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Abstract. We propose to guide anatomical or ‘patient-generic’ (PG)
liver modelling by means of 14 anatomical surface point correspondences.
We have tested a statistical model built from 71 patient meshes and a
generic kernel-based model built from the mean mesh. The latter ob-
tains lower global and local surface reconstruction errors, below 6 mm,
while internal structure errors are 11 mm on average. For Mini-Invasive
Liver Surgery (MILS) guidance through Augmented Reality (AR), the
PG model is registered to an intraoperative 2D image through an adapta-
tion of a patient-specific (PS) 3D/2D registration neural network frame-
work. While this application is slightly less accurate regarding tumour
Target Registration Error (TRE) than existing PS methods in in-vivo
surgery data, it requires a single training for all patients. It thus eases
clinical application and paves the way to anatomical AR through generic
anatomical features from the PG model only.
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1 Introduction

Liver resections may be non-anatomical or anatomical, respectively removing the
tumours with a margin or their enclosing Couinaud segments [7], defined from
the main hepatic blood vessels. MILS has tremendous advantages, including re-
duced trauma and hospital stay. However, it is technically complex because the
primary source of intraoperative perception is the surgical camera, which only
shows the liver surface and not the inner structures. Intraoperative ultrasound
mitigates the issue but is often artefacted and has a long learning curve. In con-
trast, the preoperative CT or MRI shows the inner structures well. They are
valuable yet under-exploited in surgery because bringing them to a consistent
AR overlay within the surgical images is highly challenging. This is the 3D-2D
registration problem, where one virtually moves and deforms a virtual preop-
erative 3D liver model constructed from CT or MRI to an intraoperative 2D
surgical image. Registration can hardly be done manually during surgery; it is
thus highly desirable to use computer vision [20].
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The 3D/2D registration methods in MILS use 3D/2D anatomical landmarks [2],
namely the anterior ridge [18] as refined in [10] and the liver silhouette [1].
The classical approach uses numerical optimisation. It estimates the pose man-
ually [26] or automatically [9,10] and optionally estimates a deformation field
[1,21,10]. The neural approach is more recent [2]. Unlike the graph-based net-
works for registration with 2D slices [15], the Liver Mesh Recovery (LMR) net-
work [11] is an encoder-regressor [8] which estimates pose and deformation si-
multaneously from optical 2D projections. It inputs distance maps representing
the 2D landmarks and silhouette, which can be automatically provided by an
encoder-decoder network [13]. The iterative regressor uses the encoding in addi-
tion to an initial pose and deformation for which it outputs updates. It eventually
recovers the deformed patient 3D model in camera space. LMR is trained with
data simulated from the patient’s 3D model [11]. This is a strong limitation: PS
LMR performs preoperative simulations and trains the network specifically. This
requires expertise, about a day of computation and computational resources for
each new patient, hindering usage in clinical practice. In addition, these methods
are mainly designed for non-anatomical AR, e.g. segments are not easily visible,
and only works if the preoperative images of the patient are available.

Instead, we propose to employ a generic liver shape model. This modelling is
highly challenging because of its substantial morphological and localised varia-
tions [16,23]. It has been attempted with two approaches. The statistical one uses
Statistical Shape Modelling (SSM) with a Point Distribution Model (PDM) [6].
Its construction requires shapes in one-to-one correspondences, obtained using
the Coherent Point Drift in [17], a non-rigid point set registration method. The
learning-based approach uses the Neural Diffeomorphic Flow (NDF) model [24].
Both try to match liver shapes without any prior knowledge of its anatomy.
Though effective in fitting the shapes globally, corresponding parts with high

Fig. 1: Proposed PG 3D-2D registration framework in MILS.
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morphological differences are likely to mismatch. In order to tackle this issue,
we propose to guide the matching through 14 anatomical surface feature point
correspondences. This results in much lower surface matching errors. From 71
aligned and matched shapes, we extract a mean shape and use it to model shape
by means of a generic kernel or SSM. Both obtain internal vessel point recon-
struction errors of the order of 1 cm. The former is selected as it obtains lower
surface reconstruction errors. This PG model is applied to the LMR framework
instead of the PS preoperative one and enables the first PG neural registration
framework for MILS. However, the PS model can be registered to PG one pre-
operatively. Hence, the same neural model can be used for all patients, without
requiring additional training, hence facilitating usage in clinical practice. This
also opens the way to a novel type of AR that we call anatomical AR, which con-
sists in overlaying generic anatomical features from the PG liver model only on
the surgical images. Anatomical AR does not require preoperative patient data
and may reduce navigation time and contribute to surgeon training to MILS.

2 Materials and Methods

Figure 1 shows the proposed general pipeline for 3D-2D registration. The pre-
operative steps are split into two categories: the PG steps include generic shape
modelling and 3D-2D registration network training; the PS steps include inner
liver structure registration. These steps are explained in the following sections.

2.1 Generic Liver Shape Modelling

We describe PG liver shape modelling5. Our first contribution is the preparation
of a dataset of K = 71 registered 3D liver mesh models with n = 4978 vertices
in one-to-one correspondence. We first reconstruct 3D meshes, define manual
correspondences, register them densely, and find global correspondences. Our
second contribution is two shape models constructed from the prepared data.

We use the first K preoperative CT scans of the v2 AMOS training database,
which includes automatic liver segmentation results. We preprocess the data in
three steps. First, we manually correct the automatic segmentations, using 3D
Slicer. Second, we perform triangular surface mesh reconstruction using march-
ing cubes [12]. Third, we perform Laplacian mesh smoothing from VTK, re-
sampling to 5000 vertices with Approximated Centroidal Voronoï Diagrams [25]
using pyacvd, and cleaning [4] from PyMeshFix in order to make it manifold.

Netter’s classification [16] shows that the liver has substantial shape variabil-
ity. The reconstructed liver shapes thus exhibit important local variations, e.g.
in the left lobe (figure 2). Non-rigid registration with local correspondence priors
is therefore required, which we manually select as sparse point correspondences.
Specifically, we propose the 14 anatomical feature points shown in figure 2.

We register surface meshes from a reference one in a pair-wise manner. We
select among the K ones, the one which exhibits the most neutral shape. This
5 Generic modelling data are available in https://encov.ip.uca.fr/ab/code_and_datasets/

https://zenodo.org/records/7155725#.Y0OOCOxBztM
https://github.com/Slicer/Slicer
https://github.com/Slicer/Slicer
https://vtk.org/doc/nightly/html/classvtkSmoothPolyDataFilter.html
https://github.com/pyvista/pyacvd
https://pymeshfix.pyvista.org/
https://encov.ip.uca.fr/ab/code_and_datasets/
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Fig. 2: Liver shape examples, with frontal (top) and left (bottom) views. The
proposed correspondences are shown with colour and number coding, 1) extreme
lower right, 2) lower anterior right, 3) gallbladder anterior right, 4) anterior right
ridge start, 5) rex recessus start, 6) left rex recessus start (usually same as 5), 7)
start of the anterior left ridge, 8) extreme anterior lower left, 9) extreme anterior
upper left, 10) extreme posterior upper left, 11) vena cava centre, 12) extreme
posterior right, 13) extreme upper right, and 14) extreme upper.

model (n°2) has n = 4978 vertices. Each other model is successively taken as
the registration target, resulting in K − 1 deformations of the reference model.
We first min-max normalise both the reference and target model coordinates to
[0, 1]3. We then proceed in three steps. First, we initialise the deformations with
the interpolation of a polyharmonic Radial Basis Functions (RBF) [5] of degree
2 and radius 0.5, from pygem. The RBF control points are deformed from the
reference feature points to the target ones. Second, we refine the deformations
using Non-Rigid Iterative Closest Point (NR-ICP) [3] of pytorch-nicp. We cus-
tomise the cost function to use four terms: vertex-to-surface distances, feature
point distances and Laplacian smoothing, with respective constant weights of 1,
5, and 100, and stiffness with decreasing weight from 50 to 0.2. We use 50 and
150 iterations respectively in the inner and outer loops. Closest points are known
to be asymmetrical between the two sets, we mitigate this issue in performing
two runs of NR-ICP. The first takes the reference model as the moving shape. In
the second, the registered reference model is taken as the target of the NR-ICP,
while the initial one is the moving shape. Third, we eventually compute the cor-
respondences of the n vertices of the reference model using the closest surface
points from the final registered shapes.

We construct two models for the liver shape. The first one learns the liver
shape from the data using SSM with a PDM. We first run Generalised Procrustes
Analysis (GPA) to rigidly align the K shapes and compute the average shape
µs⊤ = [µs⊤

1 , · · · , µs⊤
n ] ∈ R3n. The two constructed models are linear combina-

tions of m shape components ϕs
j = [ϕs

j,1, · · · , ϕs
j,n]

⊤ for j = 1, . . . ,m, so that a
shape x̂s

i can be generated from configuration weights βi = [βi,1, · · · , βi,m]⊤ as
x̂s
i = µs +

∑m
j=1 βi,jϕ

s
j . The first model then uses Principal Component Anal-

https://mathlab.github.io/PyGeM/rbf.html
https://github.com/wuhaozhe/pytorch-nicp
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ysis on the K shape data to perform reduced order modelling and using the
‘subspace loadings’ as shape components. SSM makes the assumption that the
shape data are representative of the population of human livers. The second
model we construct is more generic, using Gaussian Process Morphable Model
(GPMM) [14] with locally-scaled or multi-scale Gaussian kernels, from Statismo.
Concretely, this boils down to using combinations of Gaussian processes as shape
components, from the mean (template) shape µs.

2.2 Patient-generic Liver Mesh Recovery Network

We use the LMR network [11] for performing 3D/2D registration. However, we
replace the original PS deformation parameters by the PG shape parameters of
the selected model. The training, validation and test set simulations described
in [11] are performed accordingly, from 120000 initial simulations. All rotation
angle (°) and translation (mm) ranges are respectively set to [−70,70] and [−50,
50] for pose simulations, while keeping the default typical pose. Instead of the
preoperative liver mesh used in PS-LMR, the initial one in the proposed PG-
LMR uses the mean PG shape µs. At inference, distance maps from the anno-
tated landmarks and silhouette of the input image are fed to the network which
predicts pose and shape parameters and thus the liver mesh in view space.

2.3 Inner Liver Structure Registration

For PG AR guidance, generic anatomical features, such as the Couinaud seg-
ments, are directly found in the PG model and do not need an extra registration.
For PS AR guidance, the query inner structures of the actual patient, such as tu-
mours, should be registered to the predicted generic shape volume. This could be
achieved in two ways: either using intraoperative volumetric registration for each
predicted deformed liver; or preoperative registration for the template shape,
which then requires one to transfer the inner structures to the predicted shape.
We follow the latter, as its computation load is mostly preoperative. We propose
to build a volumetric model x̂v

i = µv +
∑m

j=1 βi,jϕ
v
j , including the shape model

such that µv⊤ = [µs⊤, µt⊤] where µt⊤ ∈ R3p with p the number of inner vertices,
and ϕv = [ϕs, ϕt]. Importantly, the scores β are common to the volumetric and
shape models. First, we compute the volumetric template mesh µv using con-
strained Delaunay tetrahedrisation [22] (DT) from TetGen, where p = 1106. We
use it for the volumetric GPMM model. Alternatively, we can use a coarser result
using classical DT, in which case p = 0. We employ it for the ‘volumetric’ SSM,
as our input registered shape samples are only surfacic. In order to find the β̂
scores associated to the aligned preoperative surface vertices, we then solve the
Ordinary Least-Squares problem applied on the linear shape model. We input
them to the volumetric model for predicting the volumetric deformed vertices.
Then, we compute the barycentric coordinates and associated tetraedra of the
patient inner structure vertices with respect to the volumetric template. At in-
ference, the inner structure vertices can be interpolated from the liver vertices
predicted by the LMR network, using the volumetric model.

https://github.com/statismo/statismo
https://github.com/pyvista/tetgen


6 M. Labrunie et al.

(a) NDF (b) 2 runs of NR-ICP with-
out the feature point term

(c) Proposed registration
method

Fig. 3: Annotated landmark correspondences on the template after surface regis-
tration of RT-GT meshes, using methods a) to c). One colour for each landmark.

Table 1: Average and standard deviation (±) of the reconstruction errors (mm)
of global vertices, feature points and landmarks for both datasets and models.
The last column compares the reconstructed landmarks with the annotated ones.

Dataset AMOS after 2.1 RT-GT
Object Global Features Global Features Landmarks

Criterion MAE MAE MAE MAE MAE MMD
SSM 2.5 ± 0.3 3.9 ± 0.7 6.3 ± 0.9 9.0 ± 0.9 7.5 ± 0.9 9.8 ± 2.1

GPMM-L 2.6 ± 0.5 5.6 ± 1.4 3.8 ± 0.3 7.5 ± 0.9 4.1 ± 0.8 7.2 ± 1.3

GPMM-M 2.0 ± 0.3 4.3 ± 1.0 3.0 ± 0.2 5.7 ± 0.7 3.1 ± 0.8 6.5 ± 1.3

3 Experimental Results

The main evaluation dataset, referred to as RT-GT, consists of 4 annotated livers
where 3D tumour Ground Truth (GT) is retrieved in real annotated laparoscopic
images from ultrasound images and appropriate calibrations [19].

We first evaluate the surface registration method. The Mean Mean of closest
Distances (MMD) between the registered and annotated landmarks on RT-GT
is 4.8± 1.0mm. The largest discrepancies are in the landmark endpoints, whose
annotation may be subjective. We also compare results between a) NDF [24]
which does not use prior knowledge of the anatomy, b) our method without
corresponding feature points, i.e. without RBF and the feature point term in
the two runs of NR-ICP, and c) our method. NDF is trained using the publicly
available code and data. For each RT-GT mesh, we determine the correspon-
dences of the annotated landmarks on the template, i.e the closest registered
surface points. The template coordinates are min-max normalised. We evalu-
ate the average MMD between all the pair combinations of the each landmark
in the normalised space. The errors are respectively 0.145, 0.132 and 0.033 for
a), b) and our method c), showing an improvement factor of 4.4 and 4.0. The
same landmarks from different RT-GT patients may have distant shifts on the
template for the methods without prior knowledge of the anatomy, see figure 3.

We then evaluate the generic shape models. The liver has an overall length
of about 200 mm. We define a first GPMM with a unique Gaussian kernel of
standard deviation 20 mm (GPMM-L), to cope with large local variations. We
define a second GPMM combining multiple Gaussian kernels of standard devi-
ations 20, 40, 80 and 160 mm (GPMM-M), to deal with several spatial ranges

https://github.com/Siwensun/Neural_Diffeomorphic_Flow--NDF
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Fig. 4: Inner portal vein bifurcation point registration results (diamonds) and
targets (disks) on RT-GT. One colour for each bifurcation. Registered and target
livers are respectively in red and blue. The portal vein centreline is also in blue.

Table 2: Average inner portal vein bifurcation registration MAE errors (mm)
and standard deviation (±) for the RT-GT dataset for the different PG models.

Patient 1 2 3 4 Average
SSM 25.3 ± 6.8 20.5 ± 11.5 9.3 ± 1.2 21.0 ± 1.5 19.0

GPMM-L 20.4 ± 6.0 22.2 ± 10.7 13.0 ± 2.7 18.9 ± 3.0 18.6
GPMM-M 14.7 ± 9.4 12.3 ± 6.6 11.9 ± 4.2 22.3 ± 1.4 15.3

of morphological variations. We keep 200 components in both GPMM and 25 in
SSM. This allows us to obtain equivalent global vertex reconstruction errors of
about 2 mm on AMOS, as shown in table 1. Reconstruction errors are obtained
using Mean Absolute distance Error (MAE). On RT-GT, the errors fall between
3 and 4 mm for GPMM models and reach 6.3 mm for SSM. SSM thus does not
generalise as well as GPMM, indicating that the training liver shapes may un-
der represent the population. Table 1 also indicates that the 14 correspondences
have a higher MAE than both the general vertices and the landmarks, reaching
5.7 mm at minimum for the GPMM-M. This may owe to the uneven sampling
density of the feature points around the liver, causing some local parts such as
the posterior ones to be less well constrained and reconstructed. The last col-
umn of table 1 also indicates the registration errors after model reconstruction.
It only reaches 6.5 mm for GPMM-M and almost 10 mm for SSM. In summary,
GPMM-M obtains the best surface reconstruction and registration results.

We also compute internal reconstruction and registration errors, using corre-
sponding bifurcation points of the main portal vein branches. AMOS only con-
tains 15 scans where vessels are contrast-enhanced. We partially segment their
portal vein and we extract their centreline, using VMTK. Between 2 and 5 corre-
sponding bifurcation points are manually selected, depending on the amount of
segmentation. We use the transformation estimates from GPA on the correspond-
ing points in order to obtain the mean internal points in template coordinates.
We then compute the barycentric coordinates with respect to the PG volumet-
ric model. This allows us to compute the reconstruction MAE of these internal
points on AMOS, respectively 11.3± 4.3, 10.2± 3.9 and 10.9± 4.2 mm for SSM,
GPMM-L and GPMM-M models. They are all about 11 mm and higher than
surface reconstruction errors, with a higher average standard deviation. Internal
inter-subject anatomical differences are not explicitly registered and could thus
be partially unrelated to the surface ones. Inner registration (section 2.3) errors
of the template vessel bifurcation points are then computed on RT-GT. Table 2

http://www.vmtk.org/
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Table 3: Average MAE (mm) and reprojection errors (% of image diagonal) and
their standard deviations (±) for the simulated test datasets for the PG-LMR.

Dataset SSM GPMM-L GPMM-M
Criteria Reproj. MAE Reproj. MAE Reproj. MAE
PG-LMR 3.8 ± 3.1 19.3 ± 10.1 8.0 ± 5.0 30.9 ± 9.9 3.9 ± 2.9 16.8 ± 8.9

Table 4: Average and standard deviation (±) of the TRE for SOTA and proposed
PG-LMR for RT-GT, from automatic (A) or manual (M) annotations input to
the LMR. Reprojection errors (% of image diagonal) are also given in blue.

Patient 1 2 3 4
Ann. A M A M A M A M
[1] 8.3 37.3 28.4 15.8
[10] 29.3±10.6 10.3±2.8 86.9±14.7 63.0±11.4 30.0±60.1 9.5±2.1 19.8±1.0 14.7±1.2

PS-LMR 17.9±3.7 17.4±4.2 45.6±14.7 53.8±8.0 46.9±7.1 17.6±0.6 22.7±9.1 17.0±0.8

PG-LMR 35.4±13.3 22.8±6.1 42.9±12.6 60.1±22.3 40.2±2.8 49.4±2.5 23.2±4.2 14.6±1.8

2.4±0.9 1.5±0.5 5.7±2.1 3.3±0.3 2.4±0.3 2.9±0.2 5.3±1.8 4.3±1.1

shows that GPMM-M obtains the best average results of 15.3 mm, between 11.9
and 22.3 mm for all patients, shown in figure 4. This is slightly larger than the
reconstruction ones obtained for AMOS, probably due to limited representative-
ness of the 15 samples. SSM obtains the worse average results of 19 mm, which
could be due to its coarse DT. GPMM-M is thus selected as the PG model.

We can then evaluate the 3D-2D registration method. LMR was trained for
the PG model in 31 epochs. The registration results for all the simulated test
datasets (section 2.2) are shown in table 3, namely the reprojection error, which is
the mean of the mean closest distances of the projected landmark and silhouette
vertices from corresponding targets, and the MAE between the predicted and
simulated surface liver vertices. Average errors are higher for the GPMM-L set
which, owing to very high synthetic local variations, is more difficult to fit. PG-
LMR obtains an MAE between 16.8 and 19.3 mm and reprojection errors around
4% of the image diagonal on both SSM and GPMM-M sets.

On RT-GT, reprojection errors are of the same order: between 1.5 and 4.3%
and between 2.4 and 5.7% of the image diagonal are respectively obtained for
manual and automatic annotations, see table 4, and look rather low, as illustrated
in figure 5. Regarding tumour position evaluation, TRE [19] is computed. We
compare the results to state-of-the-art methods [1,10,11] in table 4. TREs for our
method are marginally larger than for the PS-LMR, except for Patient 3 where it
is 3 cm higher. This discrepancy between TRE and reprojection errors suggests
that there are registration ambiguities, i.e. several shapes could correspond to
the 2D landmarks. Initialising the shape from the predicted patient scores β̂
at inference could alleviate this issue. In a broader perspective, the PG-LMR
shares the architecture of the PS-LMR and thus has the same advantages of
runtime in OR, unlike optimisation-based methods. However, it outperforms
in deployability due to the single training for all patients. It also facilitates
anatomical AR, illustrated in figure 5, as it only requires generic anatomical
data related to the PG model. These assets would also ease surgeon education.
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Fig. 5: PS (top) and PG (bottom) AR results from PG-LMR on RT-GT samples,
respectively showing the predicted (orange) and GT (pink) tumours and coarse
Couinaud segments, manually defined on the PG template.

4 Conclusion

We have proposed 1) a novel generic liver shape registration and modelling meth-
ods using prior anatomical knowledge, through surface feature points, highly
reducing surface registration and reconstruction errors, 2) the first PG neural
3D-2D registration framework for MILS, making use of 1) and facilitating both
PS and PG image augmentation. Unlike previous work, our framework does not
require per-patient retraining and is applicable without PS data. In future work,
we plan to 1) extend the number and area (e.g. using the hepatic vein) of inter-
nal correspondences in order to thoroughly characterise the gap between surface
and internal inter-subject anatomical differences and build the generic Couin-
aud segments accordingly, 2) evaluate feature point annotation inter-operator
variability, 3) improve registration accuracy, slightly subpar PS methods, by ini-
tialising the registration closer to the patient shape, and 4) evaluate the potential
of anatomical augmentation in surgical navigation and surgeon training.

Acknowledgments. M. Labrunie is supported by a CIFRE PhD fellowship (N
2021/0184) from ANRT under partnership between EnCoV and SURGAR.
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