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Abstract

Retexturing videos of deformable surfaces is an important problem in
computer vision as it has a wide variety of applications. A key step in pro-
ducing visually pleasing retexturing results is registration. Traditional regis-
tration methods require a certain amount of texture on the surface in order to
capture all the deformation details. However, in cases such as cartoon videos,
there is a high number of smooth contours and only little or spurious texture.

We propose a novel method for registering and retexturing cartoon-like
videos by means of joint contour detection and point to point curve match-
ing. The main idea is to fit a parametric 3D active surface model in the
spatiotemporal space, utilizing a regularization term which limits the change
in curvature over time. We show that with cross-validation it is possible to
automatically estimate a suitable value for the regularization parameter, con-
trolling the tradeoff between the regularization and the data term.

We report convincing registration and retexturing results on cartoon videos.

1 Introduction

Realistic retexturing of non-rigidly deforming surfaces is an important problem in com-
puter vision as it has a wide variety of real world applications, especially in the movie and
entertainment industry.

The main goal of our work is to perform registration and retexturing of challenging
videos of non-rigid surfaces where traditional methods would fail. Such challenging cases
are often found in cartoons. An example is given in figure 1 where the nose region is to
be registered and retextured. This is a particularly difficult task, as there is only little or
spurious texture present and the contour of the region is deforming.

For non-rigid surfaces in general the registration problem is difficult, since the shape
of the scene changes between the frames. To deal with non-rigid motion Brand [5] repre-
sents the non-rigidity as a linear combination of basis shapes. Olsen et al. [12] suggests
the use of temporal smoothness priors and surface shape priors. These methods require
that the amount of texture in the scene is sufficient for feature point detection and un-
ambiguous matching. If the observed surface is predominantly void of texture, or if the
texture is poorly distributed, it is not possible to capture sufficient feature point corre-
spondences for correctly modeling the deformations.



Figure 1: Image 1 and 2 from left: Two frames from a cartoon video showing deforming
nose region and lack of texture. Image 3: One of the closed curves from the 3D active
surface model seen encapsulating the deforming region. Image 4: The final retexturing.

Modeling the deformations of a sparsely textured surface has recently been investi-
gated by Salzmann er al. [15]. However their approach requires that local deformation
models are learned in advance.

The possibility of combining point trackers with contour trackers, to handle cases with
sparse texture, has also been examined. In [1] Agarwala et al. uses a point tracker to track
points lying on extracted contours, hereby aiding the creation of cartoon animations from
real video footage. A drawback of the method by Agarwala et al. is that it requires hand
editing of the extracted contour tracks. Bartoli et al. [4] takes both point and curve corre-
spondences into account when capturing deformations. This approach partially redeems
the requirement for a large number of point correspondences.

In some cases however it is not possible to capture enough point correspondences for
the above mentioned method to work reliably. Such cases often arise in cartoons, where
the amount of texture is limited and the number of corner points scarce. The two main
contributions of this work are:

e First, §3, we present a method for registering videos relying solely on the presence
of strong contours. The contour model is based on a 3D parametric active surface
model. The standard active contour model was introduced by Kass et al. [9] and
later extended to 3D [7, 11]. In our case the 3D active surface is a collection of
closed curves, each lying in a separate image in the video, creating a tubular shaped
surface spanning the spatiotemporal space. We introduce a novel regularization
term to the energy functional of the 3D active surface that enables joint contour
detection and point to point matching of the curves in the 3D active surface. We
match the curves based on their spatial curvature as this is the only visually mean-
ingful cue that is available. We assume that the region of interest is not subject to
occlusions and deforms smoothly.

e Second, §4, we address one of the inherent problems with the active contour model:
automatically choosing the value of the regularization parameter. The regular-
ization parameter controls the tradeoff between the data and the regularization
term. Often the value of this parameter is chosen based on empirical observations
[2, 6, 13]. Instead we propose to automatically compute a suitable value for the
regularization parameter by maximizing the predictivity of the 3D active surface
using k-fold cross-validation.

The general idea of fitting active surfaces to videos for retexturing has been tried
before by Collomosse et al. [8]. Though their use of homographies for mapping between
regions limits, their method to the retexturing rigid objects.



In order to perform the final retexturing we retrieve a set of R? — R? Thin-Plate
Spline (TPS) warps between a selected reference frame and the remaining frames. The
data points for computing the TPS warps are extracted from the curves in our 3D active
surface by uniformly sampling each curve at the same interval.

Finally experimental results demonstrating our approach on several challenging data-
sets are reported in §6.

2 Preliminaries and Background

Notation. Matrices are written in sans-serif, e.g. A and vectors in bold fonts e.g. v. We
denote matrix and vector transpose as AT and v and matrix inverse as A~!. The operator
* represents convolution, I is the identity matrix and ||v|| represents vector two-norm. Full
and partial derivatives are written using Leibniz’s notation.

2.1 Active Contours

The traditional active contour is a parametric curve u(s) = [x(s),y(s)] T, defining an Q =
[0,1] — R? mapping. The curve seeks a position where the energy functional
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is at a minimum. The curve is regularized by penalizing its first and second derivatives,
which measure the tension and bending respectively. The influence of the regularization
terms are controlled by the two regularization parameters ¢(s) and B(s). The data term is
given by the potential function &7 that is derived from the image, such that its minimum
values correspond to desired image features. A potential that encourages the curve to be
attracted to regions with high gradient values i.e. edges, is 2 = —||V(Gs * .#)||> where
4 is a grey scale input image and G a gaussian with standard deviation o.

The active contour model is also valid in 3D [7, 11]. In 3D the standard parametric
active surface is given by w(s,r) = [x(s,r),y(s,7),z(s,r)] " and defines a T x Q = [0, 1] x
[0,1] — R? mapping. The potential function can either be based on true 3D image data
such as medical image data [7], or composed from a series of 2D images stacked together
to create a volume of 3D data. The standard 3D active surface is regularized through its
first and second partial derivatives.

In both the 2D and 3D case the energy functional can be minimized in the variational
framework by deriving the associated Euler-Lagrange equation, and applying an iterative
gradient descent scheme. The energy functional is however not convex, and the initial
solution should therefore lie close to the desired solution.
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du(s) +B(s)

ds

d*u(s)
ds?

2
+ P(u(s))ds (1)

3 Joint Contour Detection and Point to Point Curve
Matching

Active contours in 3D have previously been applied to segment moving objects in im-
age sequences [8]. This can be seen as a batch processing approach to tracking, since a
curve is fitted to all the frames simultaneously. One of the benefits of this approach, as



opposed to the usual frame by frame tracking approach is that a higher degree of tempo-
ral consistency is possible. Our method is based on the same batch processing approach.
However, instead of employing the usual regularization terms that penalize the first and
second derivatives, we wish to penalize changes in curvature between frames. This is mo-
tivated by the fact that the curvature is a visually important cue for distinguishing different
parts of a contour, and in our case it is the only cue we have.

3.1 The Proposed 3D Active Surface Model

The discrete time parametric surface v(s,t) = [x(s,t),y(s,t),t]T is represented by a se-

quence of closed planar curves, one for each value of the discrete temporal variable ¢

i.e., one curve in each frame. The third component of the parametric surface has been

replaced by the discrete temporal variable ¢. This limits the deformation of the surface to

two dimensions, fixing the curves of the surface to their respective frames. The surface

topology is therefore that of an open ended cylinder spanning the spatiotemporal space.
The energy functional we propose is written as
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where A € [0,1] is the regularization parameter controlling the tradeoff between the reg-
ularization term and the potential function, and Z?(v(s,t)) is the value of the potential
function at position v(s,). The potential function is a 3D volume composed by stacking
a series of 2D images.

The regularization term, that is the first term in equation (2), is a third order mixed
derivative. The inner part of the mixed derivative is a second order derivative measuring
curvature, as in the classical active contour formulation of (1). The outer part is a first
order derivative over ¢, enabling us to quantify the difference in spatial curvature along
the temporal dimension. When the energy functional is minimized the regularization
term penalizes pointwise curvature changes. Therefore, if one of the curves in the surface
has high curvature at a specific point, then the curves in the previous and subsequent
frames will try to position themselves such that the difference in curvature for this point is
minimized. This of course holds for every point along the individual curves of the surface.
As a consequence the parametrization of the curves is altered into being perceptually
consistent.

By only penalizing the curvature difference over the temporal domain we also decou-
ple the overall motion of the object from its local deformations.

To regulate the influence of each term in the energy functional we have the regular-
ization parameter A. Large values of A causes the model to be dominated by the regu-
larization term, forcing the curves in the surface to all have the same curvature in each
point. Low values of A however leads to the potential function being dominant. If the
potential function is largely dominant, then we loose the desired property that the regu-
larization term enforces. This also results in the surface not moving at all in parts where
the potential function is non-existent.
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3.2 Computing the Potential Function

The data term of the energy functional is given by the potential function &2. As the input
images we are dealing with originate from cartoon clips, it is clear that a good potential
can be achieved from exploiting the color information. Color segmentation is done in
RGB vector space by first letting the user select a sample region in the first image and
then applying the Mahalanobis distance as a similarity measure for all the pixels in all
images. Often however, the segmented images contain noise i.e. segments that do not
belong to the sample region. We remove the noise by requiring that there is an overlap
between the segmented region in adjacent frames. With the noise removed we are left
with a single segment in each image. We set &, = —||V(Gg * %) |* for t = {1,...,T}
where T is the number of frames and .% is the segmented binary image for frame z. The
resulting 3D potential function & is normalized to lie in the range [—1,0].

The placement of the curves making up the initial 3D active surface is computed from
the segmented binary images .#. A circular curve is placed around the segmented region
in each binary image. These curves are then connected temporally to form an initial
tubular shaped 3D active surface.

3.3 Minimizing the Energy Functional

To find a local minimum of the energy functional in (2) the Euler-Lagrange equation is
first derived by means of variational calculus [14]. The derived Euler-Lagrange equation
has the form

v (s,1)

or2ds*

If the derivatives are approximated by finite differences, the Euler-Lagrange equation can
be solved in a manner similar to that of the traditional active contour [9]. Let the vector v
contain all the values of [x(s,7),y(s,#)] at the discrete nodal points of the surface, and let
f(v) be the vector containing the corresponding values of V.Z(v(s,t)). This enables us to
write equation (3) in the more convenient matrix form

—6A +(1=2)VP(v(s,1)) =0. 3)

Av+E(v) = 0 @)

where A is a block diagonal symmetric positive definite matrix. This matrix contains all
the coefficients given by A. The matrix system is solved iteratively with a gradient descent
scheme, taking explicit Euler steps for the potential function and implicit Euler steps for
the coefficient matrix. Let i be the evolution index and & the gradient descent step size.
The gradient descent scheme is then expressed as

vt = v — §(AVH! +£(v1)) (5)
isolating the unknown v/*! terms on the left leads to the iterative evolution equation
VI = (A (1/8)D7((1/8)v —£(v)). (6)

The solution is assumed to converge when ||[v¥*! — v¥||/n is below a given threshold,
where n is the total number of nodal points.



4 Estimating A With k-fold Cross-Validation

In [10] Lai and Chin suggest a local minimax approach to automatically estimating the
regularization parameter. Their method is however not directly applicable to our case
since they use a discrete energy algorithm as in [2].

Instead of manually tuning the regularization weight A we propose to find a sensible
value by employing k-fold cross-validation. Cross-validation has shown promising results
in the estimation of regularization weights for TPS warps [4, 3]. We point out that trying
to minimize the energy functional (2) over the regularization parameter would not make
sense as the trivial solution A = 0 would always be selected. Instead we maximize the
predictivity of the model over A. We choose k-fold cross-validation over leave one out
cross-validation to reduce the computational expense.

To compute the k-fold cross-validation error we first partition the data i.e., the poten-
tial function images, into k groups of equal size. We set k = 10, so for instance if we have
50 frames then each group contains 5 frames. Next the model is trained on k — 1 groups
and then evaluated on the remaining group. When we remove a group we do not simply
remove the potential function frames. Instead the removed potential function frames are
replaced with empty frames. This means that the evolution of the surface is governed only
by the regularization term in the held out frames. Once the 3D active surface converges we
measure how well the surface predicts the potential function data in the missing frames.
This process is repeated for all k possible choices for the held out group and the error from
the k runs is averaged. We choose the parameter A for which the error is at a minimum.
In practice we apply a heuristic combining parabolic interpolation with golden section
search to find the minimum of the cross-validation error function within the bounds [0, 1].

The experimental results in section 6 show that a suitable value for A is found.

S Implementation Details

To obtain a set of TPS warps that describe the deformations, the curve in the reference
frame is uniformly sampled at some of the discrete nodal points. The corresponding nodal
points in the remaining frames are then simply extracted from the remaining curves in the
3D active surface. This is possible since the parametrization is perceptually consistent

In this manner we obtain a set of J corresponding points p; < p’j for each frame. The
TPS warps are computed on the basis of these points using the method described in [3].
This method is chosen as it also automatically computes a suitable value for the external
smoothing parameter of the TPS compound cost function.

In order to do the initial retexturing of the reference frame, we let the user click 4
points and then compute the homography between these 4 points and the tattoo image
that is to be pasted into the video. The tattoo is pasted onto the reference frame by means
of the computed homography. Since the homography represents a projective mapping,
the reference frame should be selected such that the region being retextured is deformed
as little as possible. Based on these criteria the reference frame is chosen using a semi
automatic heuristic that presents a selection of candidate frames and lets the user make
the final decision. The candidate frames are extracted by examining the roundness and
the area of the contour in each frame. We present the frames that have a high degree of
roundness or a large area, as we found these to often fulfill the above criteria.



When performing the retexturing we first paste the tattoo onto the reference frame and
then transfer the tattoo from the reference frame onto the remaining target frames. When
transferring the tattoo from the reference frame to the target frame we cannot simply use
the forward warp W as this would lead to missing pixels in the transferred tattoo. Instead
the inverse warp W~! is first approximated by a homography. This approximation is
subsequently refined by solving a non-linear root finding problem.

To approximate the inverse warp we compute the homography H that gives the pro-
jective mapping Hq = q’, where q is a point in the target frame and ¢’ is the transferred
point in the reference frame. The source point q' that exactly map onto the target point q
is then computed by solving the non-linear system; find ¢ such that W(q') —q = 0.

6 Experimental Results

We review the performance of the proposed method by applying it to real cartoon video
sequences. The method has successfully been applied to several video sequences. To
illustrate this we have picked two sequences, Lilo and Stitch and Robin Hood, that best as
possible demonstrate the capabilities of our method. Furthermore results are shown that
verify the use of k-fold cross-validation for estimating the regularization parameter A.

6.1 Retexturing Results

Figure 2 illustrates our results at some of the different stages in the algorithm. The top
row contains 4 unaltered images sampled from the Robin Hood sequence. In the remain-
ing rows we have zoomed slightly in on the deforming region of interest, which in this
case is the nose. The nose region exhibits non-rigid deformations while being translated,
scaled and rotated. In the second row the curve correspondences have been plotted with 4
discrete nodal points marked in red. It should be noted that the red points stay in the same
location along the contour of the nose throughout the sequence. The third row displays
the deformed warp visualization grid. The deformation grid in the last column is only
slightly deformed since this frame is close to the reference frame. In the final row the
retextured frames are shown.



Figure 2: First row: 4 sample frames out of a sequence of 100. Second row: Cor-
responding curves with 4 points marked. Third row: Grid showing the deformations
modeled by the TPS warp. Fourth row: The final retexturing.

Figure 3 shows 4 frames from the Lilo and Stitch sequence. The top row displays
the unaltered frames, while the bottom row shows the final retexturing. The retexturing
pattern is that of a lightbulb.

Figure 3: Top row: 4 sample frames out of a sequence of 40. Bottom row: The same 4
frames as above showing the retexturing.



6.2 k-fold Cross-Validation Results

In figure 4 it is confirmed that selecting the A value which maximizes the predictivity of
the model produces visually pleasing results. Setting A too high or too low causes the
curves in the 3D active surface to converge at undesired local minima, while the solution
computed by cross-validation is close to what a human user would chose as being optimal.
Figure 4 right side, shows the cross-validation error as a function of A. The red dashed
graph is computed on the basis of the Robin Hood sequence while the solid blue graph
is for the Lilo and Stitch sequence. It is clear that the two graphs have well defined
global minima, with A = 0.36 for the Robin Hood sequence and A = 0.76 for the Lilo and
Stitch sequence. Choosing A too high leads to the potential function energy being mostly
ignored giving a solution where each curve in the 3D active surface tends to a circle. On
the other hand setting A too low stops the curves from moving if they are too far from the
potential function energy. In both cases the predictivity of the model is poor. It should
be noted that the results shown in figure 2 and figure 3 were obtained with the optimal
cross-validation values of A.

Cross-validation error

120 0z 04 06 08 1
Regularization parameter

Figure 4: Left side: Left, an image from the Lilo and Stitch sequence shown with an over
regularized solution. Right, same image as on the left but with an under regularized solu-
tion. Right side: The cross-validation error as a function of the regularization parameter.
Red dashed curve; Robin Hood sequence, solid blue curve; Lilo and Stitch sequence

7 Conclusion

We developed a method for registration and retexturing of cartoon videos that only relies
on the presence of strong contours. The image contours were extracted on the basis of
color information and a 3D active surface was fitted. The proposed 3D active surface
utilized a regularization term which made possible joint contour detection and point to
point curve matching. The point to point curve matching was based on minimizing the
pointwise difference in curvature between frames. A set of TPS warps were computed,
between the selected reference frame and the remaining frames, from points that were
uniformly sampled along the curves in the 3D active surface.

Furthermore it was shown that the regularization parameter governing the tradeoff
between the regularization term and the potential function could be estimated by k-fold
cross-validation.

In the experiments we reported visually pleasing results for the retexturing of both the
Lilo and Stitch and Robin Hood sequence.
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