applied online for each image in the batch before pass-
ing on to the next batch. The standard training routine where batches are
processed one-by-one is not changed, neither is any preprocessing done be-
fore the training process. There is only an additional interaction generation
routine for each image.
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In a typical segmentation task, each class may be represented by multiple
individual components. Recall that a component is a set of spatially con-
nected pixels pertaining to the same class in the image. When applied to our
task of female pelvis MRI segmentation, this frequently occurs for all classes
due to the presence of multiple instances of the same class (for the tumours)
and due to the nature of the 3D MRI volume slicing (for the bladder, the
uterus and the uterine cavity). For example, in certain cases the uterus’
cross section may be represented in the image by multiple components due
to its shape. We address this by changing how the clicks for each image are
simulated and split the click simulation process in two steps. In step a), the
virtual user exceptionally considers each component of each class for a po-
tential location. In step b), the virtual user considers the mislabelled regions
with larger size having higher probability of a click to be added.

In addition to interaction placement, our system implements an interaction-
independence scheme, designed to ensure robustness against imperfect user
behaviour at test time, with the following four main rules:

1. The maximum number of simulated interactions per component of each
class is limited, typically to 3. The minimum is 0.

2. The probability of adding a subsequent interaction starts at p <— 1 and
linearly decreases as p <— p — % after each interaction round, where t is
the maximum number of training interactions.

3. At each image, a random class is selected for which the user interactions
are not generated.

4. A percentage of all generated interactions is held out. We typically use
80%.

These rules, along with the interaction placement control, allow the sys-
tem to generate sufficiently varied interaction data throughout the training
process and decrease the system’s reliance on interaction supply. Specifically,
rules 3 and 4 do not exist in previous work. They ensure a high level of vari-
ety in the generated data and significantly reduce interaction dependence, as
evidenced by the experiments in section 5.2.3. Their rationale is threefold:
1) the framework should produce annotations for the classes not explicitly
clicked on; 2) the network should consider image features instead of relying
solely on user interactions; 3) the framework should be capable of automatic
segmentation with no interactions provided.

Training with the proposed SIM means filling its D states with realistic
values produced by the virtual user. Specifically, Dynamic Data Generation
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(DDG) is the method used to form a virtual user, which generates user input
artificially at training time, since the involvement of real users is not feasible.
Therefore, DDG is used to fill in the sequential interaction memory during
training. We thus run the system for D iterations with fixed weights to
populate the SIM with simulated user input data prior to backpropagation.
This is done anew each time the image is encountered in the dataset. We
choose D experimentally with the goal of maximising the performance with
the minimum number of interactions. At the same time, any or all of the D
states may remain empty both at training and testing time to obtain a fully
automatic segmentation result to be validated or subsequently refined. The
DDG routine is given below as pseudo-code applicable to one specific sample
image:

1. Input click probability p, maximum number of training interactions ¢
2. If p =1, simulate an initial click for each component

3. If p < 1, simulate a corrective click for each class for the largest misla-
belled region with probability p

Updatepasp%p—%

(rule 3) Randomly choose a class and ignore its simulated clicks

(rule 4) Ignore 80% of all simulated clicks

Form the interaction mask M from the simulated clicks

X NS T

Output click probability p, interaction mask M
The click probability p is managed for each image independently. It is initially

set to 1 and then updated by the DDG routine.
5. Experimental Results

We describe the experiments and report the obtained results, which are
then discussed in section 6.

5.1. Experimental Setup

We give implementation details and describe data augmentation and
training.
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5.1.1. Implementation

The proposed framework and methods are not tied to a specific network
architecture. We instantiate our system with an existing encoder-decoder ar-
chitecture featuring RNN modules, also called AlbuNet [42], optionally mod-
ified with LSTM layers in the decoder. Specifically, we use a ResNet34 [19]
encoder and a decoder equipped with a standard convolutional layer and a
matching convolutional LSTM (Long Short-Term Memory) layer at every
step of the upsampling path as shown in figure 5. The reasons for which we
chose this UNet are its known efficiency in the field of medical image analy-
sis, as shown in [5, 27]. The choice of the encoder follows the same principle.
However, our framework is flexible as it allows for the use of various base ar-
chitectures that can accommodate an additional temporal dimension in the
input image, such as a different UNet or, for example, DeepLab v3 [6]. This
adaptability is a strength of our framework.

LSTMs are generally effective at processing sequences of data due to cells
containing input, output and forget gates. A typical input for an LSTM
network is sequential data where the order and timing of individual elements
are significant. This type of data is characterized by its temporal or se-
quential nature, meaning that the relationship between elements depends on
their position in the sequence. These properties make LSTMs beneficial for
our framework, where LSTM layers reinforce sequentiality by retaining and
reusing useful information about previous interactions and improve perfor-
mance, as shown by the ablation study in section 5.2.1.

As compared to CIM, for which the network’s input tensor has Ce, =
1+ N channels, where N is the number of classes, with SIM, we have Cy;,, =
1+ 2DN channels, where D is the SIM’s size or ‘depth’. The first channel
is the image. The factor 2 comes from each of the D states containing both
N interaction masks and N probability maps of intermediate segmentation
results. For an LSTM, the input data shape could be represented as a triplet
‘samples, time steps, features’, which aligns well with SIM as the samples are
taken as the 2N masks, the time steps as the D states and the features as
the image. Intuitively, each time step contains a series of user interactions.
The network then processes this data, learning from the sequence of features
across time steps for each sample. For practical reasons, to not lose the
possibility to use pre-trained encoders, we introduced LSTM layers only in
the decoder, which limits the effect on performance. However, the proposed
framework does not prohibit other configurations.
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Figure 5: A general schematic of the network architecture used in the complete proposed
system (DDG-SIM): the ResNet34 encoder pre-trained on ImageNet and a decoder with a
convolutional LSTM layer at every step of the upsampling path.

The encoder was pre-trained on ImageNet [11] as a source dataset and
subsequently fine-tuned on the proposed MRI female pelvis dataset without
frozen layers. While the domain gap is present, transfer learning from Ima-
geNet still proved beneficial for the stability of the training process and the
final model’s performance. To counter the dataset imbalance, we use the
focal loss [31] and dataset-wide precalculated per-class weights.

5.1.2. Data Augmentation and Split

To avoid inter-slice and inter-patient bias, we denote a single MRI series
as the smallest, undivisible element of the dataset and split the dataset as
follows: the training set with 77 series containing 2449 slices, the validation
set with 10 series containing 308 slices and the test set with 10 series con-
taining 309 slices. We padded lower resolution images to 512 by 512, which
is the maximum resolution of a single image for our data. We preprocessed
all data via normalisation, standardisation and N4BFC [48], and performed
random data augmentation: vertical and horizontal flipping, intensity shift-
ing for brightness, gamma correction for contrast, as well as blurring and
unsharp masking for sharpness adjustment.

5.1.3. Training

We trained the network on a single Nvidia P40 GPU with 24 gigabytes of
video memory. The chosen batch size was 4. We employed Adam optimizer
with standard parameters and a static learning rate of 0.00005. The shape
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Figure 6: Performance on the validation set. The model at the 73rd epoch was chosen for
the evaluation.

of a single input tensor is the shape of the SIM, which is Cy,, = 1+ 2DN,
where D is the memory’s depth and N is the number of classes, including
background. The network was trained for 75 epochs with the best perfor-
mance on the validation set achieved at the 73rd epoch. The performance
on the validation set given as IoU is shown in figure 6. It is shown that
the training remains stable with the SIM as an input and the DDG training
scheme.

5.2. Automated Evaluation
We give an evaluation performed automatically using the virtual user.

5.2.1. Ablation Study

We compared one automatic method and four interactive methods on the
created female pelvis MRI dataset, where SDG is Static Data Generation
and DDG is Dynamic Data Generation:

1. Auto: U-Net with ResNet34 encoder [28];

2. SDG-base: memory-less system trained with SDG, as described in [1];
3. SDG-CIM: network from SDG-base used with a CIM overlay;

4. DDG-CIM: system with CIM trained with DDG;

5. DDG-SIM: complete proposed system with SIM trained with DDG.

The evaluation setup uses the same network architecture, preprocessing and
data augmentation across all systems with a minor network architecture
change for DDG-SIM. DDG-SIM features a ResNet34 encoder with (1-4) a
generic decoder or (5) an LSTM-decoder as described in section 5.1. At
test time, clicks are generated via the virtual user.
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Table 1: Experimental evaluation results where bold means best and underlined second
best. Rows (1-9): existing methods, rows (10-14): ablation study for the proposed frame-
work. GrabCut [38], VMN, NuClick and BRS versions are used per-class, hence background
metrics are not provided.

Method | Background | Uterus Bladder | Tumours Cavity
IoU | Dice | IoU | Dice | IoU | Dice | IoU | Dice | IoU | Dice
GrabCut - - 17.625.114.821.0|21.7(29.8| 80 | 124
VMN - - 57.6 | 72.0| 78.3 | 86.1 | 42.6 | 55.7 | 19.8 | 27.4
NuClick - - 23.6 [ 33.141.3|54.9|47.0|55.5|52.2|67.7
NoBRS - - 36.7 149.7120.7|30.7 324 |44.1 | 7.4 | 12.1
BRS - - 37.4150.5|21.5|31.6 331|448 | 7.8 | 12.6
RGB-BRS| - - 37.5150.621.6|31.7|33.1|449| 7.8 |12.6
f-BRS-A - - 37.3150.5123.9(32.033.3|45.1| 7.7 | 124
f-BRS-B - - 38.3(51.623.1(33.3|33.8|45.4] 9.6 |14.6
f-BRS-C - - 37.5(50.7|21.7|31.833.0(44.8| 7.9 | 12.7
Auto 99.2 99.6 | 64.7|78.6|71.9]83.6|60.4| 753|404 |57.6
SDG-base | 99.1| 99.6 | 61.7|76.3 | 70.1 | 82.4 | 62.5|76.9 | 21.1 | 34.9
SDG-CIM | 99.3 | 99.7 | 66.5|79.9|83.9[91.2|72.8|84.3|29.0|44.9
DDG-CIM | 99.6 | 99.8 | 77.4 | 87.3 |87.4|93.3| 77.7 | 87.4 | 39.6 | 56.7
DDG-SIM |99.6| 99.8 |79.8 | 88.7|87.093.0 (79.0|88.3|57.8/73.3

5.2.2. Comparison with State-of-the-Art

We compared our framework with two classical interactive methods and
eight interactive deep learning methods on the created female pelvis MRI
dataset:

1. VMN: volumetric memory network trained with SDG, as described in [53]
and inputting extreme clicks;

2. NuClick: a segmentation network introduced for microscopy images
and trained dynamically in [26];

3. BRS: a backpropagating refinement scheme for mislabeled locations cor-
rection, training-less by definition, in [23];

4. RGB-BRS: BRS minimised with respect to the RGB image instead of
distance maps in [46];

5. £-BRS variants: improved BRS, £-BRS solves an optimization problem
with respect to auxiliary variables instead of the network inputs as in
BRS

(a) £-BRS-A: introduces scale and bias after the backbone
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(b) £-BRS-B: introduces scale and bias before the first separable con-
volutions block in DeepLabV3+ [7]

(c) £-BRS-C: introduces scale and bias before the second separable
convolutions block in DeepLabV3+ [7]

(d) NoBRS: using network architecture from [23] without BRS.

For VMN [53], BRS variants [23, 46] and NuClick [26] we use the code made
publicly available by the authors and recommended parameters. We trained
VMN [53] on our dataset, reducing the batch size to 4 to keep the computation
overhead feasible. For the BRS variants [23, 46] and NuClick [26] we used
pre-trained models made publicly available by the authors. The models are
resnet3]_dh128_sbd and NuClick_Nuclick_40xAll respectively. The metrics
are reported in table 1.

5.2.3. Click Number Influence

An interactive segmentation system refines the segmentation result via
user interactions. In essence, this is inputting clicks into the system to pro-
vide additional information. Hence, the number of clicks is a key influencing
factor in the framework’s performance.

We perform a systematic evaluation of the influence of the number of
clicks at train and test time on the segmentation accuracy. For this, human
user involvement is not feasible due to the number of series and the need
to re-segment them for each evaluation setting. Therefore, we perform this
evaluation as in section 5.2.1 via the virtual user generating simulated inter-
actions at test time. DDG-SIM is used for the evaluation, where we control
only two parameters: the number of clicks simulated at train and at test
time. Three setups are provided: (1) training - fixed maximum click num-
ber, testing - varying click number; (2) training, testing - equal click number;
(3) training - Auto, default DDG-SIM, modified DDG-SIM with rules 2-4 from
section 4.2 disabled, testing - 0 clicks. The purpose of these setups is as
follows: (1) evaluate the influence of the number of clicks at testing on the
performance; (2) evaluate the influence of the number of clicks at training on
the performance; (3) evaluate the performance of DDG-SIM when no clicks are
provided with and without rules 2-4 from section 4.2, which should improve
the system’s ability to automatically segment regions.

For setup (1), the maximum number of clicks simulated at train time is
fixed to 3 which is the default value for DDG-SIM, while the number of clicks
at test time varies. We then report IoU for all classes when simulating 0
(Auto), 1, 2, 3 and 6 clicks at testing in figure 7.

19



Figure 7: DDG-SIM: Influence of the number of clicks simulated at test time on the IoU
score, compared with Auto (0 clicks). The strongest improvement presents itself at the
first click. Bold means best.

For setup (2) we fix the number of clicks simulated both at train and test
time so that they are equal (such as a maximum of 3 clicks at training and
exactly 3 clicks at testing) and change them jointly. We then report the ToU
for all classes when simulating 0 (Auto), 1, 2, 3 and 6 clicks in figure 8.

For setup (3), we evaluate DDG-SIM performance when providing no clicks
at testing. We compare Auto, default DDG-SIM and modified DDG-SIM with
rules 2-4 from section 4.2 disabled. We report IoU for all classes in figure 9.

5.2.4. Generalisation Study

We further evaluate the complete proposed system DDG-SIM on two other
tasks with different modality and objects of interest - namely, on liver and
pancreas CT segmentation. We use the “Liver Tumours” and “Pancreas Tu-
mour” medical segmentation decathlon datasets [45] and compare our frame-
work’s performance on these data to the methods participating in the corre-
sponding challenge [2] as well as VMN [53]. Each of the datasets was initially
assembled for the task of multi-class segmentation with liver CT targets be-
ing liver and cancer, and pancreas CT targets being pancreas and mass
(cyst or tumour). While this challenge is aimed at automatic segmentation
approaches, a comparison with interactive methods may further prove their
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Figure 8: DDG-SIM: Influence of the number of clicks simulated at train time on the IoU
score, compared with Auto (0 clicks). The number of clicks simulated at training and
at testing are equal and change jointly. The overall performance improvement is less
noticeable after 3 clicks. Simulating 3 clicks at training is our choice for DDG-SIM with the
current data. Bold means best.

feasibility for the tasks usually requiring expert’s validation and potential
refinement. For VMN [53] we use the code made publicly available by the
authors and recommended parameters on these new datasets. We reduce the
batch size to 4 due to the limited GPU availability.

The ground truth labels for the test set were not made available for this
challenge. We thus randomly split the publicly available training sets for
both liver and pancreas, using approximately 70%/15%/15% for training,
validation and test respectively. As a result, the split is 91/20/20 series for
the liver and 198/42/42 series for the pancreas datasets. Effectively, this
means that the training is performed on much lower-size datasets than those
of the competing methods, which makes it more challenging. To add to this,
the key difficulty of these datasets is label imbalance with both large (1iver,
pancreas) and small (mass or cancer) targets. The metrics are reported in
figure 10 for both liver and pancreas.
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Figure 9: DDG-SIM: Performance with O clicks provided at testing. Auto, default DDG-SIM
and modified DDG-SIM (with rules 2-4 from section 4.2 disabled) are compared. Disabling
the rules makes automatic segmentation fail. This illustrates the automatic segmentation
capability of DDG-SIM as brought by the DDG training process and hence the importance
of having varied interaction data when simulating clicks.

5.3. User Evaluation

We performed a user study with DDG-SIM involving eight medical experts,
using a specifically developed graphical user interface. All experts have a
background in gynaecology, with one exception, a radiologist with specialisa-
tion in urology and junior experience level. For clarity, we assign a letter and
a number to each expert as follows: A - senior gynaecology surgeon; B1-2 -
senior radiologists; C - junior gynaecology surgeon; D1-3 - junior radiologists;
E - junior urologic surgeon with experience in gynaecology.

We randomly selected 6 test series containing 144 slices in total, where
1 series is used to familiarise the users with the graphical user interface
and 5 series are used in a random order for user evaluation. MRI image
samples from each of the series can be seen in figure 1. We evaluate the user
performance in figure 13 using mIoU per series for each expert in comparison
to the Auto method as in section 5.2. In the same manner, the elapsed time
is compared in figure 12. The segmentation results are compared with the
Auto method in figure 11. Figure 14 shows mloU over each class per series.
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Figure 10: DDG-SIM experimental evaluation results given as Dice on the medical segmen-
tation decathlon “Liver Tumours” (liver - blue, cancer - red) and “Pancreas Tumour”
(pancreas - purple, mass - orange) datasets in comparison to the automatic segmentation
approaches participating in the challenge, where bold means best. VMN is a state of the art
interactive segmentation approach. The number of simulated clicks is provided for both
training and testing in the bottom-right hand corner.

5.4. Inference Time Analysis

We report the average inference time for a single image and compare it
with those of the existing interactive segmentation approaches in table 2.
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Figure 11: Segmentation results, where uterus - green, bladder - yellow, tumour - red,

cavity - pink and user clicks - cyan: (a) ground truth; (b) Auto; (c) human user-
controlled DDG-SIM.

6. Discussion
We discuss the results obtained in the previous section.

6.1. Automated Evaluation

We discuss results obtained with the virtual user.
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Figure 12: User Evaluation: mIoU over all classes per medical expert per series.

6.1.1. Ablation Study

The metrics are reported in table 1, where we observe that the IoU and
Dice are in agreement. They show that DDG-SIM outperforms, with a sub-
stantial margin for cavity, a significant margin for uterus and tumour,
a similar result for background, and a slight disadvantage for bladder, for
which DDG-CIM slightly outperforms at 87.4% against 87.0% IoU. This demon-
strates the robustness of the proposed framework. The ablation study shows
a steady increase in performance, starting with SDG-base and adding the
proposed components towards DDG-SIM. Auto outperforms both SDG-base
on uterus, bladder and cavity, and SDG-CIM on cavity. This can be at-
tributed to static data generation, which does not perform well for smaller
numbers of interactions. In our experience, the higher the number of inter-
actions at training, the lower the effectiveness of individual interactions at
test time. While the opposite is also true, it can be observed from the results
that certain systems may not be able to learn efficiently from a small number
of interactions at training. We observe a comparatively lower accuracy for
cavity, whose IoU lies between 21.1% and 57.8%. We explain this with its
low volume, which accounts for only 0.054% of the dataset.

Examining other existing methods, this is also true for VMN, which achieves
a good performance on bladder, but struggles with the more difficult classes.
We find that this might be additionally due to the low number of slices in a
standard female pelvis MRI scan, where the classes such as tumour or cavity
may be found only on a single slice out of the whole volume in addition to
occupying just a few pixels, which may interfere with the approach. Still,
VMN shows a notable performance on bladder, with an IoU of 78.3%, which
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Figure 13: User Evaluation: Segmentation time per medical expert per series.

is competitive but still falls short of DDG-CIM’s 87.4%. However, it struggles
significantly across the other categories, particularly with cavity, where it
is greatly outperformed by DDG-SIM’s superior IoU of 57.8%.

Interestingly, NuClick demonstrates a notably high performance in seg-
menting the cavity class with an IoU of 52.2%. However, it still falls short
when compared to DDG-SIM, which achieves an IoU of 57.3% in the same
class. The relatively high performance of NuClick in cavity segmentation
may be associated with its design and optimization for microscopy image seg-
mentation tasks. The visual characteristics of cavity regions in such images
may be similar to those that NuClick was specifically intended to segment,
possibly contributing to its success in this particular class.

The BRS and £-BRS variants display a range of results, with none match-
ing the DDG-SIM scores. The f-BRS-A, f-BRS-B, and £-BRS-C methods also
fall short, with the highest IoU among them for cavity being only 9.6%,
indicating a substantial gap when compared to DDG-SIM. Overall, the supe-
riority of DDG-SIM proves it to be a solid segmentation framework in view of
the state of the art.

6.1.2. Click Number Influence

Three setups are provided: (1) training - fixed maximum click number,
testing - varying click number; (2) training, testing - equal click number;
(3) training - Auto, default DDG-SIM, modified DDG-SIM with rules 2-4 from
section 4.2 disabled, testing - 0 clicks.

Setup (1). We report IoU for all classes when simulating 0 (Auto), 1,
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2, 3 and 6 clicks at testing in figure 7. The metrics show a substantial im-
provement of the segmentation accuracy against Auto when at least 1 click
is provided. Furthermore, a notable growth of accuracy is also observed for
all classes when transitioning to 2 clicks. At the same time, while there
is a further regular improvement for cavity and bladder beyond 2 clicks,
the other classes improve only slightly. This can be explained by two fac-
tors. First, a single provided click produces an IoU score close to the upper
performance boundary achieved by the proposed framework, as seen in the
ablation study. This does not leave much room for improvement with a given
training set size (77 series, 2449 slices). Second, during training, clicks are
currently simulated with a maximum of 3 for all systems. This is done to
minimise the amount of interaction required from a human user at test time.
The proposed DDG scheme brings the average number of simulated clicks at
training even lower, which contributes to the performance stabilising below
the maximum click threshold. While still limited by the current performance
ceiling, increasing the maximum number of simulated clicks to 6 per class
during training may allow to achieve a more stable performance growth with
each added click at testing time. At the same time, with 6 clicks a human
user evaluation experience would be negatively affected. Indeed, each indi-
vidual click would bring less improvement, generally requiring more clicks for
the same task, which is undesirable in a clinical setting.

Setup (2). We report the IoU for all classes when simulating 0 (Auto),
1, 2, 3 and 6 clicks in figure 8. The metrics show a substantial improve-
ment of the segmentation accuracy against Auto, demonstrating robustness
of DDG-SIM for any number of clicks at training. The strongest performance
improvements are observed between Auto and training DDG-SIM with 1 click,
as well as between training DDG-SIM with 1 click and with 3 clicks. Perfor-
mance with 2 clicks shows an overall improvement over that with 1 click, but
cavity and tumour classes show notable and slight performance decrease
respectively. This can be explained by the dynamic data generation rules
we use described in section 4.2, which target the increase of individual click
efficiency. Specifically, rules 2-4 are such that with the chosen maximum of 1
click at training, it is often the case that no clicks will be simulated at all for
many of the labels. This makes the system more reliant on the underlying
image features, which places it closer to Auto, but still provides a signifi-
cant performance improvement due the interactivity. In contrast, the chosen
maximum of 3 clicks at training allows for more consistent click simulation,
which significantly improves performance. At the same time, the maximum
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of 2 clicks at training is an in-between case, where the actual simulated click
number does not seem to be sufficient for the cavity and tumour labels,
which are represented by multiple blobs of varying size and clarity. In this
case, clicks are simulated only for a small number of these blobs (such as for
1 out of the 7 tumours in a single slice), which does not allow for consistent
learning from clicks and reduces the performance on these classes.

Setup (3). We report loU for all classes in figure 9. The metrics show
that when providing no interactions, default DDG-SIM significantly outper-
forms modified DDG-SIM, where the chosen maximum number of clicks was
consistently simulated for each class during training. Specifically, default
DDG-SIM and modified DDG-SIM are respectively 50% against 9% in terms
of the mloU score (background class excluded). Simply put, this figure
shows that the use of DDG allows our framework, when used without user
interactions, to obtain performance comparable with state-of-the-art fully-
automatic segmentation. It also shows that, should the proposed rules 2-4
of DDG were disabled, the framework would fail to perform any meaningful
segmentation without user interactions, indicating strong dependence on the
number and exhaustivity of interactions provided at training time. Clearly,
the more interactions are provided at training time, the lesser is the network’s
capability for automatic segmentation in general and for segmentation of un-
clicked components in particular. Intuitively, if interactions are scarce, the
network focuses more on image features, resulting in higher automation at
testing time. While Auto with 59% mloU outperforms both default and
modified DDG-SIM when no clicks are provided, the interactive approaches
accuracy can be improved further with additional clicks as shown in figure 8,
which is not the case for Auto.

6.1.3. Generalisation Study

The metrics are reported in figure 10 for both 1liver and pancreas. They
show that the proposed interactive framework outperforms the best auto-
matic methods on all classes, with a substantial margin for liver cancer and
pancreas mass - 90% against 74% and 85% against 52% respectively and
a slight advantage for liver and pancreas classes - 96% against 95% and
84% against 79% respectively. This shows that the proposed framework is
generically applicable to segmentation tasks and data types.
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Figure 14: User Evaluation: mIoU over all medical experts per class per series.

6.2. User Evaluation

The elapsed annotation time per series is compared in figure 12. We note
that the segmentation time is low enough to be clinically feasible, even if the
users are barely acquainted with the system. Indeed, the average elapsed
time for all series is 5’56”, which is largely below the reported average of
25" for existing systems. Series 4 was a complex case with 11 tumours and
a heavy deformation of the uterus shape, taking 12'26” on average for our
system and more than 40’ for existing systems. Furthermore, as seen in
figure 1, each of the series used for user evaluation is challenging in its own
manner. While the proposed framework facilitates the segmentation process,
interpretation of the MRI images by the human user remains a task in itself.
This explains the elapsed time and the mloU score discrepancies between
senior and junior experts, especially noticeable for series 4 with the peak of
20’28” for junior experts, 8'47” for senior experts in gynaecology and 21°05”
for E, the junior expert in urology. Figure 13 shows that our framework
substantially outperforms automatic segmentation on all data with a lesser
improvement for series 5. This is especially noticeable for the difficult series
4, which achieved a score of 46,0% for Auto against the average of 66,7%
over all interactive human-guided segmentations. While expert E mainly
specialises in urology, only the segmentation time appears to be affected,
thus attributed to an increased difficulty in image interpretation. Still, the
segmentation accuracy of expert E is on par with the other experts.

Figure 14 shows mloU over each class per series. We observe a compara-
tively low accuracy of cavity segmentation during user evaluation, similarly
to the automated tests. This is because of the small size of the cavity and its
lack of clear outer contours. In addition, the slices may split the cavity in a
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Table 2: Reported average inference time and standard deviation for DDG-SIM in compari-
son to existing interactive segmentation approaches, where bold means best and underlined
second best.

Method Inference time (ms)
BRS [22] 810
Interactive 3D nnU-Net [20] 500
TteR-MRL [30] 470
£-BRS-B [46] 926
FocusCut [32] 118
FocalClick B0O-S1 (on CPU) [§] 100
VHN [53] 53

DDG-SIM (ours) 472 +£6.2

[40] 40

manner that makes it appear in several isolated small components, in which
case some components may be ignored by the users. This creates a variabil-
ity in the dataset and a potentially large discrepancy between the ground
truth and the user segmentation. While this is typical for other female pelvis
MRI objects of interest, the cavity’s small size strongly amplifies any slight
segmentation discrepancy.

6.3. Inference Time Analysis

As seen in table 2, our framework with 47.2 + 6.2ms per image is on
par or significantly faster than existing methods. This amounts to approxi-
mately 21 FPS, which is well adapted for an interactive clinical application.
Hence, usage of SIM with here up to 5 classes does not introduce significant
overhead and leaves sufficient room for additional computational complexity
(e.g. additional classes or a deeper network).

6.4. Implications and Limitations

On the most general level, we find that temporal information associated
with user interactions is overlooked in existing methods. Simply put, CIM,
which is used in most previous works, does not convey the sequential nature of
interactions, discarding the temporal component naturally present in the way
the user interacts with the annotation software. However, the proposed SIM
conveys this information and its use improves segmentation performance.
Furthermore, DDG during training has a significant impact not only on the
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Figure 15: Segmentation failure cases, where uterus - green, bladder - yellow, tumour -
red, cavity - pink, user clicks - orange and ground truth - cyan: (1,7) most widespread
case with contours having a slight divergence with the ground truth; (2-5,7-8) under-
segmentation; (2,4-5,6-8) over-segmentation. The maximum number of clicks is fixed to
three. Additional clicks allow to notably reduce under- and over-segmentation, resulting
in segmentations comparable to (1,7). The metrics for cavity, present in (1-3,5-7), are
affected most strongly in all cases due to its size.

method’s performance, but also on the user experience. Specifically, the
ensemble of interaction generation rules in section 4.2 allows the network
to produce automatic segmentations comparable to fully-automatic methods
without user interactions, as well as to segment most of the objects of interest
at once by providing a single click for any one of them. This has a large
impact for the time-constrained clinical environment.
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We show segmentation failure cases in figure 15. From our experiments we
observe that additional clicks allow to reduce under- and over-segmentation
until a case similar to cases 1 and 7 in figure 15 is reached. However, remain-
ing divergence from the ground truth notably affects cavity metrics due to
cavity’s size.

One limitation of our method is the impact on training speed. The neces-
sity to populate the sequential memory by doing multiple inferences increases
the time to process each image. However, the inference time being 47.2 +6.2
ms, the training time remains reasonable, even with multiple additional in-
ferences per image. Another constraint is the sequential memory size - in-
creasing memory size Cyy, increases the computational complexity, especially
when using LSTM blocks. However, making the memory too large seems to
be counter-intuitive, since the interest lies in having the minimal number
of clicks required for a high-quality segmentation at testing, which implies
limiting the number of clicks at training and hence Cy, in some manner.
We show experimentally that, in most cases, providing more than 3 clicks
has diminishing returns, and 3 or less clicks produce the most important
improvement, suggesting that large Cy,, is actually counter-productive.

The proposed framework utilises a parameter for the maximum number
of clicks, which serves as a starting point for the dynamic data generation
described in section 4.2. In our experiments we extensively show that 3 or less
clicks produce the results surpassing those of the comparable frameworks on
multiple tasks. However, one can imagine that the maximum number of clicks
may change depending on the task, making it a parameter to tune, which
might be undesirable if more automation is desired. For this, it might be of
interest to select it in an automatic manner for each image in future work.
For example, simply by calculating the metrics for each click generation at
training time and decreasing the probability of adding a new click along with
the increase in accuracy.

7. Conclusion

We have proposed a general deep learning-based interactive multi-class
image segmentation framework, with a user interaction loop and a sequen-
tial interaction memory. The embedded network is trained on dynamically
generated data to improve performance and reduce interaction-dependence.
We have demonstrated our framework in female pelvis MRI segmentation,
using a new dataset. Furthermore, we successfully applied it to the tasks of
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liver and pancreas CT segmentation from the medical segmentation de-
cathlon challenge, showing the best overall performance. We have evaluated
our framework against existing work in an ablation study with the standard
metrics, observed the influence of the number of interactions at test time on
performance and conducted a user evaluation, involving 8 medical experts
with gynaecology background and varying experience levels to use our soft-
ware via a specifically-developed GUI. This shows that our framework largely
outperforms existing systems in accuracy and drastically reduces the average
user segmentation time from 25’ to 5’56” when used by either senior or junior
experts.

We plan to further improve the proposed solution towards its clinical
usage. First, through application to other segmentation tasks and expansion
of the user study. Second, by using it to aid annotation, reducing interaction
demand through SIM initialisation with automatic segmentation. Third, by
expanding the neural network’s direct inputs to 3D images, to further shorten
the segmentation time thanks to the natural dependencies that exist between
the multiple slices.
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