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A B S T R A C T

Augmented reality for laparoscopic liver resection is a visualisation mode that allows a
surgeon to localise tumours and vessels embedded within the liver by projecting them
on top of a laparoscopic image. Preoperative 3D models extracted from Computed
Tomography (CT) or Magnetic Resonance (MR) imaging data are registered to the in-
traoperative laparoscopic images during this process. Regarding 3D-2D fusion, most
algorithms use anatomical landmarks to guide registration, such as the liver’s inferior
ridge, the falciform ligament, and the occluding contours. These are usually marked by
hand in both the laparoscopic image and the 3D model, which is time-consuming and
prone to error. Therefore, there is a need to automate this process so that augmented
reality can be used effectively in the operating room. We present the Preoperative-to-
Intraoperative Laparoscopic Fusion challenge (P2ILF), held during the Medical Image
Computing and Computer Assisted Intervention (MICCAI 2022) conference, which in-
vestigates the possibilities of detecting these landmarks automatically and using them
in registration. The challenge was divided into two tasks: 1) A 2D and 3D landmark
segmentation task and 2) a 3D-2D registration task. The teams were provided with
training data consisting of 167 laparoscopic images and 9 preoperative 3D models from
9 patients, with the corresponding 2D and 3D landmark annotations. A total of 6 teams
from 4 countries participated in the challenge, whose results were assessed for each task
independently. All the teams proposed deep learning-based methods for the 2D and 3D
landmark segmentation tasks and differentiable rendering-based methods for the regis-
tration task. The proposed methods were evaluated on 16 test images and 2 preoperative
3D models from 2 patients. In Task 1, the teams were able to segment most of the 2D
landmarks, while the 3D landmarks showed to be more challenging to segment. In Task
2, only one team obtained acceptable qualitative and quantitative registration results.
Based on the experimental outcomes, we propose three key hypotheses that determine
current limitations and future directions for research in this domain.

© 2024 Elsevier B. V. All rights reserved.
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Introduction

Laparoscopic liver resection (LLR) is a minimally invasive
procedure used in the removal of benign or malignant tumours.
It has become increasingly popular in the last two decades ow-
ing to the reduced trauma to the patient and the shorter hospi-
talisation times. However, it remains a challenging technique
due to the reduced intra-abdominal space and the lack of tac-
tile feedback. This makes it difficult to find intraparenchymal
structures like tumours and vessels, which increases the risk of
wrong resections. Augmented Reality (AR) could mitigate this
issue by overlaying a 3D model reconstructed from Computed
Tomography (CT) or Magnetic Resonance (MR) imaging onto
the laparoscopic views, as shown in Figure 1. Only one of both
modalities is required to reconstruct the 3D models, provided
the desired structures are clearly visible. As depicted, the sur-
geons can then see the inner structures, and perform tumour re-
section accordingly. Owing to the liver’s substantial flexibility,
a deformable registration should be done to fit the preopera-
tive 3D model with the intraoperative data effectively. Once the
registration is computed, the fusion can be realised. In terms
of registration accuracy and according to Zhong et al. (2017),
a margin of healthy tissue around the tumour of at least 1 cm
should be kept for Hepatocellular Carcinoma (HCC) resections.
Therefore, an AR system can be considered to be effective if its
target registration error (TRE) is lower than 1 cm.

Registration for Augmented Reality
Existing methods register the 3D preoperative data into 3D

or 2D intraoperative data. Most of these methods use liver
anatomical landmarks to constrain registration and help the
preoperative model to fit in the intraoperative data. For the
3D-3D registration case, some examples are found in (Robu
et al., 2018; Modrzejewski et al., 2019), where the landmarks
are marked manually on both the preoperative and intraoper-
ative 3D shapes. The main problem of the 3D-3D registra-
tion methods is that they reconstruct the intraoperative data
from stereoscopic cameras, which are not always available in
surgery rooms. They may also use 3D reconstruction algo-
rithms like Structure-from-Motion (SfM) or Simultaneous Lo-
calisation and Mapping (SLAM), which only work in rigid
scenes and generally fail for the non-rigid liver. For the 3D-
2D registration case, some examples are found in (Adagolodjo
et al., 2017; Koo et al., 2017; Espinel et al., 2022; Koo et al.,
2022; Labrunie et al., 2022), where the landmarks are marked
in the intraoperative images either manually or automatically,
but always marked manually on the preoperative 3D models. In
this work, we focus on the 3D preoperative to 2D laparoscopic
image registration problem, which aligns the preoperative 3D
models to one or several intraoperative 2D images.

According to (Koo et al., 2017; Espinel et al., 2022), some
of the landmarks that can be used in 3D preoperative to 2D la-
paroscopic image registration are the liver’s lifted ridge, the fal-
ciform ligament, and the silhouette, as shown in Figure 2. The
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ridge landmark corresponds to the pronounced curve located at
the bottom-anterior part of the liver. It is the most distinguish-
able landmark among the three and covers both the left and right
lobes of the liver. The falciform ligament is the thin, fibrous tis-
sue that connects the anterior part of the liver to the abdominal
wall. It is usually cut during a laparoscopic procedure to facili-
tate the manipulation of the liver. The remnant of this tissue on
the liver’s surface is what we use as a landmark. The silhouette
landmark corresponds to the boundary of the liver at a given im-
age and, thus, does not have a direct correspondence in the 3D
model. The 3D correspondences are usually found during reg-
istration using algorithms like the Iterative Closest Point (ICP).
In order to accurately fit the 3D model to the images, a good
correspondence between the landmarks in the laparoscopic im-
age and the preoperative 3D model should be found. However,
as the marking is usually done by hand, it will greatly depend
on the user’s understanding of the scene, which can be a source
of inaccuracies. Moreover, the time required to manually mark
these landmarks, usually several minutes, makes it difficult to
integrate AR within the surgical workflow. Some of the exist-
ing methods segment the landmarks on the images automati-
cally like the works in (Labrunie et al., 2022; Koo et al., 2022),
where the 2D liver landmarks are segmented using deep learn-
ing, but the 3D landmarks are still marked manually. Due to the
limitations above of manual marking in terms of accuracy and
time, there is a need for automating the segmentation of these
landmarks in the image and the preoperative 3D models, as well
as accurately finding the correspondences between them for the
3D preoperative to 2D laparoscopic image registration.

Presentation of the challenge
The Preoperative-to-Intraoperative Laparoscopic Fusion

(P2ILF) challenge addresses the problem of finding the liver’s
anatomical landmarks in both the laparoscopic images and the
preoperative 3D model, and of using them for 3D preopera-
tive to 2D laparoscopic image registration. This challenge was
deployed on the Grand Challenge platform (Ali et al., 2022),
where the teams could register, download the training data, up-
load their algorithms, and run them on the test data. The chal-
lenge was divided into two phases. In phase I of the challenge,
the participants had to segment the visible 2D landmarks in the
laparoscopic images, and then segment the corresponding 3D
landmarks in the preoperative 3D model. In phase II of the
challenge, the participants had to perform 3D preoperative to
2D laparoscopic image registration. For phase II, the partic-
ipants were suggested to use the 3D and 2D landmarks seg-
mented in phase I. However, this was not mandatory, and they
could perform either a rigid or a deformable registration. For
this challenge, surgical data was collected and annotated for 11
patients, including their corresponding preoperative 3D models,
the intraoperative laparoscopic images, and the intrinsic camera
parameters. The provided data presents two main challenges:
the drastic change in shape and appearance of the liver between
patients and the limited amount of data. A total of six teams
from four countries participated in the challenge. We describe
the algorithm developed by each team and the results obtained
on the test set.
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Fig. 1: Laparoscopic image fusion with preoperative 3D CT or MR scans. A preoperative 3D scan is first used to reconstruct the liver boundaries, tumours and
major vessels critical for a safe surgery. During the laparoscopic procedure we overlay the reconstructed model using image registration, in this case 3D meshes,
to the 2D liver view. The idea is to project 3D mesh points onto the liver boundaries that can enable understanding of the spatial location of the tumours and
vessels along with the matched liver boundaries in the acquired 3D model. Such an augmented reality technique helps surgeons to locate the tumour and important
landmarks during surgery. The above results were obtained with the semi-automatic method from Koo et al. (2017).

Ridge

Preoperative 3D model

Falciform
ligament
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Ridge

Laparoscopic 2D image

Fig. 2: Depiction of the 2D and 3D anatomical landmarks. Anatomical liver
landmark ground-truth annotations in the preoperative 3D model (left), and in
the laparoscopic 2D image (right).

In this paper, we first present the related work, the details on
the newly curated dataset for AR in LLR, the design and setup
of the challenge in more detail, the methods proposed by the
participating teams, results and insights regarding the limita-
tions of each approach, and finally we conclude with the dis-
cussions presenting empirical and experimental hypotheses and
future work.

Related work

Existing datasets for AR
Currently, there is a lack of publicly available datasets for

AR, and most of the existing AR methods use non-publicly
available data, dealing only with the 2D landmark automatic
segmentation problem. For example, Koo et al. (2022) used a
private dataset of 133 images coming from two patients to seg-
ment the anatomical landmarks of the liver (including the ridge
and the silhouette). The method heavily relied on synthetic
data generation. Labrunie et al. (2022) used a dataset of 1415
laparoscopic images coming from 68 patients to segment the

liver landmarks, but their dataset is not publicly available ei-
ther. There are some available datasets containing endoscopic
liver videos like the Cholec80 dataset (Twinanda et al., 2017),
HeiChole dataset (Wagner et al., 2023), and the Dresden Sur-
gical Anatomy Dataset (Carstens et al., 2023), but they do not
contain the preoperative data and the intrinsic camera parame-
ters required to work with AR.

Registration for AR in LLR has been an active field of re-
search over the last decade, with the existing methods using
either monocular endoscopes, stereo endoscopes, and external
devices like optical trackers and intraoperative CT scanners.
These methods can be globally classified into 3D-2D and 3D-
3D registration methods, if the preoperative 3D model is reg-
istered to an intraoperative 2D image or an intraoperative 3D
model.

3D-2D registration methods
A single-view monocular method is presented by Koo et al.

(2017), which we use as basis and motivation of our work. In
this work, the authors combined the ridge, falciform ligament,
and silhouette landmarks with a biomechanical model to per-
form registration. Prior to registration, the landmarks are man-
ually marked in both the 2D image and the preoperative 3D
model. It uses a Gauss-Seidel iterative algorithm to solve the
landmark and biomechanical constraints. Other monocular 3D-
2D registration methods use one or multiple images simultane-
ously. For example, a set of silhouette landmarks were manu-
ally marked in the image and combined with a biomechanical
model to drive registration by Adagolodjo et al. (2017). These
constraints were solved using a Gauss-Seidel iterative optimi-
sation approach. A set of methods that perform 3D preopera-
tive to 2D laparoscopic image registration on multiple laparo-
scopic images is presented by Espinel et al. (2022), where the
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anatomical landmarks from all the images are combined to deal
with the partial visibility problem and improve registration ac-
curacy. In this case, the landmarks should be manually marked
on each image separately, which increases the total registration
time. In an attempt to reduce the risk of wrong annotations
and the registration time, the method by Koo et al. (2022) seg-
ments the anatomical landmarks in the images automatically.
To achieve this, a CASENet CNN was trained with a small
dataset of 133 patient images, along with a synthetic dataset
consisting of 100,000 images. However, the 3D landmarks were
still marked manually in the 3D model. The proposed rigid reg-
istration starts by computing a canonical liver pose, assuming
that the camera is inserted close to the belly button. Then, a
set of transformations was generated by randomly rotating the
model about the three axes. For each of the transformations,
the closest points between the 3D and 2D landmarks are found,
and an optimal transformation is estimated using Perspective-n-
Point (PnP) with RANSAC. In the end, the best transformation
is chosen based on the minimum Hausdorff distance between
the 3D and 2D landmarks. Similarly, another approach that seg-
ments the landmarks automatically was proposed by Labrunie
et al. (2022), where an off-the-shelf UNet was trained with 1415
laparoscopic images from 68 patients. Again, the 3D model
landmarks were still annotated manually before surgery. The
main goal of this work was to perform an initial rigid registra-
tion to serve as the basis for subsequent deformation stages.
The registration approach used a RANSAC-based PnP strat-
egy that iteratively recomputed the correspondences between
the 2D and 3D landmarks.

3D-3D registration methods
Some monocular methods may perform 3D-3D registration

like the one presented by Modrzejewski et al. (2019), where
the shape of the liver was reconstructed using SfM during the
intraoperative procedure. This shape was then combined with
a set of landmarks and a biomechanical model to perform de-
formable registration. The registration process follows a rigid-
to-deformable energy minimisation strategy, which runs until
the convergence threshold is reached. Another method that uses
SfM is presented by Cheema et al. (2019), where an intraoper-
ative shape also serves as a target for registration. In this case,
correspondences between the preoperative and the intraopera-
tive shapes were combined with shading cues to align and de-
form the intraoperative shape. Similarly, Espinel et al. (2022)
combined the reconstructed camera poses with the anatomical
landmarks and the biomechanical parameters for registration.
However, Espinel et al. (2022) suggested that applying SfM in
liver scenes is difficult due to the constant deformations and the
limited range of camera movements. Methods that use stereo-
scopic cameras or other external devices usually perform 3D-
3D registration. In particular, the methods by Haouchine et al.
(2013); Soler et al. (2014); Thompson et al. (2015); Bernhardt
et al. (2016); Robu et al. (2018); Luo et al. (2020) reconstruct an
intraoperative 3D model of the visible liver using stereoscopic
techniques. In these cases, the intraoperative 3D model is used
as a target to register the preoperative 3D models. Some of the
methods perform rigid registration (Soler et al., 2014; Thomp-

son et al., 2015; Bernhardt et al., 2016; Robu et al., 2018; Luo
et al., 2020), while the method by Haouchine et al. (2013) is
the only work that performs deformable registration. In addi-
tion to a stereo endoscope, the method from Thompson et al.
(2015) also uses an optical tracker to locate and merge multi-
ple stereoscopically reconstructed patches of the intraoperative
liver. A major limitation of these methods is the requirement
of stereo endoscopes and external tracking devices that are not
commonly available in surgery rooms.

In this work, we aim to find registration methods that only use
the available preoperative models and a monocular endoscopic
setting in the surgery room. Such methods should automatically
find the liver anatomical landmarks that can then lead to com-
puting 3D preoperative to 2D laparoscopic image registration
automatically. We attempt to motivate the usage of data-driven
approaches, which is still uncommon in this problem, as well as
to reduce both the user interactions and the registration times.
Given the high number of existing methods and a lack of unified
comparison, this challenge is the first one to provide an objec-
tive comparison between registration methods for AR in LLR,
which is a requirement to continue advancing in the field.

The P2ILF challenge

General aspects of the dataset
The training dataset is composed of 9 patients with 167 la-

paroscopic images, their corresponding 2D and 3D anatomical
landmarks, their respective preoperative 3D models, and the
intrinsic camera parameters. The test dataset is composed of
2 patients and includes 16 selected images (8 images per pa-
tient) with their corresponding preoperative 3D models and the
intrinsic camera parameters. A quantitative description of the
whole dataset is given in Table 1. It includes the number of im-
ages per patient, the type of preoperative images (CT/MR) used
to reconstruct the preoperative 3D models, and the liver condi-
tion (cirrhotic/non-cirrhotic). The training dataset was provided
to the participants, who were allowed to freely split the data for
training and validation. However, for the test phase, an online
platform was used in a way that prohibited the teams from ac-
cessing the test samples directly. For the algorithmic testing
reported in this paper, each algorithm was evaluated through
the deployment of Docker containers.

Figure 3 illustrates the training and test samples for the 11
patients (with one sample per patient), including the original la-
paroscopic images at the top, the ground-truth anatomical land-
marks in the middle (with the silhouette, ridge and falciform
ligament in yellow, red, and blue, respectively), and the preop-
erative 3D models with their corresponding 3D landmarks for
the ridge (in red) and the falciform ligament (in blue). It can be
observed that the appearance of the liver varies greatly across
patients. Moreover, some of the patients have a visible ultra-
sound probe, which is common in laparoscopy as it may be used
to identify key vessels and tumour locations during surgery. To
better evaluate the generalisation of the proposed methods, we
used one patient with cirrhotic liver and one patient with non-
cirrhotic liver in the test dataset.
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Fig. 3: P2ILF dataset: Training and test data samples with original laparoscopic images, annotated anatomical landmarks (silhouette in yellow, ridge in red and
falciform ligament in blue), and the corresponding 3D anatomical annotations (rigde in red and falciform ligament in blue) in manually aligned 3D liver models are
provided. The dataset contains a total of 11 patients, divided in 9 patients for training and 2 patients for testing.

Table 1: Quantitative description of the generated patient dataset for the P2ILF
Challenge

Patient # Preoperative
imaging type

# Intraop.
images

Liver
condition

Data
type

1 CT 22 C TR
2 CT 25 C TR
3 CT 20 NC TR
4 MR 8 C TS
5 CT 15 NC TR
6 CT 22 NC TR
7 MR 25 NC TR
8 CT 8 NC TR
9 MR 21 NC TR

10 CT 9 NC TR
11 CT 8 NC TS

Total: 8 CT,
3 MR 183 3 C, 8 NC 9 TR,

2 TS
Intraop.: Intraoperative; CT: Computed Tomography; MR: Magnetic
Resonance; C: Cirrhotic; NC: Non-cirrhotic; TR: Training; TS: Testing

Ethical and privacy aspects of the data
The preoperative and intraoperative data of this dataset were

collected from the University Hospital of Clermont-Ferrand,
France. The data collection was supported by an ethical ap-
proval with ID IRB00008526-2019-CE58 issued by CPP Sud-
Est VI in Clermont-Ferrand, France. Patient consent to record
data was obtained before each intervention. The intraopera-
tive video streams were captured using laparoscopic cameras.

All the collected data were fully anonymised before publica-
tion. In other words, no meta information (name, birth date,
gender, etc.) was passed to the participating teams. During the
challenge, all participants were required to sign a data privacy
statement. Redistribution or transfer of the data was strictly pro-
hibited. The data upon public release will be free to use (under
licence CC-by-NC-SA 4.0) after the publication.

Video collection and dataset construction
The dataset for the P2ILF challenge consists of two types

of data: preoperative 3D liver models and intraoperative 2D
laparoscopic images. The data were collected by the following
procedure:

• Several days before the liver surgery, 3D CT/MR images
of the patients were obtained. The liver, the tumours and
the vena cava were manually segmented in the CT/MR im-
ages by an experienced hepatobiliary surgeon using MITK
(German Cancer Research Center (DKFZ), 2008). The
surgeon first segmented the liver in every slice using a
combination of a region-growing tool with a manual se-
lection tool. Then, they segmented the tumours and the
vena cava using the manual selection tool. The brightness
and contrast of the images were varied in some cases to im-
prove the visibility of the structures. After the structures
were segmented, a 3D interpolation was made between the
2D masks of each structure to generate the 3D models.

• During each surgery, an exploration of the intra-abdominal
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scene was done in such a way that the liver was visible to
the camera. A video was captured during the exploration.
To estimate the intrinsic camera parameters, a video of a
moving checkerboard pattern was also captured with the
laparoscope.

• To estimate the camera intrinsic parameters, images were
first extracted from the checkerboard video at a rate of
5 frames per second, ensuring a sufficient movement of
the checkerboard between images. From this frame set,
30 to 40 images where the checkerboard is sharp enough
were selected, meaning the corners and edges were dis-
tinguishable. Finally, the images were imported into the
Metashape software (Agisoft LLC, 2023) and the intrinsic
camera parameters were estimated. These parameters in-
cluded the camera’s focal length, the principal point, and
the lens distortion.

From the raw laparoscopic videos, the laparoscopic images
were selected based on two criteria:

• Noticeable viewpoint change between the images: To en-
sure a sufficient camera displacement, images were ex-
tracted from the laparoscopic videos at a rate of 5 frames
per second.

• Clear sharpness in terms of focusing and blur: To ensure
a good image quality, images with a clear separation be-
tween the liver and the surrounding structures were se-
lected from the previously extracted set. This was done
visually by the challenge organisers, with the assistance of
an expert surgeon.

Annotation strategies and quality assurance
Due to a lack of available LLR datasets with annotated

2D/3D anatomical landmarks, there was a need to annotate the
landmarks in multiple images and preoperative 3D models. To
achieve this, three of the challenge organizers, guided by the
indications given by two hepatobiliary surgeons with over 10
years practicing experience and one computer scientist with
over 5 years experience in working in AR for LLR, proceeded
to annotate the 2D landmarks in the 183 laparoscopic images
and the corresponding 3D landmarks in the 11 preoperative 3D
models. All the annotators have worked extensively in artificial
intelligence for surgical image analysis for over 5 years. Each
annotator labelled a specific set of images, with every image be-
ing annotated only once. The annotations were first reviewed by
the scientists and then reviewed together with the surgeons. The
labels were corrected where necessary, according to the feed-
back from the surgeons. It is to be noted that preoperative 3D
model annotations were done by the scientist together with the
surgeons, due to the complexity in identifying the landmarks.

The annotators were required to annotate the ridge, the sil-
houette, the falciform ligament, and the liver surface in every
image. The tolerance error of annotation was 5 pixels. If the
distance between the annotation and the actual landmark ex-
ceeded this tolerance range, it was rejected in a later review.
All the annotations were done via LabelBox, an open-source

collaborative web-based tool. For the annotations to be as pre-
cise as possible, the annotators were advised to use annotation
tablets to perform their tasks. Some important protocols that
were agreed upon and communicated for the annotation process
were:

• The falciform ligament is on the liver surface and should
divide the right and left lobes

• The ridge is the curvy area located at the bottom of the
liver’s posterior part

• The silhouette is the occluding boundary of the liver, usu-
ally located at the upper part of the liver

• The silhouette should not go inward the falciform ligament
margin, but rather go over it

• The landmarks occluded by blood, neighbouring organs,
or surgical tools should not be considered

Challenge tasks and setup
We evaluated the teams on the following two tasks - a) Task

1: We requested the teams to perform 2D landmark segmenta-
tion on the laparoscopic images and 3D landmark segmentation
on the preoperative 3D models as two sub-tasks. Landmark seg-
mentation in the 2D laparoscopic images and the 3D preopera-
tive models are tackled under the same task since the 2D and 3D
landmarks should eventually provide correspondences for later
registration. Hence, it is important to allow both modalities to
be segmented jointly in order for the segmentation to embody
the notion of corresponding landmarks. For the 2D case, the
teams were asked to segment the ridge, the silhouette and the
falciform ligament landmarks. For the 3D case, they were asked
to segment the ridge and the falciform ligament landmarks, ac-
cording to the previously segmented 2D landmarks. We pro-
vided the teams with the 167 laparoscopic images, the camera
calibration parameters for each patient, the 9 preoperative 3D
models, and the corresponding 3D-2D landmark annotations
from the 9 training patients. We kept the 2 test patients undis-
closed and used their 3D-2D landmark annotations as ground
truth to assess the predictions done by the teams. However,
as the proposed methods by the teams segment the 2D and 3D
landmarks independently so, for clarity within task 1, we have
referred them as two sub-tasks.

b) Task 2: We requested the teams to register the preoper-
ative 3D models into the intraoperative laparoscopic images,
preferably by using the previously predicted 2D and 3D land-
marks. This 3D preoperative to 2D laparoscopic image registra-
tion could be either rigid or deformable. We used the 2D ridge,
the falciform ligament, and the silhouette landmarks from the 2
test patients as groundtruth to assess the registrations done by
the teams.

The input and output data to be used in each of the tasks are
shown in Figure 4. The teams were required to run their meth-
ods in a Docker-based deployment framework, hosted in the
Grand Challenge platform (Radboud University Medical Cen-
ter, 2023). The test data was not accessible by the teams. An-
other Docker-based container was developed to assess the pre-
dictions and generate the evaluation metrics automatically.
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Fig. 4: Submission procedure of the P2ILF Teamchallenge: A Docker con-
tainer system for submission was established on the Grand Challenge platform.
Each liver model and corresponding images together with intrinsic camera pa-
rameters were provided to the challenge participants. The algorithmic submis-
sion required different inputs for the prediction of 2D liver landmarks, 3D liver
landmarks, and the use of these landmarks and camera intrinsic parameters for
registration of the 3D model to the laparoscopic images. Finally, the outputs
from each team’s algorithm were evaluated using different metrics (see the sec-
tion Evaluation Metrics for more details).

Team methods

We describe the methods proposed by each participating
team. We explain how every method deals with each of the two
tasks, namely the landmark segmentation task and the 3D pre-
operative to 2D laparoscopic image registration task. At the end
of the section, we provide in table 2 a summary of the 2D-3D
landmark segmentation strategies proposed for Task 1 and in ta-
ble 3 the 3D preoperative to 2D laparoscopic image registration
strategies proposed for Task 2. The participating teams in the
challenge were the BHL team from Fudan University (China),
the UCL team from University College London (United King-
dom), the GRASP team from the University of Pennsylvania
(United States), the VOR team from the University of Science
and Technology of China (China), the NCT team from the Na-
tional Center for Tumour Diseases in Dresden (Germany), and
the VIP team from the Hong Kong University of Science and
Technology (China).

Team 1 (BHL team)

The BHL team has proposed an automatic way of segmenting
the 2D and 3D landmarks using deep learning methods for the
first task and a classical semi-automatic rigid registration ap-
proach that uses the segmented landmarks for the second task.

Task 1: a) Segmentation of 2D landmarks
Preprocessing: A Fast Fourier Transform was first applied on
the original images. Then, an Inverse Fourier Transform was
applied on the high-frequency components to obtain contour-
enhanced images (Yang and Soatto, 2020). The team found
that this contour enhancement improved segmentation of the
silhouette and the falciform ligament landmarks, but not of the
ridge landmark. The images were resized to 256 × 512 pixels
for GPU acceleration purposes. The ground truth labels were
extended by three pixels using an adjacent pixel strategy.
Data augmentation: Photometric and geometric transforma-
tions were applied to the training dataset, namely variations in
brightness, contrast, random noise, scaling, cropping, clipping,
and rotation.
Algorithm: Two separate ResUnet (Zhang et al., 2018) were
used. The first one segmented the ridge landmark from the orig-
inal image, and the second one segmented the silhouette and the
falciform ligament landmarks from the contour-enhanced im-
age. The resulting segmentations were dilated by three pixels.
Loss function: A Dice loss and a cross-entropy loss were used
to train each of the ResUNet models. A single L1 loss LB was
introduced at the end to improve the consistency of the two
models:

LB = |m1 − m2|, (1)

where {m1,m2} are the output maps of the first and second Res-
UNet, respectively.
Pretraining: No pretraining was done.

Task 1: b) Segmentation of 3D landmarks
Preprocessing: To deal with the class imbalance problem in
the mesh data, the groundtruth landmarks were dilated twice
using a distance threshold of 20 mm. The vertices in each mesh
were then normalised as follows:

(x, y, z) =
(

xi − xmean

xmax − xmin
,

yi − ymean

ymax − ymin
,

zi − zmean

zmax − zmin

)
, (2)

where mean is the average coordinates of all vertices, max and
min are the maximum and minimum coordinates, respectively.
Data augmentation: The mesh dataset was augmented by
applying random rotations and scales (0.75 to 1.25 times) to
mimic the liver’s size and orientation changes.
Algorithm: A PointNet++ network (Qi et al., 2017) was used
to segment the ridge and the falciform ligament landmarks.
Loss function: A cross-entropy loss function was used to train
the PointNet++ network.
Pretraining: No pretraining was done on the PointNet++ net-
work.
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Table 2: Summary of the participating teams in Task 1 of the P2ILF Challenge (2D-3D landmark segmentation)

Team Algorithm Loss function Preprocessing Data aug. Pretraining
2D 3D 2D 3D 2D 3D 2D 3D 2D 3D

BHL ResUnet PointNet++
DSC+CE
+l1

CE
FFT, IFT,
dilation

Mesh
norm.

Yes R/S No No

NCT nnUNet MeshCNN CE+DSC CE Dilation
Label merge,
Mesh norm. No ST No No

UCL UNet++ PointNet++
DSC
+Hfd

Hfd
+NLL

No No ST SP ST No

VIP Att. UNet No CE + IoU0 No Resizing No Yes No No No

VOR Various GCN CE CE No
Mesh
norm. No VM No No

Various: UNet + YOLOv5 + DINO + DeepLabV3; Att.: Attention; CE: Cross-Entropy; FFT: Fast Fourier Transform;
IFT: Inverse Fourier Transform; Hfd: Hausdorff distance; DSC: Dice similarity coefficient; IoU: Intersection over union; norm.: normalisation;
S: scaling, R: rotation; ST: synthetic data; ST: synthetic data; SP: Spectral augmentation; VM: Vertex masking

Table 3: Summary of the participating teams in Task 2 of the P2ILF Challenge (3D preoperative to 2D laparoscopic image registration)

Team Algorithm Initialisation Registration constraints Loss function Type
BHL Iterative PnP None 3D-2D Ridge 2D reprojection error Rigid
GRASP Iterative Diff. Render. Average pose estimation 2D Silhouette 2D reprojection error Rigid

NCT Iterative Diff. Render. Constrained random
initialisation 3D-2D Ridge + Ligament 2D reprojection error Rigid

UCL Iterative Diff. Render. Fixed initialisation
3D-2D Ridge + Ligament
+ 2D Silhouette

2D image similarity
+ 2D Chamfer loss Rigid

VOR
Multi-staged Spatial
Transformers +
Diff. Render.

None Visible liver surface
2D image simialrity
+ 3D shape-based
regularisation

Rigid

PnP: Perspective-n-Point; Diff. Render.: Differential rendering

Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The team did a random initialisation.
Algorithm: The team used the iterative PnP algorithm from the
OpenCV library, along with the intrinsic camera parameters.
The obtained rigid transformation, described by a rotation R ∈
S O(3) and a translation t ∈ R3, was used to register the 3D
model into the image.
Registration constraints: The 2D and 3D ridge landmarks
were used as constraints. The segmented landmarks were man-
ually sampled to have the same number of points. These point
correspondences served as input to the PnP algorithm.
Loss function: The iterative PnP algorithm uses reprojection
errors to estimate the transformation parameters.
GPU usage: The team used an NVIDIA GeForce RTX 3080 for
training their model in Task 1 (21 hours for training time on the
2D segmentation sub-task and 19 hours on the 3D segmentation
sub-task), while no GPU was used for Task 2.

Team 2 (UCL team)
Task 1: a) Segmentation of 2D landmarks
Preprocessing: No preprocessing of the training dataset was
done.
Data augmentation: A set of synthetic liver images was gen-
erated using Unity and Blender to complement the provided
training dataset. 100,000 images were generated using 3D
liver models and textures purchased from the Unity Asset Store
(Unity Technologies, 2023), and textures taken from freely

available sources. For every image, random values were uni-
formly sampled for texture, camera position, lighting effects,
motion blur and lens distortion. For each of the 9 patients in the
training set, 1000 extra images were simulated in Blender using
the patient-specific liver models.
Algorithm: A UNet++ (Zhou et al., 2018) was used to segment
the 2D anatomical landmarks. After pretraining, the model was
fine-tuned using the patient data for 10 epochs with an ADAM
optimiser and an adaptive learning rate starting from 10−6.
Loss function: A combination of Dice loss and Hausdorff dis-
tance was used for training.
Pretraining: The UNet++ was pretrained using the synthetic
data for 10 epochs.

Task 1: b) Segmentation of 3D landmarks
Preprocessing: No preprocessing of the training dataset was
done.
Data augmentation: Spectral augmentation (Foti et al., 2020)
was performed to produce a broader collection of 3D models. In
addition to the 9 preoperative 3D models provided in the chal-
lenge, the team also used the phantom model from Espinel et al.
(2022). For 9 of these models, 199 augmentations were gener-
ated, giving a total of 1800 models for training. The remaining
patient was also augmented with 199 extra models, giving a to-
tal of 200 models for validation.
Algorithm: Geometric deep learning was used to segment the
3D landmarks through PyTorch Geometric and PointNet++.
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Fig. 5: General pipeline of the six team methods. Team BHL: The input 2D image and 3D model are first processed and augmented. Two ResUNets are used
to segment the 2D landmarks in the images, and one PointNet++ is used to segment the 3D landmarks in the preoperative 3D model. To perform 3D preoperative
mesh to 2D laparoscopic image registration, the correspondences are fed to the PnP algorithm and a transformation matrix is obtained. Team GRASP: Mask-
RCNN is used to generate a 2D mask of the liver, which is then used to perform 3D preoperative mesh to 2D laparoscopic image registration by minimising a
silhouette reprojection error through differentiable rendering. Team NCT: nnUNet and MeshCNN are used to segment the 2D and 3D landmarks, respectively.
Differential rendering is then used to perform preoperative 3D mesh to 2D laparoscopic image registration by minimising a reprojection error of the previously
segmented landmarks. Team UCL: UNet++ is used to segment the 2D landmarks, while PointNet++ is used to segment the 3D landmarks. This team also used
differential rendering to perform image registration. Team VOR: The 2D case is treated as a pixel segmentation task and the 3D case as a vertex classification task.
Differentiable rendering is then used to perform 3D preoperative to 2D laparoscopic image registration by generating 2D images from the affine transformations
computed by the localisation networks. The shape regularisation terms provide extra supervision to avoid undesired mesh deformations. Team VIP: The team only
participated in task 1. Attention UNet was used for the pixel segmentation task of the anatomical liver landmarks in the laparoscopic images.

Training was conducted over 1000 epochs with an ADAM op-
timiser, using a learning rate of 10−3.
Loss function: A global loss combining Hausdorff distance and
Negative Loss Likelihood (NLL) was used for training.
Pretraining: No pretraining was done on the PointNet++ net-
work.

Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The team used a fixed initialisation for which
the position of the liver model was initialised with R = [0, 0, 0]
and T = [0, 0, 500].
Algorithm: The team proposes a differential rendering pipeline
using PyTorch3D. The pipeline iteratively renders the silhou-
ette of the preoperative liver model M. The position of the liver
model is initialised with a rotation R = I3, where I3 is a 3 × 3
identity matrix, and a translation t = [0, 0, 500]. An initial reg-
istration process is carried out over 100 iterations, where every
iteration is performed in five steps. First, the 3D liver model is
rendered based on the current R and t. Then, the silhouette is
extracted by sweeping every column of the image and setting
the first non-zero pixel to one while making the other pixels to
zero. Second, an image loss is computed between the rendered
3D silhouette and the 2D silhouette landmark segmented with
the method proposed in Task 1. Third, all the points of the 3D
ridge and falciform ligament landmarks segmented in the first
task are projected in 2D. Fourth, a Chamfer loss is computed

between the projected 3D landmarks and the corresponding 2D
landmarks. Fifth, the image and Chamfer losses are backprop-
agated through the network to update R and t. After the first
100 iterations, a rough initial alignment is achieved, which is
used to identify point correspondences between the 3D and 2D
landmarks extracted from the first task. After this, another 25
iterations are carried out, with the difference that only the 3D
point correspondences found in the initial alignment are used.
Registration constraints: The 2D and 3D ridge, falciform lig-
ament, and silhouette landmarks were used to constrain regis-
tration.
Loss function: An image similarity loss and a Chamfer loss
were used to estimate the transformation parameters.

Team 3 (GRASP team)
Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The optimisation process began by initializing
the mesh to a canonical pose of the organ with respect to the
camera. The canonical pose was calculated by manually regis-
tering meshes to 15 images and taking an average of the ground
truth poses.
Algorithm: First, a Mask R-CNN network was used to segment
the liver region. Then, A differentiable rendering approach is
used to rigidly register the preoperative 3D model to the laparo-
scopic image. A transformation T registers the preoperative 3D
model M using a rotation R and a translation t. The registration
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process begins by initializing the mesh to the canonical pose.
Using Pytorch3D’s differentiable rendering module, for each
optimisation step j a silhouette image is rendered using the 3D
model transformed by T j. By back-propagating the loss be-
tween the rendered silhouette and the predicted silhouette from
Task 1, a new pose T j+1 is computed. The 3D model is then
registered in the next step using this new pose.
Registration constraints: The silhouettes of the projected 3D
liver model and the segmented 2D liver are used to constrain
registration.
Loss function: The optimal transformation T ∗ is computed for
every image by minimising a reprojection error:

T ∗ = arg min
T

E(T,M, S ), (3)

where E(T,M, S ) = Lϵ(D(T (M)) − S ) is the reprojection error
function, λ is a weighting term, Lϵ is the smooth L1 loss, D is
the differential rendering function (Ravi et al., 2020), and S is
the predicted liver mask.
GPU usage: The team used an NVIDIA Tesla P100 for training
their model with 20 minutes training time.

Team 4 (VOR team)

Task 1: a) Segmentation of 2D landmarks
Preprocessing: No preprocessing was done on the training
dataset.
Data augmentation: No augmentation of the training dataset
was done.
Algorithm: The team proposed a multi-staged network for
each type of anatomical landmark, incorporating a UNet pre-
trained on the provided dataset (Ronneberger et al., 2015) to
perform an initial segmentation, along with a YOLOv5 (Red-
mon et al., 2016) as region proposal module. The anatom-
ical segmentation from the UNet is first converted to a box-
shaped segmentation mask. This mask is then combined with
the results from the YOLOv5 to form a region-of-interest (ROI)
from where representative features are learned for the final seg-
mentation. Then, this ROI mask is multiplied with the origi-
nal RGB image, and the resulting patch is downsampled from
1920 × 1080 pixels to 960 × 540 pixels. A DINO transformer
(Caron et al., 2021) is used to generate feature representations
from the previously generated patches. Lastly, a DeepLabV3
network (Chen et al., 2017) is implemented to segment the final
anatomical landmarks.
Loss function: The DeepLabV3 network uses cross-entropy
loss to perform semantic segmentation.
Pretraining: The team did not use models pre-trained on other
datasets.

Task 1: b) Segmentation of 3D landmarks
Preprocessing: The 3D models were normalised, i.e. con-
verted into unit space, to improve training stability.
Data augmentation: Random vertex masking was used to aug-
ment the 3D models.
Algorithm: A Graph Convolutional Network (GCN) (Kipf and
Welling, 2016) is used to segment the mesh vertices. The
dataset is split on a per-patient basis in 80% for training and

20% for validation purposes. The team verified that all the im-
ages of each patient were contained in either the training or the
validation set.
Loss function: The GCN network uses a cross-entropy loss to
perform semantic segmentation.
Pretraining: No pretraining of the GCN network was done.

Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: Random initialisation was used.
Algorithm: Sampling-based localisation networks are used to
perform registration. The approach is designed to deal with two
main problems. First, correlating the 2D image with the 3D
mesh and, second, preserving the mesh topology and volume
during registration. The localisation networks are inspired by
the Spatial Transformer network (Jaderberg et al., 2015). They
learn a parameterised affine transformation T at every stage,
which is then applied to the preoperative liver model M. Then,
a sampling module projects the visible vertices onto the images
and associates the projected vertices with colours. A Soft Ras-
terizer (Liu et al., 2019) generates an image from the projected
vertices in order to compute an image similarity loss. In addi-
tion, the team observed that decoupling the transformation pre-
vents the model to generate unsuitable affine transformations.
Registration constraints: The shape of the projected 3D liver
model is used as constraint by comparing it to the liver in the
laparoscopic image.
Loss function: A 2D image similarity loss is combined with
a 3D shape regularisation term for training. The 2D loss exerts
the major supervision when learning the optimal transformation
T ∗ for registration. This dimensional reduction inevitably loses
the control of 3D shape properties. To compensate the impact
of such reduction, two shape-based regularization terms were
added: a Laplacian loss that quantifies the smoothness of the
local surface around each vertex, and an edge length loss that
penalises significant changes in the edge lengths, avoiding un-
desired deformations in the mesh such as flattening, erosion, or
dilation.
GPU usage: The team did not provide any insight in the GPU
usage.

Team 5 (NCT team)

Task 1: a) Segmentation of 2D landmarks
Preprocessing: To capture more information during training,
the ground-truth labels were dilated by 10 pixels.
Data augmentation: No augmentation of the training dataset
was done.
Algorithm: An nnUNet network (Isensee et al., 2021) was used
to perform semantic segmentation. Training is performed using
a five-fold cross-validation scheme, which results in five sets of
network weights. Since each of the networks generate under-
segmented results, they are combined as the union of all the
predicted falciform ligament, silhouette and ridge landmarks.
Loss function: nnUnet uses a combination of Dice loss and
cross-entropy loss for training.
Pretraining: No pretraining was done on the nnUnet network.
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Task 1: b) Segmentation of 3D landmarks
Preprocessing: The per-view landmark annotations are merged
into a single ridge and falciform ligament landmark for each of
the patients. The 3D models are also downsampled to improve
performance.
Data augmentation: The provided dataset was augmented by
deforming the 3D models using finite element simulations. A
total of 8208 models with the corresponding labels were ob-
tained, which composed the training dataset. The original un-
deformed models were used as validation dataset.
Algorithm: Two MeshCNN networks (Hanocka et al., 2019)
were used to segment the ridge and falciform ligament land-
marks independently. MeshCNN operates directly on the trian-
gular meshes, extracting local edge features to make predictions
that are invariant to rotation, translation, and scale of the input
data. Therefore, two sets of weights are used to predict the two
classes independently. The union of the two predictions com-
pletes the final landmark segmentation. Once the edges have
been segmented, each vertex is assigned the class of the edges it
is a part of. Prior to any operation, MeshCNN normalises edge
lengths by their mean and standard deviation in the dataset. For
the normalisation step during inference on unseen test samples,
the mean and standard deviation of the original patient data is
used.
Loss function: In order to tackle the class imbalance problem,
the networks were trained using a cross-entropy loss, with the
highest weight assigned to the falciform ligament class.
Pretraining: No pretraining was done on the MesCNN net-
works.

Task 2: 3D preoperative to 2D laparoscopic image registration
Initialisation: The initial pose of the liver is selected at a ran-
dom position in front of the camera around the positive Z-axis.
The initial rotation is set up with liver’s anterior side facing the
camera, and then a random rotation of less than 90° is applied
over each axis. The camera is kept fixed at the origin throughout
the whole procedure and only the liver is translated and rotated.
The liver scale is also kept fixed.
Algorithm: An optimisation scheme based on differentiable
rendering is used. The system renders the liver mesh, the seg-
mented ridge and falciform ligament landmarks using a virtual
camera. The rendered 3D landmarks are then compared with
the segmented 2D landmarks to obtain a 2D reprojection er-
ror. This error is back-propagated and gradients of rotation and
translation are calculated. The gradients are then used to update
the rotation R and translation t of the preoperative liver model
M. Finally, a new render of the registered model M is made.
This process is repeated for 150 iterations, resulting in an it-
erative 3D pose-optimisation scheme using only 2D pixel-level
losses. After the first render is done and to speed up conver-
gence, the position of the rendered 3D falciform ligament is
compared to the position of the segmented 2D ligament. The
3D liver is then translated parallel to the camera plane until the
two falciform ligaments overlap in the rendered image. This
process is repeated for 30 different random pose initialisations
to increase robustness against bad initial alignments. To speed
up the process, the laparoscopic and the rendered images were

scaled to one fifth of their original size.
Registration constraints: The 3D and 2D ridge and falciform
ligament landmarks are used to constrain the optimisation pro-
cess.
Loss function: A pixel-level mean squared error is measured
between the rendered 3D landmarks and the image landmarks.
GPU usage: The team used an NVIDIA V100 for training their
model on task 1 sub-task 2D segmentation (18 hours for each
fold, 5 folds were trained). For sub-task 3D segmentation the
team used one NVIDIA GeForce RTX2080 and trained for 140
hrs 21 mins, while no training was needed for task 2.

Team 6 (VIP team)

Task 1: a) Segmentation of 2D landmarks
Preprocessing: In order to reduce the computation time, im-
ages were resized to 272x480 pixels.
Data augmentation: The provided dataset was augmented by
applying random flipping, Gaussian noise, Gaussian blur, and
light adjustment.
Algorithm: Attention UNet (Oktay et al., 2018) was used to
segment the anatomical landmarks. This network integrates
Attention Gates (AG) to UNet to reduce false-positive predic-
tions in irrelevant structures. The dataset was randomly split
into training and validation sets with a ratio of 4:1. A cross-
validation strategy was followed to select the best checkpoint
for inference. Images in each mini-batch were randomly sam-
pled from different patients to ensure diversity. Following Ok-
tay et al. (2018), the gating parameters were initialised so that
the attention gates pass through feature vectors at all spatial lo-
cations. The network was trained from scratch for 50 epochs
with an initial learning rate of 10−4 and a batch size of 16. The
learning rate was then decreased by 0.9 after every 5 epochs.
Loss function: A cross-entropy loss combined with an IoU loss
was used to train the Attention UNet.
Pretraining: No pretraining was done on the Attention UNet.
GPU usage: The team used one NVIDIA GeForce RTX 2080
for training their model in task 1 (1 hours training time on 2D
segmentation sub-task)

Results

Evaluation metrics

The metrics used to evaluate the tasks vary according to the
nature of the problem to be solved. Task 1 uses Precision Dice
Coefficient, and Symmetric Distance (François et al., 2020) to
assess the predicted 2D landmarks, along with 3D Chamfer Dis-
tance to assess the predicted 3D landmarks. Task 2 uses the 2D
Hausdorff Distance to measure the accuracy of 3D preoperative
to 2D laparoscopic image registration.

Task 1: Metrics for assessing the 2D and 3D landmark segmen-
tation tasks

Precision
We use precision P to measure the quality of the predicted

2D landmarks at a pixel level. It corresponds to the number
of true positives over the total number of predicted pixels (true



12 /Medical Image Analysis (2024)

positives and false positives). Precision is a commonly used
metric in semantic segmentation to evaluate the quality of the
predictions (Taha et al., 2014):

P =
|T P|

|T P| +|FP|
, (4)

where T P are the true positives and FP are the false positives.

Dice Coefficient
We use Dice coefficient DS C to measure the similarity be-

tween the predicted and the ground-truth landmarks. It cor-
responds to the intersection of the pixels in the predicted and
ground-truth landmarks, over the total number of pixels in both
landmarks. Dice coefficient is also a commonly used metric in
semantic segmentation to evaluate the accuracy of the predic-
tions (Müller et al., 2022):

DS C =
2|BI ∩CI |

|BI | +|CI |
, (5)

where BI is the set of predicted image landmarks and CI is the
set of ground-truth image landmarks.

Symmetric Distance
We use the Symmetric Distance score proposed by François

et al. (2020) to assess the similarity of the predicted and ground-
truth landmarks. This score takes five performance criteria into
account. First, the ground-truth landmarks should not be missed
and there should be no spurious predictions. Second, the pre-
dictions should be close to the ground-truth landmarks. Third,
each ground-truth landmark should only produce a single pre-
diction. Fourth, the score should be invariant to the image res-
olution. Fifth, the score should be invariant to the amount of
ground-truth landmarks. The score is thus defined as:

G =
1

2|CI |dmax

∑
bI∩Q

dS (bI , cI \ FN) +
∑

cI\FN

dS (cI , bI ∩ Q)


+

|FP|
|I| − 2|CI |dmax

+
|FN |
|CI |
,

(6)

where G is the symmetric distance score, dmax is a tolerance
distance that defines if a predicted landmark is spurious or not,
bI ∈ BI is a landmark in the set of predicted image landmarks
BI , cI ∈ CI is a landmark in the set of ground-truth image land-
marks CI , Q is the tolerance region around the ground-truth
image landmarks defined by dmax, FP and FN are the false pos-
itive and the false negative predictions, respectively, and dS () is
a symmetric distance function.

3D Chamfer Distance
We measure the similarity between the predicted and ground-

truth 3D landmarks by means of a 3D Chamfer Distance. It cor-
responds to the sum of the squared distances between the near-
est neighbour correspondences of the predicted and ground-
truth landmarks. The 3D Chamfer Distance dC is a standard

metric used to measure the similarity and completion between
two point clouds (Wu et al., 2021):

dC(v,w) =

∑
v min

w
∥v − w∥2

|v|
+

∑
w min

v
∥v − w∥2

|w|
, (7)

where v ∈ bM are the points in a predicted model landmark bM ,
and w ∈ cM are the points in the corresponding ground-truth
model landmark cM . |.| denotes the cardinality of a set.

We use the average Chamfer distance F between the pre-
dicted and ground-truth landmarks as the evaluation metric:

F =
1
|BM |

∑
bM

dC(bM , cM), (8)

where BM is the set of predicted model landmarks.

Task 2: Metric for assessing the registration task
We measure the accuracy of the 3D preoperative mesh to 2D

laparoscopic image registration done by the participating teams
by computing the 2D Hausdorff Distance between the ground-
truth 2D landmarks and the 2D projections of the registered
ground-truth 3D landmarks. It corresponds to the greatest of all
the distances from a point in a ground-truth 3D landmark pro-
jected in 2D, to the closest point in the corresponding ground-
truth 2D landmark. This metric has became the standard way
to measure the similarity and the distance between two curves
(Rueda et al., 2014):

dH(v,w) = max{max
v
{min

w
∥v − w∥},max

w
{min

v
∥v − w∥}}, (9)

where dH is the Hausdorff distance. The final 2D Hausdorff
distance also representing reprojection error in this case (rpe)
is measured for both the ridge and the falciform ligament land-
marks:

rpe =
1
|CM |

∑
cM

dH(Π(cM), cI), (10)

where CM is the set of ground-truth model landmarks and Π(.)
is the 3D-2D projection function. It should be noted that, while
measuring target registration errors is the standard way to quan-
tify the registration accuracy, obtaining such groundtruth data
on patients is highly complex. This is because it requires us-
ing non-standard devices in the operating room and a rigorous
ethical approval process. Thus, we have chosen to use reprojec-
tion error as a metric to evaluate the accuracy of the proposed
methods.

Quantitative results

Performance comparison for the 2D and 3D segmentation task
For the 2D segmentation step, the quantitative results for the

precision and the Dice coefficient (DSC) scores are presented in
Table 4. Images 4_21 and 4_22 do not have a visible falciform
ligament landmark. Therefore, the precision and DSC scores
are marked as NA (not available) for these two images and the
average scores for the falciform ligament are computed over 14
images instead of 16. BHL team has the highest overall mean
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Table 4: Evaluation of 2D segmentation of landmarks using region-based metrics: Precision and dice coefficient scores (DSC) are provided for 16 images from
the 2 test cases (patients 4 and 11). Each evaluation metric includes values for the ridge, the falciform ligament, and the silhouette landmarks. The higher the
precision and DSC values the better. The best results are in bold, the second best are underlined.

Test BHL NCT UCL VIP VOR
image Precision DSC Precision DSC Precision DSC Precision DSC Precision DSC

4_3 0.14/0.44/0.53 0.01/0.42/0.63 0.31/0.51/0.47 0.04/0.05/0.61 0.16/0.22/0.51 0.02/0.3/0.55 0.06/0.32/0.25 0.0/0.4/0.38 0.05/0.1/0.23 0.01/0.15/0.36
4_4 0.41/0.47/0.55 0.02/0.4/0.65 0.22/0.0/0.53 0.03/0.0/0.67 0.13/0.16/0.49 0.01/0.23/0.56 0.27/0.33/0.24 0.02/0.41/0.37 0.24/0.14/0.23 0.03/0.19/0.37
4_7 0.27/0.5/0.61 0.01/0.44/0.72 0.07/0.0/0.45 0.02/0.0/0.6 0.05/0.2/0.49 0.01/0.25/0.54 0.06/0.26/0.22 0.01/0.31/0.35 0.17/0.18/0.21 0.03/0.25/0.34

4_11 0.16/0.59/0.56 0.01/0.54/0.54 0.12/0.0/0.3 0.02/0.0/0.42 0.05/0.56/0.5 0.01/0.54/0.55 0.35/0.37/0.24 0.03/0.43/0.37 0.32/0.08/0.21 0.04/0.14/0.35
4_17 0.0/0.0/0.57 0.0/0.0/0.59 0.43/0.0/0.35 0.06/0.0/0.51 0.02/0.14/0.62 0.01/0.22/0.59 0.37/0.0/0.23 0.05/0.0/0.34 0.17/0.0/0.19 0.02/0.0/0.31
4_20 0.3/0.34/0.29 0.02/0.46/0.36 0.27/0.57/0.33 0.03/0.31/0.43 0.18/0.21/0.25 0.03/0.29/0.28 0.0/0.0/0.23 0.0/0.0/0.36 0.22/0.22/0.21 0.03/0.35/0.35
4_21 0.51/NA/0.47 0.06/NA/0.52 0.27/NA/0.5 0.06/NA/0.57 0.02/NA/0.36 0.01/NA/0.4 0.0/NA/0.25 0.0/NA/0.38 0.43/NA/0.2 0.06/NA/0.32
4_22 0.0/NA/0.47 0.0/NA/0.39 0.17/NA/0.31 0.04/NA/0.23 0.0/NA/0.33 0.0/NA/0.31 0.25/NA/0.22 0.05/NA/0.3 0.14/NA/0.17 0.04/NA/0.26
11_2 0.48/0.41/0.46 0.03/0.56/0.46 0.18/0.42/0.46 0.04/0.53/0.57 0.15/0.34/0.32 0.03/0.47/0.34 0.14/0.24/0.14 0.01/0.38/0.21 0.05/0.16/0.1 0.01/0.28/0.16
11_3 0.27/0.41/0.46 0.01/0.49/0.5 0.47/0.44/0.41 0.07/0.59/0.53 0.21/0.26/0.33 0.04/0.37/0.37 0.1/0.25/0.14 0.01/0.4/0.22 0.18/0.15/0.1 0.02/0.26/0.16
11_4 0.43/0.44/0.42 0.02/0.57/0.44 0.36/0.4/0.43 0.04/0.5/0.55 0.19/0.64/0.33 0.03/0.66/0.33 0.08/0.23/0.16 0.01/0.36/0.24 0.05/0.18/0.1 0.01/0.3/0.17
11_5 0.37/0.39/0.41 0.02/0.49/0.43 0.16/0.45/0.42 0.03/0.55/0.54 0.18/0.7/0.33 0.04/0.72/0.34 0.07/0.26/0.17 0.01/0.39/0.25 0.25/0.18/0.1 0.01/0.3/0.16
11_6 0.22/0.38/0.43 0.01/0.46/0.47 0.14/0.52/0.39 0.02/0.53/0.52 0.16/0.68/0.33 0.05/0.7/0.34 0.02/0.24/0.14 0.0/0.37/0.21 0.0/0.17/0.12 0.0/0.27/0.18
11_7 0.41/0.38/0.47 0.03/0.36/0.51 0.16/0.34/0.48 0.04/0.39/0.62 0.12/0.55/0.35 0.01/0.58/0.37 0.04/0.23/0.18 0.01/0.37/0.27 0.0/0.16/0.12 0.0/0.26/0.2
11_8 0.4/0.4/0.4 0.01/0.39/0.41 0.13/0.33/0.37 0.04/0.43/0.46 0.18/0.66/0.31 0.01/0.68/0.31 0.14/0.23/0.14 0.02/0.36/0.21 0.05/0.17/0.09 0.01/0.27/0.14
11_9 0.0/0.6/0.32 0.0/0.45/0.34 0.12/0.4/0.37 0.03/0.55/0.46 0.01/0.7/0.25 0.0/0.72/0.26 0.0/0.24/0.13 0.0/0.38/0.2 0.0/0.19/0.11 0.0/0.32/0.17
Mean 0.27/0.41/0.46 0.02/0.43/0.50 0.22/0.31/0.41 0.04/0.32/0.52 0.11/0.43/0.38 0.02/0.48/0.40 0.12/0.23/0.19 0.01/0.33/0.29 0.15/0.15/0.16 0.02/0.24/0.25
Total
mean 0.38 0.32 0.31 0.30 0.31 0.30 0.18 0.21 0.15 0.17

Table 5: Segmentation of 2D landmarks using distance metric: The symmet-
ric distance score G is provided for 16 images from the 2 test cases (patients 4
and 11). Each evaluation metric includes values for the ridge, the falciform lig-
ament, and the silhouette landmarks. The lower the symmetric distance score,
the better. The best results are in bold, and the second best are underlined.
Mean values for each landmark Ḡ and for the combined overall mean for all
landmarks Ḡrls are also provided.

Test BHL NCT UCL VIP VORdata
4_3 0.67/0.5/0.14 0.33/0.87/0.3 0.61/1.0/0.21 0.77/0.51/0.71 0.65/1.0/0.87
4_4 0.56/0.6/0.14 0.65/1.0/0.08 0.62/1.0/0.34 0.57/0.47/0.73 0.43/1.0/0.79
4_7 0.77/0.45/0.08 0.69/0.84/0.35 0.62/1.0/0.22 0.74/0.71/0.9 0.67/1.0/1.0

4_11 0.76/0.37/0.34 0.7/1.0/0.99 0.72/0.28/0.18 0.58/0.44/0.74 0.59/1.0/1.0
4_17 1.0/1.0/0.35 0.4/1.0/0.85 1.0/1.0/0.37 0.44/1.0/0.89 0.68/1.0/1.0
4_20 0.48/0.77/0.39 0.58/0.43/0.26 0.61/1.0/0.4 1.0/1.0/1.0 0.54/0.88/1.0
4_21 0.36/NA/0.34 0.34/NA/0.33 0.81/NA/0.45 1.0/NA/0.75 0.39/NA/1.0
4_22 1.0/NA/0.57 0.4/NA/0.81 1.0/NA/0.53 0.28/NA/1.0 0.29/NA/1.0
11_2 0.5/0.19/0.5 0.43/0.22/0.31 0.53/1.0/0.63 0.59/0.66/1.0 0.76/1.0/1.0
11_3 0.63/0.19/0.41 0.37/0.16/0.24 0.46/1.0/0.49 0.58/0.65/1.0 0.61/1.0/1.0
11_4 0.63/0.13/0.36 0.44/0.27/0.26 0.6/0.07/0.46 0.68/0.73/1.0 0.85/1.0/1.0
11_5 0.59/0.3/0.38 0.53/0.27/0.32 0.55/0.05/0.46 0.7/0.6/1.0 0.79/1/1
11_6 0.79/0.3/0.38 0.54/0.39/0.51 0.61/0.04/0.47 0.81/0.8/1.0 1.0/1.0/1.0
11_7 0.65/0.58/0.27 0.56/0.46/0.13 0.79/0.11/0.32 0.84/1.0/1.0 1.0/1.0/1.0
11_8 0.81/0.56/0.5 0.63/0.36/0.46 0.81/0.05/0.57 0.65/1.0/1.0 0.76/1/1
11_9 0.82/0.53/0.51 0.46/0.26/0.45 1.0/0.06/0.57 1.0/0.79/1.0 1.0/1.0/1.0

Ḡ 0.69/0.46/0.35 0.50/0.54/0.42 0.71/0.55/0.42 0.70/0.74/0.92 0.69/0.99/0.98
Ḡrls 0.50 0.49 0.56 0.79 0.87

precision of 0.38, and the highest mean values for the ridge
and the silhouette landmarks, with 0.27 and 0.46, respectively.
They also obtained the second highest mean precision for the
falciform ligament landmark (0.41). The second best results are
for the NCT and UCL teams, with an overall mean precision of
0.31. The NCT team has the second highest scores for the ridge
and the silhouette landmarks, with 0.22 and 0.41, respectively.
The UCL team has the highest score for the ridge landmark
(0.43). For DSC, a similar trend can be observed, with the BHL
team having the best overall mean score of 0.32. However, the
UCL team obtained the highest score for the falciform ligament
landmark, with 0.48. The VIP and VOR team performed poorly
on both metrics. Contrary to the precision and the DSC, the
lower the symmetric distance score, the better. These results
are shown in Table 5. The NCT team has marginally the best

Table 6: Segmentation of 3D landmarks: 3D Chamfer distances for the ridge
‘r’ (ch_r), and the falciform ligament ‘l’ (ch_l) landmarks are provided for 16
images of the 2 test cases (patients 4 and 11). The ground-truth 3D vertex
locations are compared with the predicted 3D vertex locations for the ridge
and the falciform ligament. NA refers to the cases where the landmark is not
annotated. The best results are in bold, the second best are underlined. Mean
values are computed for all the images except for the failed cases shown in red.
The overall mean is computed as an average of ch_r and ch_l for each team. All
the distances are given in millimeters.

Test BHL NCT UCL VOR
data ch_r ch_l ch_r ch_l ch_r ch_l ch_r ch_l
4_3 98.02 69.98 20.14 37.95 7.68 14.45 28.86 22.88
4_4 102.83 61.08 17.82 38.96 16.69 10.92 33.41 24.19
4_7 84.99 55.15 24.59 39.3 10.2 11.95 26.23 20.82
4_11 101.65 52.19 19.46 40.27 15.07 17.21 34.12 22.35
4_17 105.7 78.52 20.76 37.77 7.61 16.43 34.21 30.46
4_20 108.05 78.91 20.55 39.68 17.42 11.91 31.62 18.46
4_21 156.74 NA 36.83 NA 13.17 NA 40.39 NA
4_22 148.92 NA 33.8 NA 38.05 NA 35.5 NA
11_2 146.26 57.72 30.16 33.67 37.49 24.24 29.92 36.62
11_3 136.32 63.43 30.63 35.55 45.13 31.49 28.29 33.54
11_4 145.55 63.31 30.97 37.04 52.76 34.68 37.42 33.88
11_5 152.12 57.72 31.61 32.92 15.28 36.89 32.52 35.13
11_6 143.85 57.86 30.77 33.32 14.23 28.07 30.39 37.64
11_7 145.3 58.32 32.15 34.95 70.82 43.51 33.19 37.59
11_8 152.87 53.45 33.3 34.59 68.01 18.17 37.18 33.31
11_9 172.22 60.76 37.8 33.41 13.23 42.62 43.22 35.15
Mean 128.27 62.02 27.19 36.38 27.97 24.47 32.90 30.14

Overall
mean 95.14 31.78 26.22 31.52

overall mean symmetric distance score compared to BHL, with
0.49. They have the lowest mean score for the ridge landmark
of 0.50, and the second lowest mean scores for the falciform
ligament and the silhouette landmarks, with 0.54 and 0.42, re-
spectively. While the BHL team has obtained the lowest scores
for the falciform ligament and the silhouette landmarks, with
0.46 and 0.35, respectively. In general, we can observe that
the falciform ligament and the silhouette landmarks have the
best prediction performances, followed by the ridge landmark,
which has the worst segmentation performance by all teams.
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Table 7: 3D preoperative mesh to 2D laparoscopic image registration: Reprojection errors in pixels are provided for 16 samples from the two test patients. These
errors are computed for the ridge (rpe_r) and the falciform ligament (rpe_l) between the projected 3D ground-truth landmark vertices in the registered model w.r.t.
the 2D ground-truth pixel locations. NA refers to the not available cases. Mean values are computed for all registrations except for the failed cases shown in red.
The overall mean is computed as an average of rpe_r and rpe_l for each team. The best results are in bold, the second best are underlined.

Test
#1

BHL NCT UCL VOR GRASP
rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l rpe_r rpe_l

4_3 515.89 702.65 401.36 257.95 525.82 708.6 936.33 499.04 446.93 661.98
4_4 744.36 1050.4 494.53 368.75 732.54 466.69 1035.62 567.85 521.31 762.17
4_7 431.06 398.92 115.73 170.76 656.34 366.39 869.04 480.69 474.44 558.58

4_11 857.2 901.19 360.19 329.4 340.81 479.25 979.86 669.47 443.22 682.49
4_17 500.09 3182.76 323.6 458.22 250.71 442.19 1142.3 853.63 405.36 444.67
4_20 664.21 946.64 183.58 393.21 707.26 300.48 992.22 762 495.07 652.99
4_21 448.63 NA 159.3 NA 799.6 NA 976.17 NA 451.3 NA
4_22 465.4 NA 212.36 NA 604.88 NA 965.59 NA 504.12 NA
11_2 839.91 2019.02 1008.61 356.36 910.76 473.38 1293.85 1194.77 873.09 452.32
11_3 520.78 3115.51 842.67 177.02 613.39 492.87 1253.12 1170.4 794.59 473.93
11_4 508 659.02 720.35 185.74 974.13 697.18 1278.17 574.81 792.05 542.79
11_5 403 688.8 788.44 311.52 825.24 669.36 1281.08 583.92 767.99 608.84
11_6 509.56 710.12 807.11 543.89 936.63 662.15 1283.26 531.75 1107.94 463.24
11_7 489.7 670.1 360.03 408.01 1058.9 816.27 1248.58 511.68 1291.6 1587.21
11_8 388.29 522.38 329.8 237.32 1174.43 824.16 1279.16 472.45 781.51 627.21
11_9 247.95 369.42 361.25 270.65 925.53 679.32 1250.07 746.84 753.88 643.11
Mean 533.38 1138.35 466.80 319.20 752.31 577.02 1129.02 687.09 681.52 654.39

Overall
mean 835.86 393 664.66 908.05 667.95

For the 3D segmentation sub-task, the quantitative results are
presented in Table 6. The UCL team had the best overall scores,
with the lowest distance for the falciform ligament landmark at
24.47 mm and the second lowest distance for the ridge land-
mark at 27.97 mm. The NCT had the lowest distance for the
ridge landmark at 27.19 mm. The VOR team had the second
lowest distance for the falciform ligament landmark at 30.14
mm.

Performance comparison for the 3D preoperative mesh to 2D
laparoscopic image registration task

The quantitative results for the five teams participating in the
3D preoperative to 2D laparoscopic image registration task are
presented in Table 7. Reprojection errors are computed for the
ridge and the falciform ligament landmarks. We analyse the
mean reprojection errors of both landmarks (where available)
as doing it separately does not provide enough information on
the accuracy of the registered models. It is worth noting that the
camera calibration of the 2 test patients have mean reprojection
errors of 0.36 pixels for patient 4 and 0.64 pixels for patient 11.
Given the low calibration errors, they are not taken into account
to evaluate the registration performance of the teams. Because
images 4_21 and 4_22 do not have a visible falciform ligament,
the corresponding reprojection errors are marked as NA and the
average scores for the falciform ligament are computed over 14
images instead of 16. The registration method of team NCT has
the best mean reprojection error with 393 pixels. The team UCL
has the second best mean error, with 664.66 pixels. Following
closely, the GRASP team has the third best mean error with
667.95 pixels. The VIP team did not participate in this task.

Run time on test data

All the methods except the one from the GRASP team were
evaluated using the provided Docker container on an NVIDIA
GeForce 1080Ti 11GB GPU. It was observed that NCT had the
longest runtime with nearly 197 seconds, divided in 54 seconds
for Task 1 a), 11 seconds for Task 1 b), and 132 seconds for
Task 2. All other methods took less than a minute, with the
UCL team having the lowest time with 16 seconds and the BHL
team the second lowest with 25 seconds. Due to the compila-
tion difficulties found for the GRASP team, we used a Google
Colab T4 GPU whose overall average registration time was 26
seconds.

Qualitative results

We present a visual representation of the results obtained by
the teams in both tasks. For Task 1, we show a side-by-side
comparison of the predicted and the ground-truth 2D and 3D
landmarks. For Task 2, we overlay the registered 3D models on
top of the laparoscopic images of the two test patients.

Segmentation of 2D landmarks

Figure 6 shows the ground-truth and predicted 2D landmarks
for three images of the two test patients. The images corre-
spond, from the left most column to the right most column, to
the cases 4_7, 4_11, 4_17, 11_3, 11_6, and 11_7 of Table 4. In
general, all the teams were able to segment the ridge, the falci-
form ligament, and the silhouette landmarks in the laparoscopic
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images. Visually speaking, the quality of the predictions corre-
spond to the scores reported in Table 4, with the BHL and NCT
teams having less spurious predictions compared to the other
teams. The silhouette landmark is the one with the best predic-
tions across all the teams, with more continuous curves and less
missing parts. The falciform ligament landmark also has good
results with continuous curves and low spurious responses. The
ridge landmark is the most challenging case, with lots of miss-
ing parts and a considerable amount of spurious predictions.

Segmentation of 3D landmarks

Figure 7 shows the ground-truth and predicted 3D landmarks
for the same set of images presented in figure 4. The landmarks
shown correspond to the ridge and the falciform ligament. The
BHL team was not able to clearly segment the landmarks, seg-
menting vertices that are far from the ground-truth locations
and covering large areas of the liver surface. The NCT team
was able to segment the ridge landmarks successfully, while the
falciform ligament landmarks present some spurious responses.
The team has segmented the landmarks in the whole 3D model,
rather than in a per-image basis, which was the original goal of
the task. The UCL team has segmented the ridge landmarks
successfully for patient 4, with some spurious responses for
the falciform ligament landmarks. For patient 11, the ridge
landmarks are not consistent and the falciform ligament land-
marks are not clearly defined. Although the team segments the
landmarks in the whole 3D model and not on a per-view basis,
their method gives different responses when run multiple times
on the same model. The VOR team was not able to success-
fully segment the ridge landmarks, while the falciform ligament
landmarks are far from the ground-truth ones and present some
spurious responses. The team has also segmented the land-
marks in the whole liver, having the same responses at every
running instance.

3D preoperative mesh to 2D laparoscopic image registration

Figure 8 shows a fusion of the registered 3D models with the
laparoscopic images of figure 6. Matching the results of table
7, the NCT team has the best visual results, with the registered
models having a similar pose to the intraoperative livers. How-
ever, the models do not exactly fit the boundaries of the intra-
operative livers, which means that using them for AR purposes
would be inaccurate. The rest of the methods did not provide
visually successful results, with the registered models having
different poses or being far from the intraoperative livers. Re-
sults for the VOR team are not shown due to their registered
models falling out of the laparoscopic images.

Comparison of AR images

From the registration results of Task 2, AR images are gen-
erated using inner structures like tumours and veins, as shown
in Figure 9. The AR images were only generated for NCT as
it was the only team that obtained results that were close to re-
ality. Their images are qualitatively compared to an ICP rigid
registration method and the baseline method from Koo et al.
(2017) that reports a TRE of less than 10 mm. In the left image
of patient 4, the rigid registration method shows the left tumour

shifted towards the left compared to the baseline method, while
the NCT method shows both tumours inside the field of view
and closer to each other compared to the baseline method. For
the NCT case, the difference is due to the registered liver being
shifted to the right of the real liver, and slightly rotated towards
the left. In the middle image of patient 4, the baseline method
shows that the left tumour is at the border of the liver, and the
right tumour is at the left of the vein. For the rigid case, the left
tumour is outside of the liver’s parenchyma. For the NCT team,
the left tumour is outside of the liver and the right tumour is in
front of the vein. This is because the registered liver is closer
to the camera and slightly rotated to the right compared to the
real liver. In the right image of patient 4, the baseline method
shows that the left tumour is near the border of the liver and the
right tumour is above the vein. For the rigid case, the tumour in
the middle is slightly shifted to the right and the vein is shifted
upwards compared to the baseline method. For the NCT team,
the left tumour is right behind the right tumour and the vein is
rotated towards the left. This is because the registered liver is
rotated towards the left compared to the real liver. For the 3
images of patient 11, both the baseline and the rigid methods
show the tumour and the vein approximately at the same loca-
tions. In the left image of patient 11, the baseline method shows
that the tumour is in front of the vein. For the NCT team, the tu-
mour looks more extensive, and the vein has a slightly different
pose. This is because the registered liver is closer to the camera
and slightly rotated upwards compared to the real liver. In the
middle image of patient 11, the baseline method shows the tu-
mour being deformed somewhat towards the bottom, due to the
ultrasound probe pushing the liver downwards. For the NCT
team, the tumour is at the top-left of the vein, while the vein is
closer to the bottom border of the liver. This is because the reg-
istered liver is rotated upwards compared to the real liver. In the
right image of patient 11, the tumour is more deformed than the
previous two images, as the probe continues to push the liver
downwards. For the NCT team, the tumour and the vein are
parallel to each other, with the the tumour being located more
to the left compared to the baseline method. This is because
the registered liver is rotated slightly to the left compared to the
real liver. These results confirm that the NCT method does not
follow the movements of the camera and the liver consistently
and that, even if the camera is fixed and the liver remains sta-
ble, their method can produce different registration solutions.
For the rigid method, even if the internal structures seem to
be close to the ones shown by the baseline method despite the
lack of deformation, their little displacements in the AR image
usually mean real world displacements of several millimeters,
translating into a wrong guidance to the surgeon.

Ranking

We conducted an aggregate and rank strategy for 2D and 3D
landmarks separately, which was then combined based on the
ranking consensus across Task1 (Wiesenfarth et al., 2021). It
can be observed in Figure 10 that even though team BHL ranked
first in the 2D landmark (higher is better in this case), the mean
performance is close to that of team NCT, with team UCL only
marginally lower. However, for the 3D landmark segmentation,
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Fig. 6: Qualitative results of the 2D landmark segmentation task: The ground-truth (GT) landmarks for the two test patients are shown in the first row, while the
teams’ predictions are shown in the consecutive rows. The ridge landmarks are shown in red, the falciform ligament landmarks in blue, and the silhouette landmarks
in yellow.

Fig. 7: Qualitative results of the 3D landmark segmentation task: The ground-truth (GT) landmarks for the two test patients are shown in the first row, while the
teams’ predictions are shown in the consecutive rows. The ridge landmarks are shown in red and the falciform ligament landmarks in blue.

for which lower is better, team UCL outperformed all the other
teams, while team BHL had the worst performance. As a result,
team UCL’s aggregated value in the 2D and 3D landmark seg-

mentation led them to be first in the ranking, with team NCT in
second place.
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Fig. 8: Qualitative results of the 3D preoperative mesh to 2D laparoscopic image registration task: Registration results on some of the images are shown for 4
of the participating teams. The original images are shown in the first row, with the results for BHL, GRASP, NCT, and UCL shown in the consecutive rows. Results
for VOR are not shown due to the models being out of the field of view. It can be seen that NCT obtained the best results, with the registered models being close to
the liver in the images.
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Fig. 9: Comparison of AR against a baseline method: AR is generated from the registration results of Task 2 and compared against a baseline method from (Koo
et al., 2017). We only compare with the NCT team due to the coherent results they obtained, as shown in Figure 8. Tumours are shown in yellow and inferior
vena-cava in blue.

Similarly, on the Task 2 of the competition and as shown
in Figure 11, team NCT outperformed all teams, recording
the least registration for most cases with the lowest mean for
both the reprojection errors (compared with ridge and with fal-
ciform ligament). However, the UCL team ranked third and
BHL ranked fourth. These rankings were based on consen-
sus (Wiesenfarth et al., 2021) across reprojection error for ridge
and ligament (rpe_r and rpe_l). It is to be noted that in the
ranking, we have not taken inference time into account as this
challenge is exploratory and requires advancing the registration
methods before competing on time requirements.

Discussion

Through this challenge, we aim to release the first compre-
hensive dataset with carefully annotated anatomical landmarks
in both the laparoscopic images and the preoperative 3D mod-
els. The 2D landmarks consist of the silhouette, the ridge and
the falciform ligament (often persisted as a potential anatomi-
cal landmark by surgeons), while the 3D landmarks consist of
the falciform ligament and the ridge. An important limitation
of the preoperative to intraoperative registration problem is the
validation of techniques, as there is no standard validation strat-
egy. We argue that measuring the reprojection error between
2D and 3D landmarks is a valid strategy, although it carries an
ambiguity problem as different registrations can lead to simi-
lar reprojection errors. Therefore, it does not fully replace a
proper target registration error measurement using reliable 3D
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landmarks.

Most participating teams developed methods for both the
landmark segmentation and the 3D preoperative mesh to 2D
laparoscopic image registration tasks. In terms of 2D landmark

segmentation, the majority of teams explored various encoder-
decoder UNet-based variants (e.g., Attention UNet, UNet++,
nnUNet) either alone or in combination with other models and
backbones. In the reports submitted to the challenge organis-
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ers, the teams mentioned that using the UNet architecture alone
was not enough to have good predictions. For example, the
NCT team used 5 fold cross-validation technique using nnUNet
and dilation as preprocessing, which encouraged false positives,
i.e., penalising precision (second-best score of 0.31 compared
to 0.38 from BHL). However, this favored the team in terms of
the symmetric distance score with the best score of 0.49. Sim-
ilarly, the UCL team used UNet++ with heavy data augmen-
tation, generating 100,000 synthetic images for training. The
BHL team used two ResUNet, one to predict the ridge from
the original images, and the other to predict the falciform liga-
ment and the silhouette from contour-enhanced images. In this
way, the team achieved the best precision in all three landmarks,
putting them at the top of the ranking for 2D segmentation (Fig-
ure 10). Hypothesis I: Based on the experimental results, seg-
menting anatomical landmarks in the liver is extremely chal-
lenging. Our exploration concluded that using complex model
designs or ensemble of models can provide a higher precision,
as shown by the BHL team. Using synthetic data for training
can improve performance, as shown by the UCL team.

In the context of the segmentation of 3D anatomical land-
marks, all the teams performed a global 3D landmark segmen-
tation instead of a per-view approach, i.e., none of the partic-
ipating teams utilised the provided 2D laparoscopic view for
a given 3D model. Two of the teams (BHL and UCL) utilised
PointNet++, the NCT team used MeshCNN, and the VOR team
used a graph CNN-based approach. However, since the ratio of
the number of annotated vertices to the total number of vertices
is very small, teams using off-the-shelf methods without much
modification did not succeed in achieving acceptable results
(e.g., BHL and VOR). It can be observed that the teams that
used simulation techniques to add synthetic meshes for training
(team UCL and team NCT) obtained improved 3D landmark
segmentation (Table 6). As an aggregate, UCL team ranked
first in the 3D segmentation (Figure 10). This is also evident in
the qualitative results shown in Figure 7. Hypothesis II: From
the experimental results, it can be concluded that the segmenta-
tion of 3D landmarks requires data augmentation to tackle the
class imbalance problem. Also, fusing the landmarks from all
the views to obtain global ridge and falciform ligament land-
marks might help to improve the segmentation performance in
3D models.

With respect to the 3D preoperative mesh to 2D laparoscopic
image registration problem, most of the teams used differen-
tiable rendering as a way to optimise the liver pose. The main
difference between them was the registration constraints used
during the optimisation. The results from the three teams (BHL,
NCT and UCL) on the 2D landmark segmentation and two
teams (UCL and NCT) on 3D landmark segmentation are com-
petitive (see Figure 10. However, upon observing the quali-
tative results for 3D-2D registration (see Figure 8), it can be
concluded that only the NCT team’s approach provided accept-
able registration results. Among these approaches, team NCT
obtained the best results both quantitatively (Table 8) and qual-
itatively (Figure 8), and the only team that had visually satis-
factory results. This can be explained by the two distinct ap-
proaches they took: 1) The team used an initialisation step, in

which the preoperative 3D model is set at a random location in
front of the camera, with a rotation such that the liver’s anterior
side faces the camera and 2) They further constrained their reg-
istration using an edge-detection filter in the vertical direction
on the projected liver for identifying the silhouette (in addition
to the already segmented ridge and falciform ligament), which
was not done by other teams. The BHL team was the only
one to use a PnP-based approach to perform registration. Apart
from the NCT team, the 3D poses obtained by the other teams
were far from the liver in the laparoscopic images. Although the
reported reprojection errors do not offer a complete overview of
the clinical usability of the methods, they do serve as a basis to
make an initial assessment, especially for a challenging prob-
lem such as LLR. For example, from the quantitative and qual-
itative results shown in Table 7 and Figures 8 and 9, we can de-
duce that none of the proposed registration methods will have a
successful clinical outcome. Even the best method proposed by
team NCT did not show a fully aligned preoperative 3D model
and took an average of over 3 minutes. Therefore, conducting
a clinical study using the proposed methods would not lead to
a successful outcome. Hypothesis III: From the methods used
by the participating teams, it can be deduced that a good ini-
tialisation is required to obtain a successful result. This means
that the optimisation should start with a pose of the preopera-
tive 3D model close to one of the livers in the image. Otherwise,
the methods will converge into a wrong result. Similarly, given
the fact that the proposed methods only performed rigid regis-
tration, it can be concluded that the methods are not ready for
usage in AR, as the deformations between the preoperative and
intraoperative stages are not compensated, which also reduces
the registration accuracy.

Conclusion and future directions

The P2ILF challenge is the first challenge that focuses on
both the 2D/3D landmark segmentation and the registration
problems for AR in laparoscopy. The participating teams un-
derstood the importance of the problem and proposed relevant
solutions. Although the proposed idea was to segment the 3D
landmarks according to the visible 2D landmarks in a laparo-
scopic image, the teams treated the 2D and 3D segmentation
as separate problems. They achieved this by merging the per-
image annotated 3D landmarks for all the views of a patient,
generating global 3D landmark annotations. Even if it is pos-
sible to combine these global 3D landmarks with visible 2D
landmarks for registration, using only the per-view visible 3D
landmarks may improve registration accuracy. Given the ac-
ceptable results for the 2D landmark segmentation and the less
accurate 3D segmentation, we can conclude that the 3D seg-
mentation problem is more complex than the 2D segmentation
one and requires deeper research. This can be due to the small
number of 3D models, 9 for the training set, compared to the
number of laparoscopic images, 167 for the training set. Re-
garding the registration task, using differentiable rendering in
combination with the predicted landmarks can provide coher-
ent results, given a good initial pose of the preoperative 3D
model. However, the preoperative-to-intraoperative deforma-
tions should be taken into account for future approaches to be
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used in the operating room. According to these results, a dataset
with a larger amount of annotated 2D and 3D data is necessary
to improve landmark segmentation. This dataset should be la-
belled in a way that multiple annotators annotate all the data.
Then, an intra- and inter-observer analysis should be done to
guarantee the quality of the annotations. Even though meth-
ods that used ensemble deep learning techniques and larger it-
erations performed well, a low inference time is required for
clinical adoption. To summarise, a better landmark segmen-
tation combined with preoperative-to-intraoperative deforma-
tions should improve the registration of a 3D preoperative mesh
into a 2D laparoscopic image, which is important to have an
accurate AR.
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