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1 Introduction

Reconstructing the 3D colonic surface and localising the colonoscope’s distal
end from the video stream would aid the spatial understanding of lesions and
hence diagnosis. Using Non-Rigid Structure-from-Motion (NRSfM) [1] is thus
an appealing idea. Although low-rank NRSfM was attempted on a short beating
heart sequence [4], general NRSfM methods have not been applied to endoscopy
data in the literature. Modern isometric methods [2, 7, 3] performed poorly or
failed in our experiments, even in simple cases. Stronger template-based meth-
ods such as [8] can unfortunately not be used, because a matchable template
is not available. Estimating depth from a single or a stream of monocular im-
ages using deep learning is challenging in endoscopy due to the unavailability of
labelled data. Promising attempts were made to train with synthetic data, for
which there is a domain adaptation problem, and with self-supervised learning
[5]. Unfortunately, there is yet no publicly available monocular 3D reconstruc-
tion network for endoscopy. Colonoscopic images are particularly difficult with
NRSfM, because the camera tends to move mainly along its optical axis, creating
unstable geometric configurations, and the spreading of the correspondences is
often uneven within the images, because of the locally weak texture. We propose
to strengthen NRSfM by exploiting the known topology of the surface. Topolog-
ical information has not been used in NRSfM. We specifically study the Tubular
Topology Prior (TTP). Combined with surface smoothness, TTP forms a de-
formable geometric model, which is tube-shaped in some reference coordinate
system. We provide the first isometric NRSfM method for a tubular surface as
a monocular camera moves through its inner volume, as in colonoscopy.

2 Proposed Tubular 3D Reconstruction Method

As all NRSfM methods, ours takes M point correspondences over N images and
the camera’s intrinsic parameters as inputs. It computes a set of N surfaces
corresponding to a deformed tube in camera coordinates. It works in two steps.

Step 1: initial unconstrained reconstruction. The initial unconstrained recon-
struction is an intermediate step, whose result is a set of N 3D point clouds.
It follows the principle of isometric NRSfM. Specifically, it is a zeroth-order
method, because differential correspondences are unstable in colonoscopy. In
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other words, it exploits the raw point correspondences without additional infor-
mation. Isometry is modeled by preserving the distance between neighbouring 3D
points across the point clouds. The inter-point distances are however unknown.
Our method thus alternates between computing the depth of all image points
and the inter-point distances. The two steps are repeated until the estimates
converge. The notion of point neighbourhood is defined by a Nearest-Neighbour
Graph (NNG), whose nodes are the points and whose edges define the neigh-
bours [3]. Convergence is achieved when the average update on the inter-point
distances falls below a predefined threshold t = 10−4 or exceeds a maximum
number of iterations h = 14 in our experiments.

Step 2: tubular parameterisation. The tubular parameterisation upgrades the
reconstructed 3D point clouds to smooth surfaces of tubular topology. We rep-
resent such a surface by the composition of two maps. The first map, from 2D to
3D, is fixed. It embeds a planar template to a circular cylinder with unit radius.
The second map, from 3D to 3D, deforms the cylinder and is represented by a
harmonic spline, the 3D equivalent of the classical Thin-Plate Spline, for which
we use as many control points as reconstructed 3D points. We fit the maps to
the 3D point clouds by minimising the Euclidean distance between the control
points and the corresponding reconstructed 3D points and the bending of the
unit-circular cylinder, with the Levenberg-Marquardt algorithm.

3 Experimental Results

Synthetic sequences. We simulated two sequences, NR-Synth-1 and NR-Synth-2,
using Blender. They contain 69 and 79 frames respectively and 160 3D points
each. Our proposed method (first step of our pipeline) is denoted IsoSfM0-Alt
(for 0-th order, Alternation). We compare it with the authors’s implementation
of IsoSfMH [2] (for homography based), IsoSfM2 [7] (for 2-nd order) and
IsoSfM0-SOCP [3] (for 0-th order using Second-Order Cone Programming).
We use the mean Euclidean distance ep between the reconstructed 3D points and
the groundtruth as primary evaluation metric and the Euclidean distance ec be-
tween the reconstructed 3D points and the nearest 3D points on the groundtruth
shape for error visualisation. A visual comparison of some random representative
frames are shown in figure 1. For NR-Synth-1, IsoSfM0-Alt is 64.36%, 64.32%
and 47.57% better in ep than IsoSfMH, IsoSfM2 and IsoSfM0-SOCP respec-
tively. IsoSfM2 fails to complete the reconstruction of NR-Synth-2 (the authors’
Matlab code crashed while solving for the depth of 3D points), but IsoSfM0-Alt
is 79.51% and 72.31% better in ep than IsoSfMH and IsoSfM0-SOCP respec-
tively. This is a significant improvement. The parameterised reconstruction using
TTP (second step of our pipeline) is shown in figure 2.

Real sequence. We extracted a short sequence of 36 frames from the endoscopy
image database for research and training, approval UK IRAS Project ID 236056,
which was kindly provided to us by UCL, and manually annotated 50 points
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Fig. 1. Comparison of initial unconstrained reconstruction (step 1) results, synthetic
sequences. Top row: simulation setup and sample frames. Other parts: reconstruction
results; the green and red dots are the reconstructed and groundtruth points respec-
tively.

across the sequence. The points are unevenly spread owing to the lack of tex-
ture. We ran all four methods. IsoSfMH and IsoSfM2 failed to complete the
reconstruction (similarly to NR-Synth-2 ). IsoSfM0-SOCP produced a 3D re-
construction flatter than IsoSfM0-Alt’s, as shown in figure 3. The parame-
terised reconstruction using TTP is shown in figure 3.

4 Conclusion

By developing a new method exploiting the tubular topology, we have been able
to give initial results of NRSfM in colonoscopy. These results are very encour-
aging, even if our method and experiments are preliminary. Future work will
involve using automatic correspondences, developing an initialisation and a re-
finement method exploiting the topology prior and comparing to deep learning
methods such as [6] on public benchmarks.

Acknowledgments. This work was funded by the FET-Open grant 863146
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Fig. 2. Final reconstructed surface using tubular parameterisation (step 2), for the
proposed method on synthetic sequences.
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Fig. 3. Comparison of 3D reconstruction results, real sequence, with the final recon-
structed surface for the proposed method.
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