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Abstract

We cast SfT (Shape-from-Template) as the search of a
vector field (X, δX), composed of the pose X and the dis-
placement δX that produces the deformation. We propose
the first fully linear least-squares SfT method modeling elas-
tic deformations. It relies on a set of Solid Boundary Con-
straints (SBC) to position the template at X in the deformed
frame. The displacement is mapped by the stiffness matrix
to minimize the amount of force responsible for the defor-
mation. This linear minimization is subjected to the Repro-
jection Boundary Constraints (RBC) of the deformed shape
X + δX on the deformed image. Compared to state-of-
the-art methods, this new formulation allows us to obtain
accurate results at a low computational cost.

1. Introduction
The SfT problem is to reconstruct a 3D deformed surface

from its image and a 3D shape template. Most SfT methods
rely on point correspondences between the template and the
image, defining Reprojection Boundary Constraints (RBC).
These constrain 3D points to lie on the sightlines from the
image, leaving an infinite number of possible 3D deforma-
tions. Physics-based or statistics-based priors are then used
as additional constraints. In physics-based priors, the ge-
ometric and mechanical priors are the most used. While
geometric priors tend to use invariant measures between
deformations, mechanical priors represent the physics that
rules the deformation. In parallel to an extensive study of
isometry-based priors [3, 5, 17, 15, 18, 19], mechanical pri-
ors [1, 2, 10, 7] have recently become a line of investigation
in SfT. They have potential for real applications since they
address a wider class of deformable objects such as organs,
tissues and other elastic objects. In comparison, isometric
SfT is limited to paper and some types of clothes.

Current geometric/mechanical SfT methods suffer from
a certain number of caveats that are summarized in table
1. First, the types of deformations: geometric approaches
[3, 9] may not behave well when the prior is not fulfilled by
the deformation, while mechanical methods [10, 1] cover a
larger range of deformations (such as linear elasticity). Sec-
ond, the tradeoff between accuracy and speed of estimation.

Analytical solutions [3] are fast but with lower accuracy.
Non-linear optimization methods [9, 10] are more accurate
but at a higher computational cost. Moreover, their accuracy
depends on the initialization and on some hyper-parameters.
Methods based on Kalman filtering [1] also require an ini-
tialization step besides the fact that errors may accumulate
over the considered time frame. In summary, physics-based
approaches lack a method which is (i) able to exploit the
mechanical constraints to cover a large deformation range,
(ii) robust to noise, and (iii) both accurate and fast. Devel-
oping such a method is the main goal of this work. The
answer we propose is to use mechanical constraints into a
linear least-squares estimation framework.

We use finite elements (FEM) to represent the surface
and the deformation. This is particularly adapted to SfT and
fits the problem we want to solve. Indeed, only the finite
discrete set of point correspondences has a natural bound-
ary condition through the RBC. Any other point of the sur-
face is free from boundary conditions and is only subject to
the physical prior. Thus, we use the finite set of correspon-
dences as nodes of the elements (triangles). Each element
is subject to the mechanical laws that rule the deformation.
We use a weak formulation of these laws to derive a linear
relation (via the stiffness matrix) between the displacement
of the nodes and the external deforming forces. The assem-
bly of all elementary matrices reconstruct the global stiff-
ness matrix that links the global external deforming force
to the global deformation δX. Minimizing this force sub-
ject to the RBC is a linear least-squares problem that can be
solved very efficiently.

2. State-of-the-Art
Statistical constraints usually represent the deformation

as a linear combination of basis vectors, which can be
learned online either for face reconstruction [12] or for
generic shapes [17, 15, 19]. Non-linear learning methods
were applied in human tracking [16] and then extended to
more generic surfaces [18].

Physical constraints include spatial and temporal sur-
face priors. The isometry constraint [5] requires that any
geodesic distance is preserved by the deformation. This
approach has proven its accuracy for paper-like surfaces
and was extended to conformal deformations [9, 3]. [3]
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Method Deformation Time Acc Noise Init/params

Isometric Conformal Elastic

analytic-GbM-[3] + + − + − − +

iterative-GbM-[9] + + − − + + −
iterative-MbM-[10] + + + − + + −
sequential-MbM-[1] + + + + − + −

linear-MbM-Proposed + + + + + + +

Table 1. Strong (+) and weak (-) points of state-of-the-art physics-
based SfT methods. GbM stands for geometric-based method and
MbM for mechanics-based methods. Time is the computational
cost. Acc is the accuracy of the method to recover the deformed
shape. Noise is the sensitivity of the method to image noise.
Init/params tells if the method requires an initial shape or hyper-
parameters (-) or not (+). Isometric SfT methods are limited to
isometric deformations and are not mentioned.
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Figure 1. New formalization of the physics-based SfT. The dis-
placement field at the solid boundary point is the zero 3-vector.

studied the well-posedness of both the isometric and con-
formal cases. The first SLAM (Simultaneous Localization
And Mapping) method for elastic surfaces was attempted
with fixed boundary conditions [1] and later extended to
free boundary conditions [2]. This approach relies on the
Navier-Stokes fluid-flow equation. It makes use of FEM to
model the surface and approximates the deformation forces
with Gaussians. Both the surface and the forces are es-
timated using an EKF (Extended Kalman Filter). It has
to be noticed that SLAM and SfTare conceptually differ-
ent. In the former a time sequential smoother is embed-
ded in a Bayesian a-posteriori estimator. At the initializa-
tion the scene has to be static. Recently [10] proposed an
SfTmethod with mechanical priors. The approach relies on
stretching energy minimization under reprojection bound-
ary conditions. [7] tested a similar approach with different
mechanical models and orthographic projection. Though
this has proven effective, it has the drawbacks of non-linear
iterative methods: the need for an initialization (that is dif-
ficult to find) and for hyper-parameter setting to obtain an
optimal accuracy.

FEM techniques with mechanical priors have been ex-
tensively used in medical imaging to solve organ segmen-
tation from 3D volume scanning modalities [13, 20]. How-
ever these methods do not address the registration problem
as is usually done in SfT.

3. Mathematical Formulation
Let n be the number of point correspondences. We pro-

pose to formalize SfT as follows: find the 3D displacement
field (X, δX) ∈ R3n × R3n, where: (i) δX minimizes the
norm of the applied forces for the deformation, (ii) X + δX
satisfies the RBC, and (iii) X is a rigid positioning of the
template shape in the deformed frame thanks to the SBC.
See figure 1 for an illustration. Formally speaking, finding
(X, δX) involves two main steps:

1. Find X from X0 with a PnP method applied to the
solid boundary points of SBC. X0 is the template pose
in the world coordinate frame.

2. Find δX such that:

min
δX∈R3n

1

2
‖ K δX ‖2 s.t.

{
P δX = b RBC
S δX = 0 SBC

(1)

Matrix K is the stiffness matrix of size 3n×3n. Note that
f = K δX is thus the vector of external forces to be mini-
mized. P is an n-block diagonal matrix of dimension 2× 3
per block. P and b enforce the fact that the n points must
lie on the sightlines that pass through the n corresponding
points in the deformed image. S is an m × 3n sparse ma-
trix. It adds m depth displacement constraints which to-
gether with the corresponding 2m, among 2n, equations of
RBC set the m solid boundary points. The construction
of matrix P and vector b are straightforward. Consider
a point X + δX on the deformed shape and its reprojec-
tion η =

(
ηx ηy

)>
in the image. The RBC for this point

provides two non-homogeneous equations in the unknown
point displacement δX =

(
u v w

)>
. We use perspec-

tive projection and assume that the effect of the intrinsic
parameters were undone on the image coordinates, which
gives:

U + u = ηx(W + w)

V + v = ηy(W + w)
(2)

or in matrix form as:(
1 0 −ηx
0 1 −ηy

)
︸ ︷︷ ︸

P

uv
w

 =

(
ηxW − U
ηyW − V

)
︸ ︷︷ ︸

b

, (3)

whereX =
(
U V W

)>
. The global matrix P is written

as:

P =

P 1 · · · 0 · · · 0

0 · · · P i 0

0 · · · 0 · · · Pn

 (4)

and b is written as:

b =
(
b1 · · · bi · · · bn

)>
(5)

The next sections are dedicated to the construction of matrix
K with the related assumptions of deformation modeling.
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Figure 2. Local in-plane and out-of-plane deformations. To sim-
plify the representation, we do not consider transverse shear in this
example.

4. Mechanical Modeling
We adapt the plate theory [4] to surfaces which we as-

sume have locally planar properties (2-manifolds). The
equations of plate theory are written in local coordinates
(tangent vectors and normal). Consider first a small flat sur-
face, called the plate reference surface or simply the mid-
surface Ω. We put a local coordinate system xyz on the
mid-surface, x and y being the in-plane axes and z the out-
of-plane axis. Extending h/2 above and h/2 below the z
axis gives the whole surface with thickness h. The one
in the +z direction is by convention called the top surface
(seen by the camera) whereas the one in the −z direction is
the bottom surface (z = 0 being the mid-surface). Such a
three dimensional body is called a plate if the thickness h
is everywhere small, but not too small, compared to a char-
acteristic length L of the local plate mid-surface. The term
small is to be interpreted in the engineering sense and not in
the mathematical sense. For example, h/L is typically 1/5
to 1/100 for most plate structures.

Figure 2 illustrates the different variables of deform-
ing an elementary plate. The local displacement δX =(
u v w

)>
represents the deformation shift from an ini-

tial pose X . The mechanical laws applied to a deforming
local plane relates this shift to the deforming forces. In what
follows, we make explicit the physical relation between
these variables and the deforming forces. In plane stress
theory, both anisotropic scaling and shearing are taken into
account. The equations of equilibrium relates the stress (in-
ternal body forces) to the external forces:

∂σx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ fx = 0

∂σxy
∂x

+
∂σy
∂y

+
∂σyz
∂z

+ fy = 0

∂σxz
∂x

+
∂σyz
∂y

+ fz = 0

(6)

where
(
fx fy fz

)>
are the components of the exter-

nal body forces per unit volume. σx, σy are the in-plane

axial stress component. σxy , σyz and σxz are the shear
stress components. For a thin material, the transverse ax-
ial stress σz is neglected since we assume that the thickness
barely changes after deformation. These equations repre-
sent the combined bending and transverse shear deforma-
tion on thin materials. The bending stress components are(
σx σy σxy

)>
and the transverse shear stress compo-

nents are
(
σxz σyz

)>
. The bending behaviour is asso-

ciated with in-plane deformations and the transverse shear
behaviour is associated with the rotation of surface normals
after deformation.

The constitutive equation provides the relationship be-
tween the stresses and strains. For a homogeneous and
isotropic material, the in-plane stress-strain relation is: σx

σy
σxy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2


︸ ︷︷ ︸

Db

 εx
εy
εxy

 , (7)

where εx, εy are the in-plane axial strain and εxy is the in-
plane shear strain. E is Young’s modulus and ν is Poisson’s
ratio. The transverse shear stress-strain relation is:(

σxz
σyz

)
=

(
E

2(1+ν) 0

0 E
2(1+ν)

)
︸ ︷︷ ︸

Ds

(
εxz
εyz

)
(8)

where εxz and εyz are the rotation angles about respectively
the y and x axes of the local mid-surface caused by the
transverse deformation. The in-plane strains are related to
the displacement by what is called the in-plane kinematic
equation:  εx

εy
εxy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 (9)

The transverse shear strains are related to the displacement
by what is called the out-of-plane kinematic equation:(

εxz
εyz

)
=

(
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y

)
(10)

Combining all these mechanical equations results in a
second order Partial Differential Equation (PDE) in the dis-
placement vector. This PDE requires the displacement to
be twice continuously differentiable. Moreover, using FEM
with such an order is not as stable as for a first order since
the computation would require second order derivations.
For this reason, we derive a weak formulation at first or-
der. This new obtained PDE requires the displacement to
be continuously differentiable and can be easily handled by
FEM.

5. Weak Formulation
The weak formulation method derives from distribution

theory. First, it uses scalar products of the PDE with so
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called test functions. Second, thanks to integration by parts,
the derivatives on the unknowns are transported to test func-
tions and boundary conditions are exhibited. Finally, after
some appropriate manipulations, we end up with a first or-
der PDE that can be represented easily with FEM.

5.1. Scalar Product with Test Functions
Multiplying equation (6) by the test functions(

α β γ
)>

, we obtain:

∫ h
2

−h
2

∫
Ω

αβ
γ

>

∂σx

∂x +
∂σxy

∂y + ∂σxz

∂z
∂σxy

∂x +
∂σy

∂y +
∂σyz

∂z
∂σxz

∂x +
∂σyz

∂y

 dΩ dz+

∫ h
2

−h
2

∫
Ω

αβ
γ

>fxfy
fz

 dΩ dz = 0,

(11)

which is valid for any
(
α β γ

)
∈ R3 that fits the SBC.

Here, we denote dΩ = dx dy. Splitting up the parts related
to the bending and transverse shear deformations gives:∫ h

2

−h
2

∫
Ω

(
α

β

)>(∂σx

∂x +
∂σxy

∂y
∂σxy

∂x +
∂σy

∂y

)
dΩ dz+

∫ h
2

−h
2

∫
Ω

αβ
γ

>


∂σxz

∂z
∂σyz

∂z
∂σxz

∂x +
∂σyz

∂y

 dΩ dz+

∫ h
2

−h
2

∫
Ω

αβ
γ

>fxfy
fz

 dΩ dz = 0.

(12)

5.2. Integration by Parts
To remove the derivation on the bending stress and the

transverse shear stress in equation (12), we use integration
by parts:

∫ h
2

−h
2

∫
Ω


∂α
∂x
∂β
∂y

∂α
∂y + ∂β

∂x


> σx

σy
σxy

 dΩ dz+

∫ h
2

−h
2

∫
Ω

(
∂α
∂z + ∂γ

∂x
∂β
∂z + ∂γ

∂y

)>(
σxz
σyz

)
dΩ dz+

∫ h
2

−h
2

∫
Ω

αβ
γ

>fxfy
fz

 dΩ dz−

∫ h
2

−h
2

∫
Γ

(
α

β

)>(
Nx
Ny

)
dΓ dz−

∫ h
2

−h
2

∫
Γ

(
α+ γ

β + γ

)>(
σxznz
σyznz

)
dΓ dz = 0,

(13)

where Γ×z is the boundary of Ω×z. Nx = σxnx+σxyny
andNy = σxynx+σyny are the in-plane stress components
at the boundaries.

(
σxznz σyznz

)
are the transverse shear

components related to the displacement at the boundaries
and

(
nx ny nz

)>
is the surface normal at the bound-

ary points. Substituting the constitutive equation (7) in (13)
gives:

∫ h
2

−h
2

∫
Ω


∂α
∂x
∂β
∂y

∂α
∂y + ∂β

∂x


>

Db

 εx
εy
εxy

 dΩ dz+

∫ h
2

−h
2

∫
Ω

(
∂α
∂z + ∂γ

∂x
∂β
∂z + ∂γ

∂y

)>
Ds

(
εxz
εyz

)
dΩ dz+

∫ h
2

−h
2

∫
Ω

αβ
γ

>fxfy
fz

 dΩ dz−

∫ h
2

−h
2

∫
Γ

(
α

β

)>(
Nx
Ny

)
dΓ dz−

∫ h
2

−h
2

∫
Γ

(
α+ γ

β + γ

)>(
σxznz
σyznz

)
dΓ dz = 0.

(14)

One more substitution of the kinematic equation (9) into
(14) gives:

∫ h
2

−h
2

∫
Ω


∂α
∂x
∂β
∂y

∂α
∂y + ∂β

∂x


>

Db

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 dΩ dz+

∫ h
2

−h
2

∫
Ω

(
∂α
∂z + ∂γ

∂x
∂β
∂z + ∂γ

∂y

)>
Ds

(
εxz
εyz

)
dΩ dz =

−
∫ h

2

−h
2

∫
Ω

αβ
γ

>fxfy
fz

 dΩ dz+

∫ h
2

−h
2

∫
Γ

(
α

β

)>(
Nx
Ny

)
dΓ dz+

∫ h
2

−h
2

∫
Γ

(
α+ γ

β + γ

)>(
σxznz
σyznz

)
dΓ dz.

(15)

Note that replacing
(
α β γ

)
by
(
u v w

)
leads to a

quadratic internal energy term on the left-hand side and an
external energy term at the right-hand side. This equality
states that the external energy spent on the deformation is
fully transferred to the material.

5.3. Change of Variables: from local in-plane dis-
placements to angles of rotation of the patch
normal

Substituting the second kinematic equation (10) into (15)
involves derivatives with respect to z. For thin plates,
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computing such derivative can be very unstable. To over-
come this, we propose a change of variable that will
avoid computing these derivatives. The local displacements(
u v w

)>
can be expressed with respect to the rotation

of the patch normal. When the transverse shear is consid-
ered, the classic Kirchoff laws [4] can be extended to the
following formulas:

u = −z θx(x, y),

v = −z θy(x, y),

w = w(x, y),

(16)

where θx and θy are local rotations about the tangent vectors
y and x. For shear deformable plate, the relation between
these angles and the normal displacement w is:

θx =
∂w

∂x
− εxz,

θy =
∂w

∂y
− εyz.

(17)

Equations (16) and (17) illustrate the fact that a change of
orientation of the patch normal is caused by both bending
and transverse shear. In the case of only in-plane deforma-
tion (e.g. planar stretching), only the transverse shear may
be responsible of the change in normal orientation. The
test function being any function, the changes of variable on(
u v w

)>
can be similarly applied to the test functions

so that we obtain similar terms on the left and right hand
sides of Db and Ds. Let us denote

(
α̃ β̃ γ

)>
the new

test functions obtained from the former test functions with
similar changes of variable (16) and (17). Using these two
changes of variables into (15) yields:

∫ h
2

−h
2

∫
Ω

 −z ∂α̃∂x
−z ∂β̃∂y

−z(∂α̃∂y + ∂β̃
∂x )


>

Db

 −z ∂θx∂x
−z ∂θy∂y

−z(∂θx∂y +
∂θy
∂x )

 dΩ dz+

∫ h
2

−h
2

∫
Ω

(
∂γ
∂x − α̃
∂γ
∂y − β̃

)>
Ds

(
∂w
∂x − θx
∂w
∂y − θy

)
dΩ dz =

−
∫ h

2

−h
2

∫
Ω

−zα̃−zβ̃
γ

>fxfy
fz

 dΩ dz+

∫ h
2

−h
2

∫
Γ

(−zα̃
−zβ̃

)>(
Nx
Ny

)
dΓ dz+

∫ h
2

−h
2

∫
Γ

(−zα̃+ γ

−zβ̃ + γ

)>(
σxznz
σyznz

)
dΓ dz.

(18)

Equation (18) constrains the solution
(
θx θy w

)>
to

be continuously differentiable. This condition is weaker in
term of regularity than the original equation (6) that imposes

(
u v w

)>
to be twice continuously differentiable. This

weaker regularity has also the advantage to let the surface
fold sharply if required.

6. Iso-Parametric FEM
We approximate the whole surface Σ with a mesh of tri-

angle patches Ωj , 1 ≤ j ≤ e, where e is the number of patch
elements. In order to use the FEM approach, we parameter-
ize surface points and the corresponding displacements with
shape functions [6]. We use iso-parametric shape functions
to interpolate the surface points, the displacements and the
test functions. If we consider a triangle patch, then the in-
terpolation scheme is written as:

Q(ξ1, ξ2) =

n∑
i=1

Si(ξ1, ξ2)Q
i
, 1 ≤ i ≤ n, (19)

where (ξ1, ξ2) ∈ R2 is a global parameterization. Q is a
mute variable that can be replaced by the surface point X ,
the displacement w, θx, θy and the test functions α̃, β̃, γ.
{Si(ξ1, ξ2)}1≤i≤n, are real valued differentiable functions
called shape functions. The support of Si is the union of
patches that contains node i. The shape functions must sum
to one for all ξ1, ξ2. Θi =

(
θix θiy wi

)>
is the displace-

ment of node i. τ i =
(
α̃i β̃i γi

)>
are the values of the

test functions at node i.
First we focus on the left-hand side of equation (18) that

we denote El. The right-hand side is denoted Er and will be
addressed right after. We replace the displacement and test
function parameterization of equation (19) into El to obtain
a global equation that uses the global bending stiffness K̃b

and the global transverse shear stiffness K̃s matrices:

El = T>
(
K̃b + K̃s

)
Θ = T>K̃Θ, (20)

where Θ =
(
Θ1 · · · Θn

)>
is the global displacement

3n-vector and T is the global nodal test function 3n-vector.
K̃ is the global stiffness matrix. K̃b and K̃s are the global
bending and transverse shear stiffness matrices (the tilde
symbol represents matrices related to the new variable Θ).
They are assembled from bending and transverse shear stiff-
ness matrices of each element patch:

kb =

(∫ h
2

−h
2

∫
Ω

z2 B>b Db Bb dΩ dz

)

ks =

(∫ h
2

−h
2

∫
Ω

B>s Db Bs dΩ dz

)
,

(21)

with the formula:

K̃b(I, J) =

e∑
k=1

∑
(I,J)∈Ωk

kb(iI , jJ),

K̃s(I, J) =

e∑
k=1

∑
(I,J)∈Ωk

ks(iI , jJ),

(22)
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where 1 < I, J < 3n is the global indexing of node dis-
placements and 1 ≤ iI , jJ ≤ 3 × 3 is the corresponding
local element indexing. The expressions of Bb, Bs are eas-
ily obtained from the Jacobian matrices of shape functions
when applied to Θ and test functions [6]. Applying the same
reasoning to the right-hand side of equation (18), we can de-
duce a similar formula involving the external nodal force f :

Er = T> f . (23)

Thus, the approximation of equation (18) with FEM is:

T>K̃ Θ = T> f , for all T ∈ R3n (24)

For this equation to hold for any T, we have obviously:

K̃ Θ = f (25)

In order to recover the initial global displacement vector
δX, we apply the inverse variable change, which gives:

K̃ H δX = K δX = f . (26)

where H is a 3n block diagonal matrix with blocks H =
diag

(
−2/h, −2/h, 1

)
. Recall h is the material thick-

ness and z = h/2 corresponds to the top surface of the
material. Now we have seen the construction of matrix K
and previously the construction of matrices P and S. We
can thus study the feasibility and uniqueness of solution for
our SfT formulation (1).

7. Feasibility and Solution Uniqueness
By construction K is not always full rank especially if

the elements are not regular. However, with sufficientm, K
becomes full rank after adding the m SBCs as follows:

K(3i, 3j) = 1, if i = j

K(3i, 3j) = 0, otherwise,
(27)

with i running only for SBC nodes and 1 ≤ j ≤ n. Practi-
cally, we can add sufficient SBCs to make K full rank. To
exhibit the feasibility and uniqueness of problem (1), we
compute its Lagrangian:

L(δX, λ, µ) =
1

2
δX>K>K δX +λ> (PδX− b)+µ>SδX,

(28)
where λ is a 2n-vector and µ is anm-vector. The optimality
conditions are written as:

∂L
∂δX

= K>K δX + C
(
λ> µ>

)>
= 0, (29)

∂L
∂(λ, µ)

= C δX =
(
b> 0

)>
, (30)

with C =
(
P> S>

)>
a matrix of rank 2n + m by con-

struction. The set of feasible solutions δX is written as

δ̂X = δX + d, (31)

where δX is any vector that satisfies (30) and d ∈ Ker{C}
(the null space of C). Substituting in (28) we find:

K>K d = −K>K δX−C

(
λ

µ

)
(32)

This equation has a unique solution if and only if the restric-
tion of K>K to Ker{C} is invertible. This is the case since
K is full rank by construction and by equation (27).

8. Experimental Results
8.1. Compared Methods

To have a representative evaluation with related state-
of-the-art methods, we compare our method LM (linear
mechanics-based) to four other methods that have been pre-
sented previously in section 2 and table 1: (1) NLM [10],
a non-linear iterative method that minimizes stretching en-
ergy. (2) KFM [1], a sequential method that uses mechan-
ical priors embedded in a Kalman Filtering process. (3)
NLG [9], a non-linear iterative method that minimizes a
local isotropy penalty. (4) AG [3], an analytic geometric
method that uses local isotropy as prior.

These methods were evaluated using MATLAB R2014A
on a MAC desktop (OS X 10.9.5) with QUAD-CORE IN-
TEL XEON running at 2×2.66 GHz. Our evaluation is based
on three criteria: (i) accuracy, (ii) computation time and
(iii) robustness to image noise for the synthetic experiments.
The amount of extensibility ε is expressed as a percentage
of the relative variation of the stretching energy with respect
to the ground-truth template [10].

8.2. Simulated Data
The synthetic deformations are obtained using 3D Stu-

dio Max [11]. This provides plausible deformations accord-
ing to the mechanical properties of the considered material.
We simulate a material with Poisson’s ratio ν = 0.49 and
Young’s modulus E = 106 Pa (Pa stands for Pascals to
measure force per unit area). Such a material deforms like
a toy balloon for ε ≤ 15%. We use a planar template of
size 150 × 150 mm2. We subdivide it in a regular grid
of N = 30 × 30 nodes and 1682 triangular faces. The
largest length of each triangle being 5

√
2 mm, we choose

a thickness h = 0.8 mm such that it fits the local plate as-
sumption (c.f . section 4). The points at the boundary of the
material are taken as being part of the SBC. The deforming
forces are applied at the nodes of the grid. Their magni-
tude follows a gaussian distribution of standard deviation
of 20 Newton and their orientations vary from node to node
with a uniform distribution. To obtain the deformed images,
the nodes on the simulated deformed surfaces are projected
with a calibrated perspective camera located 800 mm from
the surface. We run two sets of test; (i) Robustness to noise:
centred Gaussian noise Nσ with varying standard deviation
σ = 1 : 1 : 5 pixels was added to the image points. For
this set the amount of deformation was set to ε = 15%. (ii)
Robustness to amount of deformation: deformations in the
range ε = {2%, 5%, 7%, 10%, 12%, 15%} are tested
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(c) 3D Reconstructions with error display (ε = 15%, σ = 1). From left to right: AG, NLG, KFM, NLM, LM and ground-truth.

Figure 3. Results on simulated deformations. Large error results are not displayed to fit the error scale of the most accurate methods.

with image noise N1. We measure the reconstruction ac-
curacy as being the 3D residual error in mm between the
ground-truth and the reconstructed 3D points. For each ex-
tensibility ratio ε and noise Nσ , we compute the mean and
the standard deviation (std) of the 3D residual error over
100 samples.

The results are shown in figure 3: figures 3-a and 3-b
show the error curves while 3-c shows some example of
reconstructions. Globally, the error increases when noise
or extensibility increase. Also we can notice that methods
with mechanical priors outperform methods with geometric
priors. Some error values of the latter methods are not dis-
played in cases where there is at least an order of magnitude
difference when compared to the former methods. NLM
and KFM have similar orders of magnitude errors when
compared to our proposed method LM. However, LM is
more accurate and more stable than the two other mechani-
cal based methods. NLM requires an initial deformed rough
shape and an optimal hyper-parameter setting to provide the
best possible result. KFM is particularly sensitive to noise
since it is sequentially integrated from deformation to de-
formation in the Kalman filter. Moreover, it is worth not-
ing that for such methods, any mismatch defeats the whole
procedure that needs to be re-initialized. LM is concep-
tually free from these drawbacks; no hyper-parameter, no
initialization and frame independence since it requires an
independent single view at each time. These specificities
make the LM method more appropriate for substantial noise
or extensibility. Regarding the computational time, table
2 reports the execution time that we obtained on our plat-
form. The analytic method is with no doubt the fastest. The
non-linear iterative methods are the slowest. The proposed
method is in the same order of speed as KFM. The speed of

Method NLM KFM NLG AG LM

Time [sec] 10.6 1.4 10.4 0.5 1.1
Table 2. Execution time for the compared methods. The men-
tioned values do not take into account the matching process.

execution of the LM method can be significantly improved
if we would take into account the block-wise structure of
K.

8.3. Real Data
For validation with real data, we used four sets of data

with ground-truth that was obtained with stereo calibrated
cameras [10]. The two cameras have a resolution of 640 ×
480 pixels. A set of 10 deformed shapes was used for
each dataset. (1) A stretchable redchecker pattern clothes
made of polyester (ν = 0.3, E = 105 Pa) with thickness
h = 2 mm and square size 400 × 400 mm2. (2) A dotted
black/white pattern spandex (ν = 0.5, E = 104 Pa) with
thickness h = 1.5 mm and square size 400× 400 mm2. (3)
A balloon pattern fabric made of rubber (ν = 0.5, E = 103

Pa) with h = 0.7 mm and bounding box 150 × 150 × 100
mm3. (4) a cap made of quasi-inextensible polyester mate-
rial (ν = 0.001, E = 107 Pa) with h = 2 mm and bounding
box 220 × 220 × 150 mm3. The redchecker and spandex
materials are clipped on the edge of a box to fixed boundary
for the SBC. The balloon is clipped to a cup-ring in order to
fix its boundaries. The cap was deformed only in the top of
the cap so that its surroundings are kept rigid. The boundary
points were estimated by a PnP method [14]1. Features are

1 http://cvlab.epfl.ch/software/EPnP/index.php
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Figure 4. 3D reconstructions of real datasets. The ground-truth of the cap data is shown in red for better display.

obtained semi-automatically with SIFT [8]. For the red-
checker pattern, its corner points were used for manual-
driven point selection. A total of 100 feature points and 36
fixed boundary points were used for this dataset. For the
spandex, features are found by manual selection with ini-
tial matches from SIFT. A total of 212 feature points and
45 fixed boundary points were used for this dataset. For
the balloon a total of 95 feature points and 30 fixed bound-
ary points were used for this dataset. A set of 40 boundary
points and a 130 point correspondences were used for the
cap. These feature points are used as nodes of the mesh.
The extensibility ranges from 0% to 15% for the whole
dataset except for the cap for which it was negligible. The
mean 3D error was measured at about 1 mm for LM, 1.3
mm for NLM method, 1.7 mm for KFM, 5.3 mm for NLG
and 6.9 mm for AG. Table 3 gives more details about the
mean and std of 3D errors.

9. Conclusion
We formulated SfT as finding the deformation field

through linear least-squares using mechanical priors. To
obtain this result we minimized the norm of the deform-
ing forces subject to reprojection boundary conditions and
some solid boundary points. We showed experimentally
that this method is more accurate than state-of-the-art meth-

Method NLG AG NLM KFM LM

redchecker 4.5/3.5 5.7/3.6 1.2/1.0 1.3/1.2 0.9/0.8
spandex 5.0/3.6 6.2/4.1 1.4/1.1 1.4/1.3 1.1/0.9
balloon 7.5/5.9 8.7/5.5 1.8/1.5 2.0/1.5 1.2/1.0

cap 3.0/2.5 3.7/2.9 1.4/1.0 1.3/1.2 0.9/0.6
Table 3. Average and standard deviation of 3D error (in mm) for
the real datasets.

ods, computationally efficient and has the fundamental ad-
vantage of being convex. It opens perspectives for real time
SfT in critical applications in the medical field for instance.
We think that image matching under elastic deformations is
an interesting area of future research.
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