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Abstract

Structure-from-Motion (SfM) and Shape-from-Shading (SfS) are complementary classical approaches to 3D
vision. Broadly speaking, SfM exploits geometric primitives from textured surfaces and SfS exploits pixel intensity
from the shading image. We propose an approach that exploits virtual geometric primitives extracted from the
shading image, namely the level-sets, which we name shading isophotes. Our approach thus combines the strength
of geometric reasoning with the rich shading information. We focus on the case of untextured Lambertian planes
of unknown albedo lit by an unknown Point Light Source (PLS) of unknown intensity. We derive a comprehensive
geometric model showing that the unknown scene parameters are in general all recoverable from a single image of at
least two planes. We propose computational methods to detect the isophotes, to reconstruct the scene parameters
in closed-form and to refine the results densely using pixel intensity. Our methods thus estimate light source, plane
pose and camera pose parameters for untextured planes, which cannot be achieved by the existing approaches. We
evaluate our model and methods on synthetic and real images.

1 Introduction

The existing approaches to 3D vision are either classical or learning-based. Classical approaches use explicit visual
cues extracted from images. The most successful and widely used visual cues are probably visual motion and shading.
Visual motion is typically captured by inter-image correspondences of geometric primitives such as keypoints. Its
theoretical model is Multiple-View Geometry (MVG) and its practical implementations are Structure-from-Motion
(SfM) [Ullman, 1979] and visual Simultaneous Localisation And Mapping (vSLAM) [Dissanayake et al., 2001]. In
terms of usability, SfM and vSLAM make weak assumptions on lighting conditions but strong assumptions on the
scene surface, which must be textured to allow the extraction and matching of the geometric primitives. Textureless
surfaces do not provide visual motion cues and are hence not handled by SfM and vSLAM. In contrast, shading
models are photometric in the sense that they model the pixel colour or intensity. They typically combine models of
lighting, surface reflectance and camera. Their practical implementations are Shape-from-Shading (SfS) [Horn, 1975]
for a single image and Photometric Stereo (PS) [Woodham, 1979] for multiple images. In terms of usability, SfS makes
strong assumptions on lighting and surface reflectance and weak assumptions on surface geometry. Textured surfaces
do not directly provide shading because their image mixes the effect of shading and texture; hence they are not handled
well by SfS. While PS alleviates some of these assumptions, it still requires the images to be acquired in controlled
conditions. Intrinsic Image Decomposition (IID) is a related problem, which originally consists in decomposing an
images into an albedo and a shading components [Barrow et al., 1978], also alleviating some of the assumptions
required by SfS. Table 1 summarises the characteristics of the classical approaches. In contrast, deep learning-based
approaches do not generally model the relationship between the different elements forming the scene, including the
surface depth, reflectance, shading and the camera. They thus capture several visual cues and scene priors implicitly
from the data, for instance to estimate depth directly [Godard et al., 2017, Yu and Smith, 2019]. However, they were
also used to solve IID [Baslamisli et al., 2021]. These methods thus alleviate some of the assumptions made by the
classical approaches but do not provide a geometric understanding of the solution and its possible ambiguities.

We propose a new approach to exploit shading via geometric primitives. We choose these as the shading isophotes
or simply isophotes, which we define as the level-set curves in the shading images. These curves have a rich and yet
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Approaches Texture Primitives

SfM/vSLAM 3 3

SfS and PS 7 7

Proposed 7 3

Table 1: SfM and vSLAM use the surface texture to exploit visual motion via geometric primitives; SfS and PS favour
uniform surfaces to exploit shading via photometric models; the proposed approach exploits shading via geometric
primitives.

unexplored visual geometry, and concretely, have two major advantages. First, their visual geometry often leads to a
well-defined solution and allows one to reason on the solution ambiguities. In contrast, SfS is ill-posed even for the
simplest photometric models and does not allow one to understand the ambiguous solution space. Second, closed-form
bottom-up solution methods can be found. In contrast, SfS is a nonconvex problem, even for the simplest photometric
models, solved by iterative minimisation without guarantee of optimality. We focus on the case of a scene composed of
untextured planes with Lambertian reflectance of unknown albedo lit by a single Point Light Source (PLS) of unknown
position and intensity. The scene is captured by a camera of known intrinsics and unknown extrinsics providing a
single view. We show that the plane poses, the PLS position and the camera extrinsics are all computable from
isophotes. This is a strong achievement, as computing untextured plane pose is not possible for any previous method,
even in simpler conditions.

Our contributions are four-fold. First, we introduce the notion of virtual geometric primitives, including the
proposed isophotes which do not physically exist on the scene surface and hence do not have a fixed physical location.
They can nonetheless be efficiently exploited to provide visual 3D information. Second, we propose a comprehensive
geometric model for the Lambertian plane case and generic light fall-off. We show that the isophotes are conic sections,
from which we construct closed-form solutions for the scene element poses. Third, we show that the isophote detection
is highly noise sensitive and propose a stable photometric detection method. Fourth, we propose a complete method
for scene reconstruction from isophote detection and initial closed-form solutions to a refined reconstruction based on
our model. We study the general case and the special case where the PLS is colocated with the camera, which holds
for instance in the endoscopic setting. We evaluate our theory and methods on simulated images, real images taken
in controlled conditions with groundtruth and real images taken in uncontrolled conditions.

2 Existing Work and Contributions

2.1 Scope

Image irradiance may be explicitly modelled by involving models for scene elements, namely the light, surface re-
flectance and geometry, and the camera. This leads to image-based constraints on the scene elements. Inverse
rendering is a general formulation using these constraints for 3D reconstruction [Marschner, 1998]. This formulation
is generally ill-posed in the absence of strong additional priors. A very common assumption is that the image can
be separated in components, which is known as the problem of Intrinsic Image Decomposition (IID) [Barrow et al.,
1978, Garces et al., 2022, Ma et al., 2017]. In its simplest version, IID separates the image in albedo and shading. In
contrast, SfS uses a shading image in conjunction with lighting priors to recover the surface geometry [Horn, 1975],
where the shading image is provided by IID or by assuming constant surface albedo, meaning that the surface must
be untextured and uniformly coloured. Advanced versions of IID separate the image in multiple components related
to the material properties, scene geometry and lighting. We review the classical, learning-based and primitive-based
approaches to SfS, IID and general inverse rendering.

2.2 Classical Approaches

The seminal work on IID is the retinex [Land, 1985], which recovers the albedo and shading by assuming that they have
different frequency distributions. More recently, priors on the difference in chromaticity between albedo and shading
were used, by assuming colour changes to be dominantly due to albedo variations [Tappen et al., 2002]. Texture
analysis was also exploited, to find groups of pixels with constant albedo [Shen et al., 2008]. The shading image
produced by these methods can be used as an input to SfS. Most SfS methods solve the image irradiance equation
as a Partial Differential Equation (PDE) over the surface normal field. Since the pioneering work [Horn, 1975],
which considers a single directional light, a Lambertian reflectance, constant albedo and an orthographic camera,
much progress has been made to alleviate the assumptions and handle more general models. Regarding the light,
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spherical harmonics were shown to improve results under natural illumination [Quéau et al., 2017], while the PLS
[Okatani and Deguchi, 1997, Visentini-Scarzanella et al., 2012] and the spot-light [Modrzejewski et al., 2020], chosen
close to the camera optical center, were shown to improve results in endoscopy. Regarding surface reflectance, the
advanced Oren–Nayar and Phong models were used to exploit specularities [Tozza and Falcone, 2016, Breuß and
Ju, 2011]. Regarding surface geometry, a parameterised spline-based model was shown to improve robustness and
stability [Courteille et al., 2008]. Regarding the camera, perspective projection was shown to improve performance
and also leads to a well-posed formulation [Prados and Faugeras, 2003]. Finally, it was shown that a more general
reflectance prior could be used [Barron and Malik, 2014] to perform IID jointly with SfS.

2.3 Learning-based Approaches

Learning-based approaches have been used for IID, taking the irradiance equation into account. A CNN was trained
in a supervised manner which decomposes an image into albedo and shading, assuming a simple point-wise product
between them re-composes the image [Narihira et al., 2015]. This was improved by introducing a fine-grained shading
model, where several reflectance component are decoded separately [Baslamisli et al., 2021]. This allows one to use
an image re-composition loss taking the irradiance equation into account, similarly to SfS. Their also exist methods
addressing inverse rendering without explicitly performing IID. A multiscale CNN was trained in a supervised manner
to simultaneously extract depth, normal and label maps from an image [Eigen and Fergus, 2015]. This method requires
a very large training dataset with depth labels. This requirement was alleviated by using self-supervision from left-right
stereo consistency [Godard et al., 2017]. Further steps to unsupervised learning consist in incorporating additional
rendering priors. Classical rendering methods are generally not differentiable and efforts were recently put into creating
differentiable rendering engines. This was used to train a network for silhouette-based mesh reconstruction without
supervised 3D data except for camera extrinsics [Kato et al., 2018]. It was shown that a smooth rendered could also
be exploited to learn 3D shape directly from an image-to-image loss [Petersen et al., 2019]. Finally, a network was
trained which decomposes an image into lighting, normal and albedo maps, by using a differential renderer [Yu and
Smith, 2019]. This exploits supervision from MVG and a statistical lighting prior, which does not require specific
annotations or controlled conditions.

2.4 Primitive-based Approaches

Primitive-based approaches cast SfS and inverse rendering as geometric problems. They use geometric primitives
chosen as special image points or curves, typically the critical points and level-sets. These solutions may be used
to initialise an SfS method. It was shown that the surface curvature could be found in closed-form at the critical
points in the shading image [Okatani and Deguchi, 2000, Healey and Binford, 1988]. More generally, it was shown
that the surface could be constrained from the shading level-sets. Shape-from-Isophotes [Dragnea and Angelopoulou,
2005] estimates the surface normal along level-sets. It works under the assumptions of a directional light aligned with
the optical axis, Lambertian reflectance, a smooth surface and an orthographic camera. The level-sets of specular
reflection were also used. A simple elliptic model represented by a virtual 3D ellipsoid was used [Morgand et al., 2017]
to predict specular highlights from new viewpoints. A more advanced model based on Phong reflectance [Bartoli,
2019] was derived for planar surfaces with a PLS and a perspective camera.

2.5 Contributions

Our method is part of the primitive-based approaches. It involves a complete geometric framework to exploit the
shading level-sets as geometric primitives. It establishes their properties and reconstruction methods for a PLS and a
piecewise planar surface. SfS methods directly model the pixel colour or intensity and use differential geometry within
iterative non-convex solvers. In contrast, we model geometric primitives and use algebraic geometry, leading to closed-
form solutions and a detailed geometric understanding of the problem solution sets and properties. The scene element
models which our method rely on, especially the PLS and the perspective camera, were not studied in previous
primitive-based methods, which use simpler light and camera models. Our method thus works on more realistic
grounds. Finally, although existing learning-based methods use models which differ greatly from our method, they show
that specific priors were strongly desirable to achieve training, which could be provided by our model. Importantly,
both the SfS and the deep-learning approaches fail to provide closed-form solutions. Our method provides closed-form
solutions, which have computational advantages and also allow us to develop a complete geometric reasoning about
the solution uniqueness and possible ambiguities.
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3 A Geometric Treatment of the Rendering Equation

We first introduce our assumptions and models for the light, the surface and the camera. We then show how they
lead to the shading isophote model and derive its geometric properties. The mathematical symbols are illustrated in
figure 1.

3.1 The Light, Surface and Camera Models

We give our main modelling assumptions. Most of them are very common in SfS. The main differences are that we
do not assume the light and camera positions to be known and assume the scene surface to be piecewise planar. We
represent a light ray traveling through a given 3D point by a 3D vector, whose direction is the ray’s direction and
whose norm is the ray’s energy. In this model, we only consider a single wavelength and neglect the effect of dispersion.

The scene contains only one light source at position S ∈ R3 and we use a PLS model with unknown intensity
θ0 > 0. The surface irradiance, i.e., the amount of light received, depends on a strictly decreasing positive function
g of the distance between the surface point and the PLS. Function g models the phenomenon of light fall-off and is
typically chosen as the inverse square distance. The incident light ray from the source to point X ∈ R3 is thus:

Li(X,S) = θ0 g(‖S−X‖) S−X

‖S−X‖
, (1)

where X 6= S, i.e., the surface point is not at the PLS. We neglect inter-reflections, meaning that any incident light
ray hitting the surface comes from the primary light source. We use Lambertian reflectance with unknown constant
albedo k > 0. We thus have the reflected light ray passing by point O ∈ R3 and coming from surface point X as:

Lr(O,X) = kN>Li(X,S)
O−X

‖O−X‖
, (2)

where N ∈ R3 is the surface normal. We decompose camera projection in two parts: a geometric projection G : R3 →
R2, which is a standard perspective projection with known intrinsic matrix K ∈ R3×3, and a radiometric Camera
Response Function (CRF) C, which is a strictly increasing, hence bijective, scalar function. Our base image model is
thus:

I(G(X)) = C (‖Lr(O,X)‖) , (3)

where I : R2 → R denotes the image function, defined as the continuous extension of the observed discrete image
function, giving intensity from pixel coordinates. Combining equations (1), (2) and (3) we arrive at the image equation,
similar to what SfS with the PLS model would use:

I(G(X)) = C

(
k θ0 g(‖S−X‖) |N

>(S−X)|
‖S−X‖

)
. (4)

We constrain the scene surface to be composed of n ≥ 1 planes and assume the image to be segmented in coplanar
pixel sets Ui ⊂ N2, with i ∈ [1, n]. Plane i is represented by its normal Ni and distance to camera di. These parameters
are unknown. We omit the plane index i whenever a single plane is considered. Therefore, for a point X on plane i,
we have N>i X − di = 0, and when a single plane is considered, the notation reduces to N>X − d = 0. In addition,
because ‖Ni‖ = 1, we have that N>i X− di is the signed distance between point X and plane i.

3.2 The Shading Isophote

We define the shading isophote as a level-set, which is the set of points u ∈ R2 where the image has the explicit
intensity value ρ > 0:

I(u) = ρ. (5)

We establish the relationship between this definition and the image model (4) by identifying their left and right hand
sides, from which we obtain the following two equations:

ρ = C

(
k θ0 g(‖S−X‖) |N

>(S−X)|
‖S−X‖

)
(6)

u = G(X) with I(u) = ρ. (7)

One can easily verify that recombining equations (6) and (7) by eliminating ρ and u gives equation (4). Equation (6)
describes an implicit 3D surface, which, intersected with the scene surface, gives an implicit 3D curve. The solution
of this equation is the isophote pre-image, which is the back-projection of the image isophote to the scene plane.
Equation (7) represents the projection of the isophote pre-image to the image.
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This breaks down the isophote for the image model into two parts, forming a key to understand the geometry in
two steps. We first study the properties of the isophote pre-image from equation (6) and how its parameters are related
to the geometric parameters of the scene. We then study how its reprojection from equation (7) leads to constraints
exerted by its image on the geometric parameters of the scene.

3.3 The Shading isophote Pre-images are Circles

Our first result reveals the circular nature of the isophote pre-image, defined by the implicit curve emerging from
equation (6) and the scene plane.

Lemma 1. The pre-image of a shading isophote is the intersection of a sphere centred at the PLS with the scene
plane.

Proof. We work in spherical coordinates centred on S, with the x-axis following the scene plane normal N. We thus
search for X = s[cos θ sin θ cosφ sin θ sinφ]>. By substituting in equation (6) we have:

ρ = C

(
k θ0 g(s)

|s cos θ|
s

)
. (8)

We rewrite the equation, using the bijectivity of function C and positivity of function g, as:

C−1(ρ) s

g(s)
= k θ0 |s cos θ|. (9)

Recall that the isophote pre-image is the intersection of the above implicit surface with the scene plane N>X− d = 0,
where d is the camera centre to scene plane distance, or s cos θ = h in spherical coordinates. In this equation, h is the
signed distance between the PLS S and the scene plane, which, using the scene plane equation, is directly given by:

h = N>S− d. (10)

Substituting in equation (9) and rearranging, we have:

s

g(s)
=
k θ0 |h|
C−1(ρ)

. (11)

A point is on the isophote pre-image only if s is a solution of equation (11). Because g is a strictly decreasing positive
function, the left-hand side is a function t(s) = s

g(s) which is strictly increasing on s > 0, hence bijective, and the

right-hand side is independent of the point. The equation thus has a single solution ŝ with:

ŝ = t−1
(
k θ0 |h|
C−1(ρ)

)
. (12)

The locus of points solving equation (8) is thus a sphere of radius ŝ centred at the PLS.

Lemma 1 allows us to establish our main result in the following proposition, which refines our understanding
of the isophote pre-image and relates them to the scene plane’s Brightest Point (BP). We introduce the BP as the
surface point of maximal irradiance. Each scene plane has its own BP, which may or may not be visible in the image.
Proposition 1 is illustrated by figure 1.

Proposition 1. The pre-image of shading isophotes are concentric circles centred at the BP. The radius of these
circles increases as the isophote intensity ρ decreases. The BP is the orthogonal projection of the PLS on the scene
plane. The coordinates of the BP are given by:

X̄ = S + hN. (13)

Proof. We first recall that X̄ from equation (13) is the orthogonal projection of the PLS S on the scene plane. We
then establish the nature of the isophote pre-image. From lemma 1, the pre-image of the shading isophote is the
intersection of a sphere of radius ŝ centred on the PLS with the scene plane lying at a distance |h| of the PLS. This
intersection may thus trivially be:

� Empty for |h| > ŝ

� A single point for |h| = ŝ, in which case the sphere is tangent to the plane and the intersection point is X̄
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Figure 1: (left) The isophote pre-images (dark blue) are the intersection of spheres (blue) centred on the PLS S with
the scene plane (red). They form concentric circles centred at X̄, the orthogonal projection of S on the scene plane,
which is also the BP. (right) Their image by a perspective camera (green) are conics sections.

� A circle for |h| < ŝ, with radius r̂ and centre X̄, with:

r̂ = ŝ

√
1− h2

ŝ2
. (14)

Equation (14) stems from the Pythagorean theorem applied to a triangle containing S, X̄ and any point of the circle.
Figure 1 illustrates the intersection in the case |h| < ŝ.

Finally, we show that the BP lies at X̄ and that the circle radius decreases with the intensity ρ. We have from
equation (12) that the sphere radius ŝ depends on the isophote intensity ρ, which we formalise by defining an explicit
function f giving ŝ from ρ:

ŝ = f(ρ) = t−1
(
k θ0 |h|
C−1(ρ)

)
. (15)

We have that f is strictly decreasing and positive, hence bijective. Geometrically, we can interpret it as a sphere of
increasing radius for a decreasing intensity value ρ. Studying visible isophotes implies that the sphere-plane intersection
must be non-empty and thus |h| ≤ ŝ. By applying the reciprocal function f−1, which is also positive and strictly
decreasing to this condition, we obtain f−1(|h|) ≥ ρ. This implies the existence of a maximum observed intensity
ρmax = f−1(|h|). For ρ = ρmax, the sphere is tangent to the plane and we have a single point of maximum intensity,
which must be the BP. For ρ < ρmax, the sphere intersects the plane in a circle, whose radius increases as ρ decreases,
following equation (14).

The fact that the isophote pre-image is a circle is intuitive for the Lambertian reflectance and a PLS. It is however
more surprising that the result still holds for a generic light fall-off, as modelled by function g. Our next result,
given as a corollary of proposition 1, infers the nature of the shading isophotes via the perspective projection of their
pre-image, which emerges from equation (7).

Corollary 1. The shading isophotes are conics. The conic type is determined by the nature of the intersection between
the isophote pre-image circle with the camera’s principal plane as:

� An ellipse if the pre-image circle does not intersect the principal plane;

� A hyperbola if the pre-image circle intersects the principal plane in two real points;

� A parabola if the pre-image circle intersects the principal plane in a single real point.

Proof. From proposition 1, the isophote pre-image is a circle. We have that the camera centre is not on the scene
plane, as otherwise the scene plane would project to a single line the isophotes would not be observable. Thus the
perspective projection of the circular pre-image is a full-rank conic of projective signature (2, 1), which can be an ellipse,
a hyperbola or a parabola [Hartley and Zisserman, 2000]. The nature of a full-rank conic depends on the number of
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Figure 2: The principal plane (gray) and the scene plane (red) intersect in the line at infinity of the image plane (blue).
For a visible BP, one can find circles centred at the BP, with radius lower than ε, which lie in front of the camera.
These circles project to ellipses in the image plane (green).

intersections of the pre-image circle with the pre-image of the line at infinity of the image plane [Aleksandrov et al.,
1999, p248], which is the intersection of the principal plane, i.e., the plane of equation z = 0 in camera coordinates,
with the scene plane.

We give a final refinement on the nature of the shading isophotes in the image. This refinement, given by the next
proposition, depends on the visibility of the Image of the Brightest Point (IBP).

Proposition 2. If the BP lies in front of the camera, which occurs if the IBP is visible, the shading isophotes in its
neighbourhood are nested ellipses. Conversely, if a shading isophote is elliptic, it encloses shading isophotes consisting
of nested ellipses and the IBP.

Proof. For the first part of the proposition, we have that the BP with coordinates X̄ lies in front of the principal plane
z = 0. We distinguish two cases for the pose of the scene plane relative to the principal plane. The first case is for a
scene plane parallel to the principal plane. In this case the circles that the scene plane supports do not intersect the
principal plane. Hence, following corollary 1, the shading isophotes they induce are nested ellipses. The second case
is for a scene plane skew to the principal plane. In this case, these planes intersect in a line, as shown in figure 2. We
define point Xm as the closest point on this intersection line to the BP. The BP does not lie on the principal plane,
as otherwise it would not be visible. We can thus define ε > 0 so that ‖Xm − X̄‖ = ε. The circles centred at the BP
with radii lower than ε do not interest the principal plane. Consequently, following corollary 1, the shading isophote
they induce are ellipses. As the projective transformation preserves the intersections and the concentric circles do not
self-intersect, their images do not intersect as well. Hence, the neighbourhood of the IPB are nested ellipses.

For the second part of the proposition, corollary 1 implies that the pre-image of an elliptic isophote is a circle that
does not intersect the line at infinity. Therefore, any circle of small radius and the BP also does not intersect the line
at infinity and lies in front of the camera. Their projections thus lie inside the isophote ellipse.

4 Algebraic Scene Constraints from Shading isophotes

We study the algebraic constraints emerging on the scene parameters from the observation of one or several isophotes.

4.1 Scene Parameters

We first parameterise the light source and scene surface, then the isophotes. Without loss of generality, we align the
world coordinates with the camera coordinates. We thus do not have explicit camera parameters and express all 3D
entities in camera coordinates. For the light source and scene surface, following the model of section 3.1, we use the PLS
position S ∈ R3 and, for each scene plane, the signed distance h from the PLS to the plane, the plane normal N ∈ R3

and the signed distance d from the camera centre to the plane. These parameters are redundant, as equation (10)
must hold for each plane, which we systematically take into account into our derivations. For each isophote, we have
from proposition 1 that the pre-image is a circle on the corresponding scene plane, which we explicitly parameterise
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by its centre, specifically the BP X̄, its support plane’s normal N and its radius r̂. The BP and plane normal are
already part of the light source and scene surface parameters; we thus only add the radius parameter r̂. The radius
bundles many parameters of the scene model. Specifically, as can be seen from equation (14), it depends on the
signed distance h and, via ŝ = f(ρ), bundles all the other photometric parameters, namely k, C, ρ, g and θ0. These
parameters would require additional assumptions on the camera response or attenuation functions to be recoverable.
They do not contribute geometric constraints and we can thus ignore their explicit connection to the radius. There
are thus three groups of unknowns: global unknowns, plane-dependent unknowns and plane- and isophote-dependent
unknowns. The next section derives the algebraic constraints.

4.2 Scene Constraints

Equation (7) describes the projection of an isophote pre-image to the image plane, where it is observed. Considering
a calibrated camera, the projection function G it involves represents perspective projection, with a known intrinsic
parameter matrix K. Without loss of generality, we use matrix K−1 to normalise the image coordinates. We have from
corollary 1 that the isophote is a non-degenerate conic, whose matrix representation is a symmetric matrix E ∈ S3.
This conic is obtained algebraically by projecting the pre-image circle, which, following [Hartley and Zisserman, 2000,
p37], is obtained as:

E ∼ H>

1 0 0

0 1 0

0 0 −r̂2

H (16)

H =
[
R1 R2 S + hN

]−1
, (17)

with R1 and R2 two orthonormal vectors orthogonal to N, and where ∼ represents equality up to scale. We thus have
a total of 15 unknown parameters, broken down in the three above-described groups as follows. The first group are
the global variables and includes the 3 parameters for the PLS in S. The second group are the plane parameters and
includes the signed distances h and d, the normal N and the vectors R1 and R2. The number of unknowns from this
second group scales with the number of scene planes. The third group are the isophote parameters and includes the
radius r̂. The number of unknowns from this third group scales with the number of isophotes.

In order to keep the notation uncluttered, we formulate a complete constraint system for a single plane and a single
isophote. We expand the constraints available from the projection equations (16) and (17) with the orthonormality
constraints, add an in-plane orientation constraint and group them with equation (10). This complete system is made
of 13 polynomial constraints grouped in two sub-systems SA and SB for reasons to be shortly clarified:

d−N>(S + hN) = 0 (18.1)

R>1 ER1 + r̂2(S + hN)>E(S + hN) = 0 (18.2)

R>1 E(S + hN) = 0 (18.3)

R>2 E(S + hN) = 0 (18.4)

R>1 ER1 = R>2 ER2 (18.5)

R>1 ER2 = 0 (18.6)

R>1 R1 = R>2 R2 (18.7)

R>1 R2 = 0 (18.8)

R>1 R1 = N>N (18.9)

R>1 N = 0 (18.10)

R>2 N = 0 (18.11)

N>N = 1 (18.12)

R1,2R2,2 = 0. (18.13)

SA

SB

The first constraint, equation (18.1), is a simple rewriting of equation (10) with the normal vector N. The next group
of 5 constraints, equations (18.2) to (18.6), come from equation (16), after elimination of the unknown equality scale.
The next group of 6 constraints, equations (18.7) to (18.12), represent the orthonormality of the matrix modelling the
rotation between the scene plane and the camera coordinates. Finally, the last constraint, equation (18.13), arbitrarily
fixes the in-plane orientation.

The two sub-systems SA and SB are defined by noticing that equations (18.5) to (18.13) only contain the unknowns
R1,R2 and N and only depend on the known matrix E representing the observed isophote. We thus group them to
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define SB , while we group the remaining equations (18.1) to (18.4) to define SA, with S, h, d and r̂ as unknowns
and dependencies on E, R1, R2 and N. This split simplifies the system study; we show in the next section that the
sub-system SB taken independently only admits a finite number of solutions. This allows us to study and solve the
two sub-systems almost separately.

The next step is to study the dimension of the solution space more specifically and to understand under which
conditions can it be brought to a well-constrained state to create a minimal problem.

4.3 The Minimal Problem for a General Configuration

We start by studying the system from its two sub-systems SA and SB , investigating the dimension of the solution
space to each sub-system. We then show that the general problem is under-constrained for a single scene plane, even
with multiple isophotes. Finally, we show that the general problem has a minimal configuration for two scene planes.

Lemma 2. For a general configuration, the solution space of SB is zero-dimensional (it has a finite set of solutions
for N, R1 and R2), whereas, given N, R1 and R2, the solution space of SA is two-dimensional (it has a two-way
ambiguous solution sub-space for S, h, d and r̂).

Proof. First, we study the sub-system SB , constraining N, R1 and R2, which can be assembled in the orthonormal
matrix R = [R1 R2 N]. The rotation represented by R rectifies the observed isophote and the image of the absolute
conic into circles, which is a metric rectification of the image plane [Hartley and Zisserman, 2000]. This problem has
two ambiguous solutions [Gurdjos et al., 2006], given the image of two circles. In our case, one circle is the isophote
and the other one is the absolute conic, as one easily verifies that, given equations (18.5) to (18.8), the circular
points [Hartley and Zisserman, 2000, p52] belong to the rectified conics, respectively R>ER and R>R. The remaining
equations determine N and fix the in-plane rotation. Second, we study the sub-system SA, given N, R1 and R2.
Equations (18.1), (18.3) and (18.4) are linear in the unknowns d, S and h, which are thus constrained to lie in a linear
sub-space of dimension 5− 3 = 2. Finally, equation (18.2) adds one constraint but introduces the unknown r̂ and so
does not change the dimension of the solution sub-space.

Proposition 3. From the observation of one isophote and without additional priors on the scene parameters, the
general problem represented by system (18) is under-determined and its solution space has dimension 2.

Proof. Using the two-way split of system (18), the global system’s indeterminacy arises from the indeterminacy of SA,
which is of dimension 2 from lemma 2.

Almost all 3D reconstruction settings, including SfM and SfS, do not allow one to recover an absolute scene scale.
This is a fundamental limitation of image-based 3D vision with the perspective camera. The proposed setting does
not escape this limitation and undergoes a scale ambiguity. Concretely, this scale ambiguity occurs in the unknown
position parameters, including the PLS S, the distances d and h, and the radius r̂. Algebraically, these parameters
are involved in quasi-homogeneous equations only, as shown in the following lemma.

Lemma 3. Sub-system SA is quasi-homogeneous of type (1, 1, 1,−1) in the unknowns d, S, h and r̂.

Proof. Equations (18.1), (18.3) and (18.4) are directly homogeneous. Equation (18.2) is quasi-homogeneous of type
−1 in r̂. This can be verified by multiplying all the unknowns but r̂ by λ > 0 and r̂ by 1

λ , which leaves all 4 equations
of SA invariant.

This result implies that regardless of the number of isophotes and planes being observed, only fixing one of the
quasi-homogeneous unknowns can fix the scale of the 3D reconstruction. Therefore, in the absence of such an extra
constraint, a problem setting can be considered minimal if the solution space for the quasi-homogeneous unknowns
has dimension 1, and given an extra scale-fixing constraint, if it holds a finite number of solutions.

The next proposition gives a more general characterisation of the extra constraints brought by an additional
isophote arising from the same scene plane as the initial one.

Proposition 4. Observing an extra isophote on a plane for which an isophote is already observed does not reduce the
dimension of the solution space.

Proof. Two isophotes give two pairs of sub-systems (SA, SB) and (S′A, S
′
B). We identify the shared and specific

unknowns, observations and constraints, to assemble a joint system (SA, SB , S
′
A, S

′
B). Because the isophotes share

their support plane, the systems share the unknowns N, R1, R2, S, h and d. The observed conics are of course
different, which we respectively write E and E′, as well as the two unknown radii which we write r̂ and r̂′ respectively.

First, we consider the joint sub-system (SB , S
′
B) which, following lemma 2, gives a finite solution space for N,

R1 and R2. The solution is given by the intersection of the two solution spaces for SB and S′B . From the image of
two concentric circles, the vanishing line, and so, because the camera is calibrated, the normal of the plane, can be
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recovered without ambiguity [Kim et al., 2005]. Consequently, the intersection of the two solution spaces for SB and
S′B gives a single solution.

Second, we consider the joint sub-system (SA, S
′
A). This system is the union of two quasi-homogeneous systems of

the same type, as per lemma 3, and is thus also quasi-homogeneous of that type. It means that the solution space is of
dimension larger or equal to 1. A closer examination is required to show why the additional sub-system does not lower
the dimension of the solution space. The expression S +hN is shared by the two sub-systems. We substitute it by the
BP X̄, following equation (13). We arrive at the following joint sub-system, with 10 constraints and 10 unknowns:

d−N>X̄ = 0 (19.1)

R>1 ER1 + r̂2X̄>EX̄ = 0 (19.2)

R>1 EX̄ = 0 (19.3)

R>2 EX̄ = 0 (19.4)

d−N>X̄ = 0 (19.5)

R>1 E
′R1 + (r̂′)2X̄>E′X̄ = 0 (19.6)

R>1 E
′X̄ = 0 (19.7)

R>2 E
′X̄ = 0 (19.8)

S + hN = X̄. (19.9)

SA

S′A

We show that the equations in SA and S′A are not independent, hence the unknowns remain under-constrained.
Equations (19.1) and (19.5) are simply identical. Equations (19.3) and (19.4) are linear in X̄, constraining it to lie on
a 3D line. As the system is quasi-homogeneous, this solution space is irreducible. Hence, equations (19.7) and (19.8)
do not bring further constraints. Equation (19.6) adds a constraint but depends on the second unknown radius and so
does not change the dimension of the solution space. Finally, equation (19.9) is the same for any isophote on the same
scene plane. It adds 3 constraints but involves 4 unknowns in S and h, adding an extra dimension to the solution space.
The joint sub-system (SA, S

′
A) for two isophotes is thus as under-determined in terms of the dimension of its solution

space as the original sub-system SA for one isophote. The reasoning is easily generalised to any number of isophotes
on the same scene plane. Hence, extra coplanar isophotes may only reduce the number of discrete ambiguities in the
solution space but not its dimension.

Following proposition 4, the only possible ways to further constrain the problem are to introduce additional priors
on the scene elements, which is discussed in the next section, or to increase the number of scene planes, which is
considered directly below. Specifically, the next proposition considers the case of two scene planes, which each provide
an observed isophote. We have that only the position S of the PLS is shared by the sub-systems given by each isophote.
The unknown set is thus formed by the union of the unknowns of each individual system except S. One can easily
verify that the joint system remains quasi-homogeneous of the same type as in lemma 3.

Proposition 5. For a general configuration, two isophotes on different scene planes lead to a minimal problem.

Proof. We have from proposition 3 that the problem is under-constrained for a single isophote. We must thus consider
the joint system (SA, SB , S

′
A, S

′
B) obtained from two isophotes. We have from lemma 2 that SB and S′B can be solved

separately to resolve the orientation of the two scene planes. This leaves us with the joint sub-system (SA, S
′
A):

d−N>(S + hN) = 0 (20.1)

R>1 ER1 + r̂2(S + hN)>E(S + hN) = 0 (20.2)

R>1 E(S + hN) = 0 (20.3)

R>2 E(S + hN) = 0 (20.4)

d′ −N′
>

(S + h′N′) = 0 (20.5)

R′1
>
E′R′1 + (r̂′)2(S + h′N′)

>
E′(S + h′N′) = 0 (20.6)

R′1
>
E′(S + h′N′) = 0 (20.7)

R′2
>
E′(S + h′N′) = 0. (20.8)

SA

S′A

Equations (20.3), (20.4), (20.7) and (20.8) form a homogeneous linear system of 4 equations for 5 homogeneous
unknowns, S, h and h′. The solution space is thus reduced to its minimal dimension of 1. The remaining equations
each adds a new constraint and a new unknown, namely d, r̂, d′ and r̂′, and can thus be solved separately.
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Configuration
PLS to Plane Plane PLS

Distance (1 DoF) Orientation
(3 DoF)

Distance
(1 DoF)

Position (3 DoF)

A 1-plane known known known known

B 1-plane known known known 3

C 1-plane known 3 3 known

D

{
1-plane known 3 7 (dim 1) 7 (dim 1)

2-plane known 3 3 3

E 1-plane 3 known known known

F

{
1-plane 7 (dim 1) known known 7 (dim 1)

2-plane 3 known known 3

G 1-plane 3 3 3 known

G∗ 1-plane 7 (dim 1) 3 7 (dim 1) known

H

{
1-plane 7 (dim 1) 3 7 (dim 1) 7 (dim 2)

2-plane 7 (dim 1) 3 7 (dim 1) 7 (dim 1)

Table 2: Summary of the solution ambiguities for various configurations defined from priors considered on the scene
elements and numbers of scene plane. In the cases involving 2 scene planes, the priors are considered for each scene
plane individually. For each configuration and scene parameter, ‘known’ means that the parameter is given as a prior,
a check mark indicates that the solution space is finite and a cross mark indicates otherwise, followed by a number
indicating the dimension of the solution space.

Our results might first appear counter-intuitive, as adding an isophote on an already modelled plane introduces
new observations with a limited number of new unknowns, while adding an isophote on a new, yet unmodelled plane,
introduces a larger number of unknowns. Yet, our results show that only by considering a new plane can one increase
the number of redundant constraints. This is a strong result; it means that, up to a two-dimensional ambiguity, the
observation of one isophote already contains all the geometric constraints that one has from one plane, while adding
a second plane is enough to triangulate the position of the shared PLS.

4.4 Determinacy and Consistency for each Scene Parameters

We leave the general setup considered thus far by introducing priors on the scene elements.

4.4.1 Priors and Scene Configurations

We study the effect of the following four priors: knowledge of the PLS to plane distance h, knowledge of the plane
orientation N, knowledge of the plane to camera distance d and knowledge of the PLS position S. We do not use
priors on r̂, the so-called radius parameter, as it depends on the radiometric imaging model, including the scene
reflectance and camera response, and not on the scene geometry. We thus do not have radiometry priors beyond the
general assumptions used to derive our model. Proposition 5 allows us to study the problem configurations for one
or two isophotes on different scene planes only, as a larger set of isophotes on different scene planes would necessarily
over-constrain the system and be equivalent to the two isophote cases. Table 2 summarises the possible configurations
and our results.

The solution space for the quasi-homogeneous parameters, shown in columns 1, 3 and 4 of table 2, cannot be reduced
beyond 1, regardless of the number of isophotes and planes, owing to the global scene scale ambiguity. However, some
configurations such as G include priors on the quasi-homogeneous parameters, which resolve the global scale ambiguity.
The radius r̂ is considered an unknown in every configuration. It may be found from equation (18.2) if S, N, R1 and
h are resolved, which specifically occurs in configurations A, B, C, D (2 planes), E, F (2 planes) and G. The next
four sections study the solvability and solution space for each configuration from table 2 specifically.

4.4.2 Single-plane Over-constrained Configurations

We study configurations A, B, C, E and G, which involve a single-plane, and show that they are over-constrained.

Configuration A. All the geometric parameters are known from the priors. The system is strongly over-constrained.
This configuration does not have a direct practical application. We use it experimentally in section 8.1 to study our
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model’s empirical validity and expressiveness on real data.

Configuration B. There is a single unknown in the geometric parameters, namely the position S of the PLS. The
global system is over-constrained, as the 4 unknown scalars in S and r̂ appear in all 4 equations of SA. These 4 equations
are inhomogeneous because h and N are known from the priors, thus the global scene scale can be determined.

Configuration C. There are two unknowns in the geometric parameters, namely the orientation N of the plane
and its distance d to the camera. Sub-system SB determines N, as per lemma 2, with a finite number of solutions.
Using a solution for N, equation (18.1) from SA becomes linear and inhomogeneous, thus constrains d and fixes the
global scene scale.

Configuration E. There is a single unknown in the geometric parameters, namely the distance h between the PLS
and the scene plane. The global system is thus strongly over-constrained. The linear and inhomogeneous equations
(18.1), (18.3) and (18.4) from SA constrain h and fix the global scene scale.

Configuration G. There are three unknowns in the geometric parameters, namely the orientation N of the scene
plane, its distance d to the camera and its distance h to the PLS. Sub-system SB determines N, as per lemma 2,
with a finite number of solutions. Using a solution for N, the remaining equations (18.1), (18.3) and (18.4) from SA
become linear, constrain d and h, and fix the global scene scale.

4.4.3 Single-Plane Under-constrained Configurations

We study configurations D, F and H specifically for a single plane and show that they are under-constrained.

Configuration D, 1-plane. There are three unknowns in the geometric parameters, namely the orientation N of
the scene plane, its distance d to the camera and the position S of the PLS. This yields a total of 14 scalar unknowns,
namely d, S, r̂, N, R1 and R2, in a system of 13 equations, which is thus under-constrained. Sub-system SB determines
N, as per lemma 2, with a finite number of solutions. Singling out equation (18.2) from SA and the unknown r̂, we
obtain a system of 3 linear and inhomogeneous equations with 4 scalar unknowns in d and S. The PLS position S is
thus restrained to a line, h is unrecoverable, as well as the global scene scale.

Configuration F , 1-plane. There are two unknowns in the geometric parameters, namely the distance h of the
scene plane to the PLS and the PLS position S. This yields a total of 11 scalar unknowns in a system of 13 equations,
which is thus over-constrained. Sub-system SB does not contain unknowns, therefore the orientation of the scene
plane is over-constrained. Singling out equation (18.2) from SA and the unknown r̂, we obtain a system of 3 linear
and inhomogeneous equations with 4 scalar unknowns in h and S. The PLS position S is thus restrained to a line, h
is unrecoverable, as well as the global scene scale.

Configuration H, 1-plane. There are four unknowns in the geometric parameters, namely the distance h of the
scene plane to the PLS, the orientation N of the scene plane, its distance d to the camera and the PLS position S.
This yields a total of 11 scalar unknowns in a system of 13 equations, which is thus over-constrained. Sub-system
SB determines N, as per lemma 2, with a finite number of solutions. Singling out equation (18.2) from SA and the
unknown r̂, we obtain a system of 3 linear and homogeneous equations with 5 scalar unknowns in h, d and S. The
PLS position S is thus restrained to a plane, h and d are unrecoverable, as well as the global scale.

4.4.4 Multiple-plane Configurations

We study configurations D, F and H specifically for two planes, as they were shown to be under-constrained for one
plane, and show that most of the unknowns becomes well-constrained.

Configuration D, 2-plane. There are five unknowns in the geometric parameters, namely the orientation N, N′

and distance d, d′ of each scene plane to the camera and the PLS position S. Sub-systems SB , S′B determine N, N′,
as per lemma 2, with a finite number of solutions. Singling out equation (18.2) from SA, S′A and the unknown r̂, r̂′,
the remaining 6 equations are linear in 5 unknowns and the system is thus over-determined.

Configuration F , 2-plane. There are three unknowns in the geometric parameters, namely the distance h, h′ of
each scene plane to the PLS and the PLS position S. Sub-systems SB , S′B do not contain unknowns. Singling out
equation (18.2) from SA, S′A and the unknown r̂, r̂′, the remaining 6 equations are linear in 5 scalar unknowns and
the system is thus over-determined.
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Figure 3: Steps taken for 3D reconstruction for all possible combinations of scene priors and numbers of planes. The
correspondence with the configurations of table 2 is indicated on the leaf nodes, with the configuration letter and
where 1 means a single plane and 2 means multiple planes.

Configuration H, 2-plane. There are seven unknowns in the geometric parameters, namely the distance h, h′ of
each scene plane to the PLS, their orientation N, N′, their distance d, d′ to the camera, and the PLS position S. Sub-
systems SB , S′B determine N, N′, as per lemma 2, with a finite number of solutions. Singling out equations (18.2)
from SA, S′A and the unknown r̂, r̂′, the remaining 6 equations are linear and homogeneous equations in 7 scalar
unknowns. The parameters h, h′, d and d′ are thus unrecoverable, as well as the global scene scale.

4.4.5 Configuration G∗: Co-located Light and Camera Configuration

Configuration G∗ is a special case of configuration G, where the known PLS is specifically placed at the camera centre.
This configuration commonly appears in medical and industrial endoscopes. At first, one may think that it should
behave similarly to configuration G, which uses the same priors, the unknowns and the equations thus remaining
identical. Indeed, similarly to configuration G, the plane orientation N can be determined from SB . However, the
similarity does not hold for SA, which does not share the same degrees of freedom. Algebraically, as S is the zero vector,
N and S are always co-linear, making h unrecoverable from the quasi-homogeneous equations of SA. Consequently,
the scene plane to camera distance d becomes unrecoverable.

Unlike configuration H, where multiple planes give systems that share a common inhomogeneous variable, the
position of the PLS, each system in configuration G∗ is independently quasi-homogeneous. Consequently, fixing the
scale for one scene plane does not fix the scale for the others.

5 Closed-form Solutions from Algebraic Geometry

Given a single or multiple isophotes and priors on the scene elements, 3D reconstruction is achieved by solving the
polynomial system (18). While the previous section analyses the solution space, the current section gives solution
methods for the different cases.

5.1 Overview

The proposed solution methods for the different cases share some of their components, as shown in the flowchart of
figure 3. The flowchart also relates each solution method to a case in table 2. The methods rely on three layers. The
first two layers deal with a single scene plane and are thus repeated for each of the scene planes. The third layer
combines the outputs of the first two layers for multiple planes. Specifically, the first layer deals with the scene plane
normal by solving sub-system SB , except if the scene priors would already include this normal. The second layer
deals with the rest of the unknowns, essentially the PLS, but also the PLS to plane distance and the camera to plane
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Figure 4: The PLS is located on the plane P, which is formed from the isophote image.

distance, by solving sub-system SA, taking the scene priors into account. The next three sections present the steps
taken in each of the three layers in turn. Each step of each layer involves a closed-form solution, which guarantees
that all possible solutions are found and avoids iterative nonconvex numerical optimisation, hence local minima.

5.2 Scene Plane Normal Reconstruction

We use the circle-based plane-pose method [Mariyanayagam et al., 2018] to estimate each scene plane normal N from
an isophote given as a point conic matrix E. Matrix E is symmetric, full-rank and defined up to scale. We can thus
scale it so that det(E) = 1. Defining Vj , j ∈ [1, 3], as the eigenvectors of E in descending order of their eigenvalues
λ1 ≥ λ2 ≥ λ3, we have a two-fold ambiguous solution:

N± =
√
λ1 − λ2

V1

‖V1‖
±
√
λ2 − λ3

V3

‖V3‖
, (21)

where, with q = trace(E) and h = trace(E−1), we have:

α =
1

3
arccos

(
1

2

2q3 − 9qh+ 27

(q2 − 3h)
3
2

)
(22)

λ1 − λ2 =
√
q2 − 3h

(
cosα−

√
3

3
sinα

)
(23)

λ2 − λ3 =
2
√

3q2 − 9h

3
sinα. (24)

For the specific case where λ2 = λ3, the second term of equation (21) vanishes. This case occurs if the line joining the
BP and the camera centre is parallel to the scene plane normal. It specifically happens in configuration G∗, where the
PLS and the camera centre are co-localised.

5.3 Point-light Source Reconstruction from a Single Scene Plane

We suppose that one or two solutions are available for the scene plane normal, denoted N±. We handle them separately,
using equations (18.1), (18.3) and (18.4) from sub-system SA. Equation (18.2) is solved separately as it is the only
equation which involves the unknown radius. We introduce the homogeneous coordinates of the BP, denoted x̄, given
by:

x̄ ∼ E−1N with x̄ ∼ X̄ = S + hN. (25)

We can easily verify that x̄ is a solution to equations (18.3) and (18.4) if N is a solution to equations (18.10) and (18.11).
Figure 4 illustrates the geometry, by showing the scene plane normal, x̄ and the plane P, which we define to contain
both these vectors.
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Configurations C, E. The PLS and one of the distances h or d between the scene plane and the other scene
elements are known; equation (18.1) thus directly gives the other distance.

Configuration B. The distance between the scene plane and the PLS, and the distance between the scene plane
and the camera centre are known; the sub-system can thus be reformulated as an inhomogeneous linear system in S
as:

S>
[
E>R1 E>R2 N

]
+
[
hR>1 EN hR>2 EN −d− h

]
= 0, (26)

which gives, in the general case, a single solution to S.

Configuration G. The PLS is known; we can thus use one of the equations (18.3) and (18.4) to obtain a solution to
h and use it to solve for d from equation (18.1). This is valid provided that S and N are not co-linear. In particular,
in configuration G∗ where the PLS and the camera centre are co-localised, hence S = 0, none of these equations can
constrain h.

Configuration D. The distance between the scene plane and the PLS h is known; we can thus use the homogeneous
coordinates of the BP from equation (25) to restrict the PLS. We then have:

S = λx̄− hN with λ 6= 0. (27)

The PLS S is then restricted to a line whose Plücker coordinates are given by (x̄,−hN× x̄), where we use × to denote
the vector cross-product. The distance between the scene plane and the camera cannot be recovered.

Configuration F . The scene plane to camera distance d is known and non zero; we can thus estimate the BP from
equation (18.1), N>X̄−d = 0. Using its homogeneous coordinate x̄ equation (25) gives the following general solution:

X̄ = − dE−1N

N>E−1N
. (28)

The PLS S is then restricted to a line whose Plücker coordinates are given by (N, X̄×N). The distance between the
scene plane and the PLS cannot be recovered.

Configuration H. In the absence of other priors, we can only restrict the PLS to plane P. Indeed, introducing a
scalar λ to handle homogeneity in equation (25), we have:

S = λx̄− hN. (29)

The supporting plane P contains both the BP’s backprojection sightline and the scene plane normal. Its coordinates
are thus given by:

P̄ =

[
x̄×N

0

]
. (30)

Importantly, the supporting plane is not affected by the scene plane normal ambiguity N±, as shown in the following
proposition.

Proposition 6. The supporting plane P does not depend on the ambiguous solution obtained for the scene plane
normal.

Proof. We form the supporting plane equations P+ and P− corresponding to both scene plane normals N+ and N−,
and then show that they are equal. We have:

P+ = x̄+ ×N+ = (E−1(p1 + p3))× (p1 + p3) (31)

P− = x̄− ×N− = (E−1(p1 − p3))× (p1 − p3), (32)

where p1 =
√
λ1 − λ2) V1

‖V1‖ and p3 =
√
λ2 − λ3) V3

‖V3‖ . Consequently, we have:

P+ −P− = 2((E−1p1)× p1 + (E−1p3)× p3) (33)

= 2(λ1
√
λ1 − λ2)

V1

‖V1‖
×
√
λ1 − λ2)

V1

‖V1‖
+ λ3

√
λ2 − λ3)

V3

‖V3‖
×
√
λ2 − λ3)

V3

‖V3‖
) (34)

= 0. (35)

The normal vectors P+ and P− thus represent the same orientation.
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5.4 Point-light Source Reconstruction Refinement from Multiple Scene Planes

Observing a single scene plane leaves ambiguities on its pose and on the PLS in cases D, F and H, whereas it does
not for all the other cases. We study how the combination of multiple scene planes can reduce the ambiguities. In
short, observing at least two scene planes fully determine the PLS in cases D and F and restricts it to a line in case
H.

Configurations D, F . Each isophote gives a line or two lines containing the PLS S as discussed in section 5.3 for
configurations D and F . These lines are denoted Li, i ∈ [1, n], and their Plücker coordinates are denoted (Di,Mi)
with ‖Di‖ = 1. In configuration D, we have Di = E−1Ni and Mi = −hiNi × Di. In configuration F , we have
Di = Ni and Mi = X̄×Ni with X̄ given by equation (28). The distance between the PLS S and the line Li is given
by:

d(S,Li) = ‖S×Di −Mi‖2. (36)

We can thus find the PLS which minimises the distance to both lines by solving:

min
S

n∑
i=1

‖[Di]×S−Mi‖2,

where [·]× is the skew-symmetric cross-product matrix. This is a linear-least squares minimisation problem, which is
solved in closed-form. Once a solution for the PLS is found, the remaining scene parameters (the hi for configuration
D and the di for configuration F ) are computed from equation (18.1).

Configuration H. Each isophote gives a plane Pi, i ∈ [1, n], containing the PLS S as discussed in section 5.3 for
configuration H. These planes all contain the camera centre and the PLS; consequently they all intersect in a single
line corresponding to the backprojected sightline of the PLS. The direction L of this line may be found that minimises
the distance to a unitary point P̄i of all planes by solving:

min
L

n∑
i=1

‖P̄>i L‖2 s.t. ‖L‖ = 1.

This is a homogeneous linear-least squares problem, which is solved in closed-form. We obtain the direction of the
PLS, related to the actual PLS as S = ‖S‖L. This remains valid even if the PLS is located on the camera’s principal
plane. However this fails as the PLS approaches the camera centre. This is because Pi vanishes as x̄i and Ni become
collinear; the linear least-squares problem then becomes undetermined.

In order to obtain a complete reconstruction, we may fix the overall signed scale and then the position of the PLS
in camera coordinates. It then becomes possible in some cases to resolve the algebraic ambiguity on the scene plane
normal if a simple sufficient condition is met, which we now develop. By convention, we use a normal vector pointing
towards the camera, denoted with a top bar, which gives N̄>X < 0 for any point X on the plane. A plane is only
shaded and visible if the PLS and the camera center lie on the same side of the plane, giving the algebraic condition
(N̄>X)(N̄>(S −X)) < 0. From this condition, the twofold ambiguity may be resolved if each ambiguous normal is
associated with a distinct partition of the space where the PLS may be located. Given the PLS, the right solution
is then naturally revealed by identifying the space partition containing it. This idea is illustrated in figure 5 and
formalised in the following proposition.

Proposition 7. The scene plane normal ambiguity can be resolved given the PLS and a visible point X if:

(X>N+)(X>N−) > 0. (37)

where the normals’ signs are chosen so that they both points towards or away from the camera centre.

Proof. Following the algebraic condition on the visibility of a shaded surface point, we have in particular:

N>(S− X̄) > 0 (38)

N>X̄ < 0. (39)

We derive the BP from equation (25) by introducing µ 6= 0 as:

X̄± = µE−1N± (40)
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Figure 5: The supporting plane P, representing the possible locations of the PLS, can be separated in two parts shown
in red and green if both the estimated normals N+ and N− face the camera at a visible point X (left). The two
parts are however not disjoint as the sign of only one ambiguous normal must be inverted to follow the orientation
convention (right).

Therefore, X̄± is given by:

X̄± = µ

(√
λ1 − λ2
λ1

V1 ±
√
λ2 − λ3
λ3

V3

)
. (41)

Equations (39) and (21) then give:

(N>µE−1N) > 0 (42)

(N>µE−1N) = µ

(
λ1 − λ2
λ1

− λ2 − λ3
λ3

)
. (43)

The sign of the eigenvalues can be determined from det(E) = 1 and the Sylvester’s law of inertia:

λ1 > 0 > λ2 ≥ λ3. (44)

We obtain the sign of µ from equation (43) as µ < 0.
Equation (38) reveals the sign of h, by substituting X̄ with its definition from equation (13), leading to−N>hN > 0,

hence h < 0.
Finally, we can estimation the PLS S from equations (13) and (41) as:

S =

(
µ

√
λ1 − λ2
λ1

− h
√
λ1 − λ2

)
V1 ±

(
µ

√
λ2 − λ3
λ3

− h
√
λ2 − λ3

)
V3. (45)

Using the signs of µ and h shows that the sign of the second coefficient, for V3, only depends on which of the ambiguous
solutions is chosen. As vectors Vi are orthogonal, the plane can be separated in two parts. Therefore knowing the
PLS removes the ambiguity. The coefficient can only be 0 if λ2 = λ3, for which there is no ambiguity, or if µ = 0,
where the camera centre is on the scene plane, forming an impossible degenerate case where the scene plane would
project to a line.

6 Isophote Detection

We discuss the practical aspects of isophote detection and estimation in an input image. These isophotes are image
curves forming geometric primitives, whose theoretical modelling and usage for 3D reconstruction are studied in the
previous section. Isophote detection is thus an early and crucial step for our 3D reconstruction method, similarly
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Figure 6: Proposed top-down, generative method for isophote detection, by rectifying homography and intensity profile
optimisation. The method fits a generative image model by estimating the rectifying homography H, mapping the
isophote ellipses to concentric circles, and the monotonic intensity profile function f , mapping the circle radius to the
observed intensity.

to keypoint detection and matching in classical SfM. Importantly, we have established with our theoretical model
that the isophotes are imaged as non-degenerate conics, a property which we explicitly use in our detection methods.
Several factors affect the stability of isophote detection in real images, including sensor noise, modelling errors (albedo
variation, surface curvature, etc) and visibility conditions such as occlusions, creating open isophote curves. We
propose a bottom-up and a top-down methods. Without loss of generality, we select two isophotes, for ρ values
linearly spanning the intensity value interval from I(u) with u ∈ Ui for each plane i.

6.1 Naive Bottom-up Detection

We consider a small patch centred around the area of maximum intensity on an observed surface where, according
to proposition 2, the isophotes are elliptic. The use of elliptic primitives based on edge points is known to be robust
and efficient in fiducial marker detection [Calvet et al., 2016]. However, the isophote points are not edge points. In
contrast, from our image model in equation (7), we should in theory simply search for pixels whose intensity value is
I(u) = ρ. As opposed to classical ellipse detection, these pixels do not lie at sharp intensity transitions, making their
detection highly sensitive to noise. The use of noise removal filters is thus of utmost importance. Concretely, we use
a Wiener filter followed by a Gaussian filter. The Wiener filter has been chosen for the good experimental results on
real images where high frequency noise was correclty removed. The Gaussian filter is used to slightly blur the image
so that the intensity can be threshold adequately on a continuous domain. The isophote points are then detected by
intensity thresholding within [ρ− ε, ρ+ ε], where ε is a tolerance which we set empirically to ε = 1

600 . We finally fit
an ellipse to the isophote points following [Szpak et al., 2015]. In practice, this naive method has only worked on
synthetic data with limited noise. This is because it detects a single isophote at a time, without exploiting the strong
structure of nested ellipses that the multiple isophotes follow.

6.2 Advanced Top-down Detection

We propose to fit a generative shading image model, drawn from the concentric circle structure established in propo-
sition 1. In our model, the homography H of equation (17) transforms the image isophote ellipses into the concentric
circles lying on the scene plane, which are the solutions of equation (6). Our key idea is illustrated in figure 6:
we estimate the rectifying homography H, along with a one-dimensional intensity profile for the isophotes, which we
parameterise by the pre-image circle radius. This approach can alternatively be seen as solving for ρ from equation (9).

The intensity profile is represented by a function f of the square radius. Function f is strictly decreasing, since, as
shown in proposition 1, the pre-image circles are centred on the BP. As function f is also smooth, we model it using
a monotonic cubic spline [Wolberg and Alfy, 1999] with N control points. Function f : R × RN → R thus predicts
the image intensity I(u, v) for some square radius x2 + y2 obtained from normalised coordinates u, v by homography
transfer as [x y 1]> ∼ H [u v 1]>. It is controlled by squared radii values p ∈ RN at the N control points, which are to
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be estimated. The corresponding intensity values at the control points are fixed following a uniform sampling of the
maximum to the minimum intensity values within the image patch.

We use a specific reduced parameterisation of the homography. Indeed, a general homography has 8 DoF, hence 8
parameters at least. We can reduce this number to only 4 parameters because a) we use a calibrated camera, b) we
only use the scene plane normal (as opposed to the full rotation matrix, as the concentric isophote circles are rotational
symmetric) and c) the scale can be arbitrarily fixed in the translation vector. We thus end up with 2 rotational and
2 translational parameters. In addition, in the specific case where the PLS and the camera are co-localised, the
translation vanishes and we end up with only 2 rotational parameters to estimate.

We design an optimisation problem whose goal is to minimise the discrepancy between the image and the model-
generated intensity values over the image area U showing the scene plane. This leads to the following nonlinear
least-squares problem:

min
H,p

∑
(u,v)∈U

∥∥I(u, v)− f(x2 + y2,p)
∥∥2 ,

where H is our homography parameterisation with 4 or 2 parameters and p is the intensity at the spline’s control
points. The homography parameters are initialised using the maximum and minimum intensity points in the patch:
specifically, we form the homography which rectifies the point of minimum intensity to [0 0 1]> and the point of
maximum intensity to [1 0 1]>. We empirically found that using N = 5 control points was enough, which we initialise
using a linear distribution spanning the interval between the minimum and maximum intensity and their corresponding
squared radii obtained by applying the initial homography to extrema points.

The number of unknown parameters to estimate depends on the number of control points and the homography
parameterisation, and is thus 4 +N = 4 + 5 = 9 for the general case and 2 +N = 2 + 5 = 7 for the co-localised PLS
and camera case. We use the Levenberg-Marquardt method to minimise the cost function. Upon completion, one or
several isophotes can be easily extracted within the patch. This is done by estimating the radius values for each image
pixel with the inverse homography. One or several radii are selected in the working range, then their corresponding
isophote is obtained from equation (16), from which the scene plane normal is estimated.

We use isophotes rather than the homography to estimate the scene plane normal for two reasons. First, the
same method applies to both the bottom-up and the top-down approaches. Second, a single isophote contains all and
only the useful information for our model. Specifically, using only one isophote gives two ambiguous solutions for the
normal, whereas using the homography would theoretically give a single normal. This may seem like a drawback of
the approach at first; nonetheless, it is a strong advantage because the homography solution is unstable, especially for
smaller patches, often corresponding to a spurious normal solution, without any possibility to recover. This corresponds
to the known two-way affine ambiguity studied in plane pose estimation [Collins and Bartoli, 2014]. In contrast, using
the isophote to obtain the scene plane normal guarantees that the true normal is within the two ambiguous normal
solutions.

7 Refinement from Geometric and Photometric Discrepancy

We show how to refine an initial 3D reconstruction of the scene found from one of the methods of the previous section.
We describe two criteria measuring the quality of fit to the observed data, a geometric one and a photometric one,
which can be iteratively minimised. We then discuss the relationship between the two criteria.

7.1 Geometric Criterion

Our geometric criterion is based on the reprojection error computed by predicting the equation of each observed
isophote primitive with the model being reconstructed. Specifically, we consider that the observed data is obtained
from the bottom-up isophote detection method and is a set of image points on the different isophotes, for specific
values of the intensity. Concretely, we denote as Yi,j,k the image coordinates of the kth point for the jth isophote
of the ith scene plane. We parameterise each plane by its pose hi = [αi βi γi, di] in camera coordinates, namely two
angles αi, βi defining its normal, an angle γi defining the in-plane orientation and its distance di to the camera centre.
We associate to each observed image point a 3D point on the corresponding scene plane, which we parameterise in
polar coordinates by an angle θi,j,k and the radius ri,j of its associated isophote circle on the scene plane. We gather
all the parameters as H = {hi}, R = {ri,j} and O = {θi,j,k} with i ∈ [1, n], j ∈ [1,m] and k ∈ [1, Ni,j ] and formulate
the following nonlinear least-squares problem:

min
S,H,R,O

n∑
i=1

m∑
j=1

Ni,j∑
k=1

‖Pi,j,k −Yi,j,k‖2.

The cost function requires one to evaluate the reprojection Pi,j,k of the points, which is done in three steps. First,
we compute the normal of each scene plane as Ni = [cosαi cosβi sinαi cosβi sinβi]

> and the orthogonal projection
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of the PLS on the plane, which is the BP, as Xi = S − (di + S>Ni)Ni. Second, we compute the pre-image of each
point on the scene plane as Wi,j,k = Xi + ri,j [cos θi,j,k, sin θi,j,k]>R̄i with:

R̄i =

− sinαi − sinβi cosαi
cosαi − sinαi sinβi

0 cosβi

 .
Third, we reproject each point, which is given in homogeneous coordinates by [P>i,j,k 1]> ∼ KWi,j,k.

The geometric criterion has latent parameters which model the position of each observed isophote point on the
scene plane, namely, their pre-images. These latent parameters simplify the evaluation of the criterion. Alternatively,
they could be cancelled out. This would be less practical in terms of evaluation but allows one to understand the
criterion as a measure of distance between the observed and the model predicted isophotes, as:

min
S,H,R

n∑
i

m∑
j=1

Ni,j∑
k=1

min
θi,j,k
‖G(Xi + ri,j [cos θi,j,k, sin θi,j,k]>)−Yi,j,k‖2 = min

S,H,R
d(G(C(ri,j ,Xi,Ni)),Yi,j,k)2, (46)

where C(r,X,N) is the circle of radius r and centre X on the plane with normal N and d(·, ·) gives the Euclidean
distance between the circle projected by function G and the observed isophote points.

7.2 Photometric Criterion

Our photometric criterion is based on the dense intensity difference computed by predicting the pixel intensity for the
image area of each scene plane. This can be seen as an extension of our top-down isophote detection method to a full
3D scene generative optimisation with n planes. It uses a similar intensity profile parameterisation with monotonic
splines for each plane i ∈ [1, n], parameterised by control points pi ∈ RN . Similarly to the geometric criterion, we
parameterise each plane by hi = [αi βi di]. We gather all the parameters as H = {h1, . . . ,hn} and P = {p1, . . . ,pn}
and formulate the following nonlinear least-squares problem:

min
S,H,P

n∑
i=1

∑
(u,v)∈Ui

∥∥I(u, v)− f(s2,pi)
∥∥2 .

The cost function requires one to evaluate the square distance s2 to the BP for image point (u, v), which is done in
three steps. First, we compute the normal Ni and the BP Xi as for the geometric criterion. Second, we compute
the intersection of each image point’s backprojected sightline x̄ = [u v 1] with the scene plane as Y = −di/(Ni

>x̄)x̄.
Third, we compute the sought distance as s2 = ‖Y −Xi‖2.

7.3 Comparing the Criteria

The Figure 7 shows the distribution (grey area) of points in a patch containing isophotes as a function of their distance
from the BP in the rectified coordinate system and their intensity in a similar way to Figure 6. Ideally, one expects
to have a distribution that follows only the green line, the theoretical model. If we consider a rectification error on
a rectangular patch, at the corners the pixels are slightly offset, creating ”branches” on the distribution. The aim of
the optimisation is to correct this deviation, we compare on this diagram how the proposed criteria penalise it.

The photometric criterion corresponds to measuring the difference in intensity between that measured on a point
and that of the isophote associated with the same distance s to the BP on the rectified image. In other words, it is
the vertical distance (in blue) on the diagram between a point and the model (green spline).

The geometric criterion corresponds to measuring the reprojection distance in the original image between the
position of the point and its associated isophote. This geometric distance is not exactly equivalent to the one in the
rectified image, but it can be related. In the rectified image, it corresponds to the horizontal distance (in red) between
a point and its associated isophote of similar intensity (red dot). The radius of this isophote is estimated from all the
points of the same intensity (red zone).

It can be seen that both criteria penalise the deviation of the data from our model. The geometric criterion is
however discrete since the isophotes are considered individually with a thresholding on the intensity levels.

8 Experimental Results

We present experimental results on both synthetic and real images. Our objectives are twofold. First, we validate our
geometric and photometric models on realistic scenes. Second, we measure the reconstruction ability and accuracy
of our pose estimation method in two concretes configurations. The first configuration considers scene planes and a
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Figure 7: The relationship between the geometric and the photometric criteria. We consider the pixels of a patch,
spread according to their intensity and their distance to the BP. The geometric criterion corresponds to the horizontal
distance in red and the photometric criterion corresponds to the vertical distance in blue.

PLS with unknown poses, which is configuration H in table 2. This configuration demonstrates the ability of our
method to work even in settings where classical SfS approaches are not applicable and fail to obtain results. The
second configuration considers the endoscopic case, with a PLS co-located with the camera and a scene plane with
unknown pose, which is configuration G∗ in table 2.

8.1 Model Validation

We created a lab setup using a candle for the PLS, lighting three boards with diffuse reflectance, shown left in figure 8.
Board A is covered by a fine-grained matte garment and boards B and C by grainy white papers. We chose to use a
candle for three main reasons: its small size relative to the boards, its isotropic nature due to the absence of optics
and its sufficient intensity to capture images with a reasonable level of noise. We attempted prior experiments using
an LED and an incandescent bulb as light sources but they did not comply with the PLS model as consistently. While
the LED is small, it has the main disadvantage of being strongly anisotropic; with a principal direction where the
illumination is greater, it is probably better modelled by a spotlight. The incandescent bulb is closer to the PLS but
its illumination is not uniform, depending on the shape of the glass, this effect can be seen on surfaces close to it. We
used a high-end DSLR camera which we calibrated with the Matlab toolbox. We carefully acquired pose groundtruth
using ARTag markers. In particular, the candle stick was precisely positioned at the centre of the four markers from
its support plane and the height of the brightest point of the flame was measured.

We validate our model by measuring the compliance of the observed image intensities with the expected radial
distribution. Figure 9 shows the pixel intensities from the board images as red dots, distributed according to their
square distances on the plane to the brightest point. On the first row, we used the groundtruth to calculate these
distances (configuration A), on the second row we optimised the PLS position to decrease the photometric discrepancy
(configuration B), on the third row we optimised a perspective rectification for each scene plane individually and on
the fourth row we performed a complete pose optimisation based on the photometric criterion (configuration H).
The fitted intensity model is shown as a blue curve in figure 9. Table 3 shows statistics on the distance between the
measured pixel intensities and the fitted curve for the three configurations.

First row, using groundtruth to calculate the radius of each pixel. We observe that the measured intensities
follow a similar trend to our model, namely a decreasing curve. However we can see multiple branches, indicating a
deviation from our model. This is caused by an offset existing between the true pose and the measured groundtruth.

Second row, optimising the PLS position with the photometric criterion. We observe that the measured
intensities follow the model curve more consistently than on the first row. The remaining discrepancies are due to the
flame not being a single point. While its measured groundtruth position corresponds to the wick, its ideal position
should takes into account the entire distribution of the light rays, causing a possible offset of up to 3 cm for this
image. However we can still see that the fitting is not perfect, data points are scattered and two branches appear on
the board C (leftmost image).
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Figure 8: Real data experiments in lab conditions. Example images are shown with detected isophotes and recon-
struction. The reconstructed planes are in blue with the detected isophote pre-images in green. The reconstructed
PLS is the yellow star. The groundtruth planes and PLS are in magenta. The left and right columns follow the close
and far setups respectively.
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Third row, optimising a perspective transformation for each board individually with the photometric
criterion. This case uses our top-down detection method. We observe that the branches disappear for all boards,
thus giving more consistent observations and clearly showing the benefit of photometric refinement.

Fourth row, optimising all parameters, including the plane poses. We observe that for boards A, B and C,
there is no significant change in the trend, indicating that the model fits the observed data well. However the pose
has been adjusted and now deviate slightly from the ground-truth, this can be seen later in figure 8. It indicates that
our model deviates from the observed reality, but this does not prevent it from adapting to it.

Board C Board B Board A
Avg. Avg. Abs. Stdev Avg. Avg. Abs. Stdev Avg. Avg. Abs. Stdev

PLS only 0.0386 2.1036 2.7598 -0.0620 1.7380 2.2497 0.0082 2.1365 2.7863
Indiv. Persp. 0.0629 2.2177 2.8612 0.1473 1.5858 2.0344 0.0875 1.7908 2.3190
Global Pose 0.0299 1.7945 2.3260 0.0248 1.5404 1.9877 0.0270 1.7757 2.3046

Table 3: Statistics from model fitting for model validation. The three fitted models are shown as the three rows and
described in the main text. For each board, ‘Avg.’ is the average of the algebraic distance, ‘Avg. Abs.’ is the average
of the absolute distance and ‘Stdev’ is the standard deviation.

8.2 Pose Estimation

We experimentally evaluate our pose estimation methods in configuration H, which is the most complete one, with
three types of experiments. We start with synthetic data, to validate against a great variety of poses and against
varying image noise. We follow with lab-condition real images. We finish with natural real images, which validate the
possible use of our methods in cases where previous methods fail.

8.2.1 Synthetic Data Experiments

Data generation, varied parameters and measured errors. We simulate a synthetic scene with parameters
shown in figure 10. It is composed of a PLS and two planes with 1 m side length, placed 5 m away from the camera.
We use Blender to achieve realistic rendering, with image intensities in [0, 255], using hard thresholding to simulate
saturation, and add additive Gaussian noise to the rendered images. The planes are fully visible with the default
camera using 35 mm focal length and HD images. In order to avoid degenerate cases, we fix an angle of 30◦ between
the principal line and the line joining the PLS and the planes connection point. We independently vary three key
parameters: the angle between the planes (in red on the figure), the distance between the planes and the PLS source (in
green on the figure) and the noise magnitude, whose default values are respectively 90°, 1 m and 1 unit. We compute
statistics from 10 samples for each parameter setting, offsetting the plane connection point randomly from a uniform
distribution within [−0.1, 0.1] m. Some images of synthetic data are shown in figure 12. In these experiments, the
isophote detection is based on the naive bottom-up approach which, recall, consist in selecting isopoints directly based
on their intensity, and the global refinement is based on the geometric criterion. The impact of the top-down approach
and the photometric criterion are studied at the end of the section. In order to make metric error measurements, we
rescale the reconstruction to match the true reconstruction scale by fixing the distance between the camera centre and
the estimated PLS to its real value with all other metrics scaled accordingly to this reference. We break down the
reconstruction error as the following three measurements:

� The plane position error, which is the absolute difference in m between the true and estimated distances to
camera.

� The plane orientation error, which is the angle in degrees between the true and estimated plane normals.

� The PLS position error, which is the distance in m between the true and estimated PLS.

Varying the between-plane angle. We vary the angle between the two scene planes, shown in red in figure 10,
between 15◦ and 160◦. The results are shown in figure 11. The figure shows the errors and a measurement of the
average isophote ellipse’s eccentricity and visibility. The individual samples are in blue and the median curve is in red.
The errors are reasonably low in most settings. More precisely, with an angle chosen between 40◦ and 120◦, the plane
position error is lower than 0.05 m and the plane orientation error is lower than 0.5◦. The method is, as expected,
less accurate when the detection of the isophotes increases in difficulty. This happens when the BP moves close to
the boundary of the surface: for an angle greater than 120◦, the isophote visibility rate decreases, causing the error
to rise. This also happens when the eccentricity of the ellipses increases, which occurs for angles lower than 40◦.
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Figure 9: Radial intensity profile for the three boards C, B and A from left to right. Each red dot is a pixel, the green
dots are the control points of the spline model shown in blue. Different rectifications are shown from top to bottom,
with radii calculated respectively as ground-truth distance to BP, optimal PLS with ground-truth plane poses, optimal
perspectivities fitted individually and optimal global pose following the photometric criterion.
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Figure 10: Synthetic scene generation parameters.
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Figure 11: Evaluation with varying between-plane angle in synthetic data.
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Figure 12: Representative synthetic images, with extreme values for the simulation parameters. Left: minimal (top)
and maximal (bottom) inter-plane angle. Middle: minimal (top) and maximal (bottom) PLS to plane distance. Right:
minimal (top) and maximal (bottom) noise level.
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Figure 13: Evaluation with varying source-plane distance in synthetic data.
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Figure 14: Evaluation with varying image intensity noise magnitude in synthetic data.



8 Experimental Results 27

Varying the distance between plane and light source. We vary the angle between the two scene planes, shown
in green in figure 10, between 0.5 m and 1.5 m. The results are shown in figure 13. The figure shows the errors and
a measurement of the average isophote ellipse’s eccentricity and visibility. The individual samples are in blue and the
median curve is in red. We observe that, as for the angle variation, the error is reasonably low. Similarly as well, it
is strongly correlated to the visibility of the isophote, which decreases when the distance increases or when the BP
moves away from the visible parts of the planes.

Varying image noise magnitude. We vary the noise added to the rendered image intensities between 0 and 5.
The results are shown in figure 14. The plane orientation is the most stable against increasing noise. This is because
the plane normals are estimated independently of each other and of the distance and PLS position. The plane and PLS
positions are more sensitive to noise; the error magnitude however remains lower than 15 cm for a noise magnitude of
5, which is reasonable given the scene size, lying at a distance of 5 m from the camera.

8.2.2 Impact of the Refinement

Table 4 shows the results obtained with variation of both isophote detection and reconstruction refinement methods
on synthetic images. We observe that the bottom-up method outperforms the more advanced top-down method. We
give two main reasons that explain this observation. The first reason is that the generated data follow the theoretical
model; the only source of error is thus the added Gaussian noise. Therefore, the image smoothing filter responds very
well to this disturbance, facilitating an accurate detection of isophotes in the image. The second reason is that the
detection by the top-down approach relies on local optimisation with naive initialisation. The solution may thus in
some cases converge far from the global minimum, which is supported by the observed difference between the median
and the mean.

Scene planes orientation error (deg) PLS position error (cm)

Refinement None Geometric Photometric None Geometric Photometric

Bottom-up, mean 0.1325 0.1485 0.0335 0.6702 0.2125 0.0755

Top-down, mean 2.9010 2.9010 0.5401 9.7074 9.4469 6.9052

Bottom-up, median 0.1092 0.1324 0.0328 0.6119 0.1646 0.0718

Top-down, median 1.8288 1.8288 0.0328 1.1907 1.0007 0.0727

Table 4: Reconstruction errors measured in synthetic data for combinations of isophote detection (rows) and refinement
methods (columns).

8.2.3 Real Data in Lab Conditions

We show results for experiments with real images using the general setup described in section 8.1. We use two specific
setups: the close setup, where the candle is about 20 cm away from the planes, and the far setup, where it is about 40
cm away. Figure 8 shows qualitative results for both setups. We observed that the naive bottom-up isophote detection
method generally fails and used the advanced top-down method. The first row of the figure shows the resulting
isophotes. The second row shows the estimated normals and the resulting estimated PLS. Finally, the third and
fourth rows show two views of the reconstructed scene. We took 20 images of each setup to compute error statistics.

Scene planes PLS

Orientation error (deg) Position error (m) Position error (m)
Board C B A C B A Candle

Close setup, mean 09.26 07.61 08.72 00.20 00.17 00.18 00.02
Far setup, mean 04.39 19.11 09.27 00.14 00.63 00.34 00.07

Close setup, median 09.28 06.67 08.64 00.19 00.13 00.17 00.02
Far setup, median 04.58 14.33 07.54 00.07 00.57 00.17 00.03

Table 5: Reconstruction errors measured in real data taken in lab conditions with groundtruth.

We observe from table 5 that the mean and median errors are reasonably close to each other in most cases,
indicating the absence of gross errors. The plane orientations are estimated with an error below 15◦ for the close setup
and for boards B and C in the far setup. As the plane positions depend on the full reconstruction, their estimates are
not as consistent, as a small orientation error can create an important position offset. This occurred with board B in
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the far setup, where the error raised beyond 50 cm. This is because board B is smaller and the intensity variation is
thus narrower than for boards A and C in the images. In spite of this, we observe that the estimated PLS remains
relatively accurate, with an error lower than 2 cm in the close setup and lower than 7 cm in the far setup. This is a
sound achievement, given that the light source is a flame with diameter lower than 2 cm. These results were obtained
from our complete pipeline including nonlinear refinement.

8.2.4 Impact of the Refinement

We measure the impact of the refinement in Table 6. The photometric criterion is the most effective and reduces
the orientation error of the scene planes by 30% while reducing the average error on the PLS by a factor of 7. The
geometric criterion does not improve the plane orientations but reduces the error on the PLS. This was expected as
both criteria consider all parameters globally, which improves the PLS localisation.

Scene planes orientation error (deg) PLS position error (cm)

Refinement None Geometric Photometric None Geometric Photometric

Top-down, mean 11.8437 11.7718 8.6020 12.6062 1.8669 1.7617

Top-down, median 12.0342 11.870 8.3739 11.9670 1.5486 1.6800

Table 6: Measured errors on real images in lab conditions with respect to groundtruth depending on isophote detection
and reconstruction refinement criteria.

8.2.5 Real Data in the Endoscopic Configuration

We evaluate our model in the special case where the source is colocalised with the camera, which is configuration
G∗ in table 2. This configuration naturally appears when working with endoscopic cameras. As the light is emitted
by the extremity of the device and forms a halo around the optics, the light source and the optical centre can be
reasonably approximated by a single point. A scene captured by an endoscopic camera therefore comes close to the
proposed model. We can however point out some deviations, the impact of which will be discussed in the results.
First, the light coming from an optical fibre, the direction of the rays is not isotropic but rather concentrated along
the optical axis, which makes the model closer to a spotlight than a PLS. Second, the image is processed internally by
the endoscope hardware with embedded filters, which affect the intensity balance. This breaks our assumptions that
the intensity received by a pixel, which is a camera sensor unit, does only depend on the radiance of the incoming
light rays. Our evaluation setup consists of white boards placed in a box to represent flat surfaces and made several
acquisitions with a Karl Storz medical endoscope. Figure 15 shows the qualitative results obtained on two example
images with respectively 3 and 2 white boards.

Table 7 sums up the results obtained on the 6 images with various poses of the boards. The average angle error
on the planes is 16°. The reconstruction is thus not highly accurate ; it however gives a consistent reconstruction of
the scene. Given the deviation of the observed case from our model this result is not surprising. We observe that the
reconstructed normals are all more fronto-parallel than the groundtruth. This is because, as shown in the right image
from figure 15, while the BP should be under the camera in a non visible part of the image, the spotlight effect moves
it close to the image centre, skewing the reconstructed normals. We also notice that in the colocalised configuration,
a closed contour isophote is less likely to appear, as it would require that the visible part of the plane face the
camera orthogonally. Yet, as shown in the synthetic data experiments, open isophotes rapidly decrease reconstruction
accuracy. The effect of the internal filters also certainly add up to the reconstruction errors. As their implementation
details are unknown to us, we cannot however study their precise effects. Generally speaking, the results are very
encouraging and validate the proposed model.

Scene planes orientation error (deg)

Median 16.22◦

Mean 18.63◦

Minimum 1.05◦

Maximum 36.61◦

Table 7: Measured orientation error with the endoscopic images.
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Figure 15: Images captured in the endoscopic configuration, with the detected isophotes (first row), the reconstructed
plane normals (second row) and two views of the reconstruction. The reconstructed planes are in blue with the
detected isophote pre-images in green. The groundtruth planes are in magenta.
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8.2.6 Real Data in Uncontrolled Conditions

Figure 16: Real data experiments in uncontrolled conditions, qualitative results. The estimated light source position
is shown by the yellow star and the scene planes as blue quadrilaterals.

Figure 16 now shows an example of the use of our method under uncontrolled conditions. The estimated light source
position seems accurate, as it reprojects reasonably close to the light bulb. The angle between the two reconstructed
scene planes is measured as 79◦, which gives an error of 11◦, given that the walls are supposedly perpendicular. This
is a satisfying result, given that our input data are formed of a single image, and that both the light source position
and 3D scene structure are estimated. The proposed model uses strongly simplifying assumptions of the real physical
process; this result represents a positive validation, albeit preliminary, on real-world data. Existing methods do not
directly cope with this type of data.

8.3 Baseline Comparison

We have used two baseline methods to compare with, using 20 real images acquired in lab condition with accurate
groundtruth. An example image is shown in figure 8. For both methods, we use an external implementation to infer
the normal map. We then fit planes using linear least-squares, averaging the per-pixel normals to retrieve a single
normal over each planar region. We have chosen two methods representing the state of the art of classical and neural
methods respectively. The first method is an optimisation-based advanced method extending Shape-from-Shading
named SIRFS [Barron and Malik, 2014]. The second method is a neural method with uncertainty reasoning which we
denote as CNN [Bae et al., 2021].

We ran both methods on the 20 images and evaluate their performance against groundtruth. We report statistics
in table 8 and a visual example in figure 17 for the image shown in the left column of figure 8. These results can be
directly compared with the results obtained for the proposed method in table 5. We observe that the mean and median
statistics are close and consistent for all methods. Roughly speaking, while the proposed method’s orientation errors
are lower than 10 degrees for all planes, SIRFS’ orientation errors are about 60 degrees and CNN’s orientation errors
are about 30 degrees. SIRFS’ subpar performance may be explained by the assumptions it relies on. In particular, it
assumes constant directional lights in the scene, modelled by spherical harmonics. While the proposed model explains
image intensity using the change of the light’s incident direction, SIRFS explains it using the variation of the scene
normal, which is less adapted to the type of setup used in this experiment. Consequently, SIRFS fails to estimate the
normals, leading to invalid scene plane poses. In contrast, CNN performs surprisingly well given its genericity. This
may be explained by its training on indoor images and its uncertainty reasoning mechanism, discarding the pixels at
which it is least confident of the normal estimate. In addition, recall that our implementation combines the normals
from all pixels of each plane, which certainly has a beneficial effect in averaging out some of the estimation noise.
Overall, we thus observe that the proposed method, using a detailed geometric model of the scene and optimisation-
based reconstruction, outperforms general purpose methods, as expected.
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Board C B A
SIRFS, mean 75.19 50.21 58.21

SIRFS, median 80.92 46.65 55.79
CNN, mean 42.81 35.12 26.52

CNN, median 37.49 34.53 28.18

Table 8: Orientation reconstruction errors (deg) for the baseline methods measured in real data taken in lab conditions
with groundtruth.

Figure 17: Reconstruction results for the baseline methods SIRFS (left) and CNN (right) on real data taken in lab
conditions with groundtruth. The left column shows the normal maps and the right column shows the estimated and
groundtruth normals in red and green respectively, along with the camera, light source and scene planes.
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9 Conclusion

We have introduced a new framework to exploit reflectance image-based via geometric primitives. These primitives are
isophotes, which are image curves formed of points of equal intensity. The framework is general and we have used the
typical Lambertian reflection assumption from SfS to instantiate it concretely for a Point-Light Source, a piecewise
planar scene and a calibrated perspective camera. We have shown that explicit image isophote curves could be
established from the physics-based model, which specifically are conic sections, and that their pre-images on the scene
are concentric circles, whose radii depend on the image intensity. We have proposed an extensive study of the different
scene configurations and a complete closed-form solution to reconstruct the 3D scene elements, namely the plane poses
and the Point-Light Source, from isophotes detected in a single image. The concept of using geometric primitives to
model image intensity is promising, both from a theoretical standpoint, as it opens new geometric problems, allows
one to study problem well-posedness, and, from a practical standpoint, as it allows one to resolve scene reconstruction
in setups which cannot be handled by previous methods. A major strength of the proposed approach is that it can
extract geometric constraints from the shading cues without the need to calibrate the camera radiometrically or to
estimate the complex radiometric parameters of the scene.

Leads for future work include two main directions. First, we have focused on a specific instance of the proposed
framework but many other ones can be studied. These instances are obtained by changing the reflection model (for
instance, using a specular one), the light model (for instance, using a spot-light one) and the surface model (for
instance, using a B-spline one). For each model, one should find out whether the isophotes can be reliably detected,
whether they allow one to reconstruct the geometric parameters and find computational methods for doing so. Second,
we have found that 3D reconstruction in medical endoscopy could form a particularly interesting application of our
framework, for the light source is well approximated by a point or a spot-light located at the camera centre. Endoscopic
images are typically rich in specularities appearing as white dots owing to camera saturation, which can thus be reliably
detected.
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