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Abstract

We address the problem of reconstructing a sphere of a prescribed radius from a
single calibrated view of its occluding contour. A sphere’s occluding contour generally
appears as an ellipse and existing methods use ellipse fitting. Most methods thus require
≥ 5 contour points though a few can also deal with the minimal case of 3 points. How-
ever they all share two shortcomings: (i) they fail for non-elliptic occluding contours,
including parabola and hyperbola, and (ii) they use the point-to-ellipse distance, whose
computation is not closed-form.

We make the observation that the spherically-normalised contour points form a circle
in space, which we reconstruct by plane fitting. This handles minimal 3-point and redun-
dant > 3 point fitting, copes with elliptic and non-elliptic contours, and benefits from the
simple point-to-plane distance. The reconstructed circle then leads to a one-parameter
sphere family from which the actual sphere of prescribed radius is uniquely retrieved.
We robustify the method using random sampling at the plane fitting stage. We name our
method SpherO, where letter ‘O’ depicts a circle. Experimental comparisons show that
SpherO outperforms the current-best 3-point method.

1 Introduction
Sphere reconstruction forms a practical tool for applications requiring the pose of sphere-
shaped objects, including visual servoing of robots. Sphere reconstruction, given its radius
and its occluding contour in an image modelled by the calibrated perspective camera model,
entails finding the sphere’s 3D centre point. A sphere’s occluding contour is observed as
either an ellipse, a parabola or a hyperbola in the image. State of the art methods handle
the elliptic case –the most common one– but fail for the other two cases. They approximate
the point-to-ellipse distance, which is not closed-form, by its algebraic counterpart. We
propose a novel simple and convex method resolving both limitations and handling minimal
and redundant cases. It uses spherical normalisation, which places an image point on the
camera-centred unit sphere, and an observation formalised in the following proposition and
illustrated in figure 1.
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Proposition 1. A sphere’s spherically-normalised occluding contour is a sphero-circle.

A sphero-conic is a curve formed by intersecting a quadric cone with the unit sphere whose
centre is the vertex of the cone. If the cone is circular then the sphero-conic is a circle [1]
also known as ‘sphero-circle’. Using this result with the camera centre taken as vertex and
the sphere’s projection lines taken as circular cone proves proposition 1.

The proposed reconstruction method has three steps. First, following proposition 1, we
spherically normalise the sphere’s occluding contour to form a sphero-circle. Second, we re-
construct the sphero-circle’s support plane, centre and radius. This induces a one-parameter
sphere family. Third, we retrieve the actual sphere of prescribed radius. We name our method
SpherO, where ‘O’ depicts a circle. The use of spherical normalisation, following propo-

Sphere
Im

ag
e p

lan
e

Best-fitting plan Normale
vector

Unit
sphere

Optical axis
sxia enoC

Contour generator forms a circle
Image points form an ellipse
Normalized points form a circle

Figure 1: The geometric observation subtending the proposed SpherO method. Tilting the
camera’s image plane (in light blue) towards the cone axis leads to the sphere’s occluding
contour (in green) becoming a parabola and eventually a hyperbola. Importantly, the contour
generator (in red) and normalised points (in blue) remain invariant, hence circles, showing
that SpherO seamlessly handles all projection cases.

sition 1, allows one to rid out the effect of the camera’s image plane, only retaining the
camera’s projection centre. This gives SpherO the ability to use mere plane-fitting, mak-
ing it the most compelling method against the state of the art. First, SpherO handles both
minimal and redundant cases seamlessly. It can thus serve as minimal method in the inner
loop of RANSAC-like robust methods and as final refinement method given the inlier set.
Second, SpherO uses a geometric cost function, namely a point-to-plane distance. It en-
tirely avoids the point-to-conic distance required by existing methods, providing a quick and
sound way of determining the inlier set within RANSAC. Third, SpherO seamlessly deals
with the settings where the sphere is seen as an ellipse, a parabola or a hyperbola. Fourth,
SpherO provides a one-parameter family of spheres when the sphere’s radius is unknown
and uniquely reconstructs the sphere otherwise. Fifth, SpherO does not have artificial de-
generacies. In other words, SpherO deals with all settings where the sphere’s occluding
contour is a proper conic. We review related work, formally describe SpherO and its robust
version Robust-SpherO, present experimental results and conclude.
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2 Related Work

There exist only three methods which use 3 points or more [6, 7, 8]. Methods [7] and [6] are
not robust; they minimise the squared algebraic point-to-ellipse image distance. Methods
in [8] minimise the geometric distance from a cone tangent to the sphere (method Toth);
it provides a RANSAC-based robust solution specifically relying on the ellipse to form the
consensus set (method Robust-Toth). It is shown in [8] that Toth outperforms the two
methods [6, 7] and other existing methods requiring at least 5 points [3, 4, 5], and is thus
the state of the art. Table 1 summarises the characteristics of the proposed SpherO and
Robust-SpherO in comparison to Toth and Robust-Toth. We have that SpherO
and Toth are both minimal and redundant, can handle any conical occluding contours and
use a geometric cost. We will see that SpherO is simpler to derive and faster. We have that
Robust-SpherO is the first robust method to handle any conical occluding contours, as
Robust-Toth is restricted to ellipses.

Table 1: Comparison of ≥ 3-point sphere reconstruction methods.

Handles all image conics Fits Geometric costs

Toth [8] ✓ cone secant

Robust-Toth [8] only ellipse ellipse point-to-ellipse distance*
cone secant

SpherO ✓ plane point-to-plane distance
Robust-SpherO ✓ plane point-to-plane distance
*numerically approximated by algebraic distance

3 Methodology

We give the three steps of SpherO and its robustification Robust-SpherO.

3.1 Notation and Spherical Normalisation

We express all 3-space coordinates in the standard pinhole camera coordinate frame. We
denote the intrinsic matrix as K ∈ ℜ3×3, the optical centre as O ∈ ℜ3 and the unit direction
vector of the principal axis as z ∈ ℜ3×1. We denote the sphere’s centre as C ∈ ℜ3 and its
radius as R ∈ ℜ+. We denote the points on the sphere’s contour generator as Pi ∈ ℜ3 for
i = 1, . . . ,m ∈ N. We denote their corresponding points on the sphere’s occluding contour in
the image as pi ∈ ℜ2 in pixel units. They are related to each other proportionally as p̄i ∝ KPi

where p̄i =
[
p⊤

i ,1
]⊤ is the homogeneous coordinates of an occluding contour point. The

backprojection of the occluding contour point forms a ray that starts from the optical centre
O and passes through its corresponding point Pi on the sphere’s contour generator.

Spherical normalisation of the occluding contour points is the first step of SpherO. It is
equivalent to computing the ray’s unit direction vector qi ∈ S2 ⊂ ℜ3, ∥qi∥= 1, as:

qi = K−1p̄i/∥K−1p̄i∥. (1)
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3.2 Sphero-circle Reconstruction by Plane Fitting
Sphero-circle reconstruction is the second step of SpherO. We give a solution using plane
fitting. We first give the general case for m ≥ 3 points. We then give an equivalent but lower
computation cost version for m = 3, which is meant to be used in RANSAC’s inner loop. We
finally give closed-forms for the sphero-circle’s centre and radius.

General plane fitting. We define the best-fitting plane as the minimizer of the sum of the
squared orthogonal distances between the spherically-normalised points and the plane. Let
q0 be the average of the points. We use a simple singular value decomposition of the 3×m
matrix containing the centred points qi −q0, whose least singular vector gives the plane’s
unit normal vector n ∈ S2 [2]. The plane’s signed distance to origin is d

Π
= q⊤

0 n and the
plane’s coordinate vector is Π = [sign(d

Π
)n⊤,−|d

Π
| ]⊤, where sign(d

Π
) ensures that the

normal vector points toward the sphere.

Minimal 3-point plane recovery. Given 3 points q1, q2 and q3, the plane’s normal is:

n = ((q3 −q1)× (q2 −q1))/∥(q3 −q1)× (q2 −q1)∥. (2)

The plane’s signed distance to origin is then d
Π
= q⊤

i n where i ∈ {1,2,3} is any of the 3
points and the plane coordinates Π are formed as above.

Sphero-circle reconstruction. The best-fitting plane’s normal n yields the sphero-circle’s
support plane normal. We recall that the intersection of a plane orthogonal to the axis of
a circular cone is a circle whose centre is the intersection point with the cone’s axis. This
implies that the sphero-circle’s support plane is perpendicular to the cone’s axis. It follows
that the sphero-circle’s centre c = d

Π
n is the closest point of its support plane to the origin.

We thus proceed to compute the sphero-circle’s radius as follows. First, we form a right
triangle (Ocqi) using the camera centre O, the sphero-circle’s centre c and any normalised
point qi of the sphero-circle. The length of hypotenuse ∥O−qi ∥ is 1 since qi is spherically
normalised. Second, we apply Pythagoras’ theorem to calculate the sphero-circle’s radius
r =

√
1−d2

Π
. We finally write the sphero-circle’s coordinate vector as ⊙= [n⊤, c⊤, r ]⊤.

3.3 Sphere Family Extraction and Sphere Selection
We use the sphero-circle to form a one-parameter sphere family containing all spheres whose
occluding contour is the observed one. We parameterise this family by the sphere radius ρ .
If the reconstruction radius R is not prescribed, this family represents all potential recon-
struction solutions; if it is prescribed, then SpherO’s third step uses it to select the uniquely
reconstructed sphere from the family, by simply setting ρ = R.

We represent a sphere by a 4-vector in the affine space ℜ4 as s(ρ) = [C(ρ)⊤, ρ ]⊤, with
centre C(ρ) ∈ ℜ3 and radius ρ ∈ ℜ+. The centre C(ρ) must be on the ray which starts from
the camera centre O. It thus passes through the sphero-circle’s centre c and is also aligned
with the sphero-circle’s support plane normal, leading to:

C(ρ) = d(ρ) n, (3)

where d(ρ) encodes the depth of the sphere’s centre. This depth may be found by forming
two similar right triangles. The first triangle (Ocqi) is the same one as explained in the
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sphero-circle reconstruction. The second triangle is (OPi C). It follows that:

d(ρ) = ρ/r. (4)

Finally, when the sphere radius is prescribed as R, the reconstructed sphere is R[n⊤/r , 1]⊤.

3.4 Robustification
We perform sampling-based robust sphere reconstruction using SpherO’s minimal plane-
fitting solution. We give Robust-SpherO in algorithm 1. The inputs are the sphere’s oc-

Algorithm 1 Robust-SpherO
Input: Sphere’s occluding contour pixels {pi | pi ∈ ℜ2, i = {1, . . . ,m}, m ≥ 3},

sphere’s radius R ∈ ℜ+ in metric units, and the camera intrinsics K ∈ ℜ3×3,
RANSAC threshold τpix ∈ ℜ+ in pixels (e.g., 1pixel)

Output: Sphere s ∈ ℜ4

1: τ = Threshold Normalisation(τpix, K) // equation (5)
2: {qi } = Spherical Normalisation({pi }, K) // equation (1)
3: Π = RANSAC Plane Fit({qi }, τ ) // section 3.2
4: ⊙ = Sphero-Circle Reconstruction(Π) // section 3.2
5: s = Sphere Recovery(⊙, R) // section 3.3

cluding contour pixels, the sphere’s prescribed radius, the camera intrinsics and the RANSAC
threshold. The output is the sphere of prescribed radius. Line 1 transforms the RANSAC
threshold distance from pixel units to a distance in the normalised image plane as follows:

τ = τpix/max( fx, fy) (5)

where fx and fy are the focal lengths in pixels from the camera intrinsics. The RANSAC
threshold τpix can be considered as the maximum reprojection error of a reconstructed sphere
solution. Intuitively, one can choose it as equal to or greater than the camera’s intrinsic cal-
ibration accuracy (i.e., reprojection error in pixels). Line 2 spherically normalises the oc-
cluding contour. Line 3 uses RANSAC on the normalised occluding contour points. The
algorithm iterates using the 3-point plane recovery formula (2) on random 3-point samples.
Each plane uses a threshold scaled by its depth τ

Π
= |d

Π
|τ to form its consensus set. The al-

gorithm terminates with a best-fitting plane on the largest consensus set. Line 4 reconstructs
the sphero-circle from the best-fitting plane. Line 5 retrieves the sphere of prescribed radius
from the sphere family obtained through the sphero-circle.

4 Experiments and Results
We compare Robust-SpherO to the stat of the art Robust-Toth, i.e., 3pFit + Di-
rect3pFit from [8], through synthetic and real data experiments.

4.1 Synthetic Data Experiments
We test the methods’ robustness against elliptic and non-elliptic occluding contours. We
used the intrinsics of a calibrated camera throughout the synthetic data experiments. The
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focal length was fx = fy = 1174 pixels, the principal point was x0 = 1028.4 and y0 = 673.4
pixels and the skew was s= 0. For a fair comparison of the methods, they both used the same
random samples from the sphere’s occluding contour and the same RANSAC threshold τpix,
chosen equal to the image noise level.

The graphs show the mean and standard deviation of the error, which is the Euclidean
distance to the ground-truth sphere centres against the varying noise level, number of erro-
neous points, occlusion level and occluding contour type. We repeated the experiments 1000
times for each value of a varying parameter.

4.1.1 Robustness with Elliptic Occluding Contours

We formed the elliptic occluding contours ; the sphere radius was R = 0.5metres and the
sphere centre was generated randomly in each trial as C= [x∼N (µ, σ2) , y∼N (µ, σ2) , z∼
N (µz, σ2

z ) ]
⊤ with µ = 0 and σ2 = 2 and µz = 5 and σ2

z = 1 metres.

Accuracy versus image noise and number of correct points. We varied the white Gaus-
sian noise level from 0 to 10 pixels with step size of 1 pixel. Experiments were performed
with 100 correct points (figure 2 - left). We then varied the number of correct points from 10
points to 100 points with step size of 10 points. Experiments were performed with 2 pixels
white Gaussian noise (figure 2 - right). Robust-SpherO outperforms Robust-Toth in
both set of experiments, with errors consistently twice as low.

Figure 2: Mean and standard deviation of errors versus image noise levels (left) and number
of correct points (right). Correct points belong to the sphere’s occluding contour.

Accuracy versus number of erroneous points. We varied the erroneous point rate from
5% to 75% with step size of 5% and using 100 points in each trial. Figure 3 presents the
results with the following fixed parameters: 1 pixel white Gaussian noise (left) and 2 pixels
white Gaussian noise (right). Robust-SpherO outperforms Robust-Toth, though a
breakpoint appears at 50% and 35% of erroneous point rates, respectively.

Accuracy versus occlusion. We varied the occlusion level from 10% to 70% with step size
of 10% over 100 contour points. Figure 4 presents the results with the following fixed param-
eters: 1 pixel white Gaussian noise and 10% erroneous points (left); 2 pixels white Gaussian
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Figure 3: Mean and standard deviation of errors versus erroneous point rates with 1 pixel
noise (left) and with 2 pixels noise (right). Erroneous points do not belong to the sphere’s
occluding contour.

noise and 20% erroneous points (right). Robust-SpherO outperforms Robust-Toth,
though a breakpoint appears at 50% and 40% of occlusions, respectively.

Figure 4: Mean and standard deviation of errors versus occlusion with 1 pixel noise and 10%
erroneous points (left) and with 2 pixels noise and 20% erroneous points (right).

Accuracy versus depth. We varied the sphere’s depth along the camera’s optical axis from
1 to 10 metres with a step size of 1 metre and using 100 points in each trial with 1 pixel and 2
pixels white Gaussian noise, respectively. The error substantially increases beyond 4 metres
for both methods. Robust-SpherO outperforms Robust-Toth with errors consistently
at least twice as low.

Synthesis. Robust-SpherO is almost always substantially more accurate than its con-
tender Robust-Toth. Nonetheless, there exist extreme cases, where the number of erro-
neous points or the level of occlusion are very large, for which the performance order reverts.
Robust-SpherO uses 3D points to form a plane’s consensus set while Robust-Toth
uses 2D points to form an ellipse’s consensus set. Both methods use the same RANSAC
threshold, which is an in-plane distance. Robust-SpherO thus includes more points in its
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consensus set than Robust-Toth because some out-of-plane 3D points remain within the
range of the RANSAC threshold although they would be out of range if projected onto the
consensus plane. The higher the percentage of erroneous points, the higher the probability of
Robust-SpherO to include a higher percentage of erroneous points in its consensus set.
Yet, Robust-SpherO (i.e., plane fitting) reconstructs stably up to a large rate of erroneous
points. These extreme cases are however unlikely to happen in real scenarios.

4.1.2 Robustness with Non-elliptic Occluding Contours

Robust-Toth is not designed to handle the parabola (i.e., C⊤z=R) nor the hyperbola (i.e.,
C⊤z < R), only the ellipse. Subsequently, a parabola yields an Inf through division by zero
in equation (21) in [8] by a projection parallel to the normalised image plane for a point which
otherwise would yield an endpoint of the major axis of an ellipse. However, Robust-Toth
rarely breaks down in practice for a parabola. This is because a mild noise on a sample of the
contour points can easily shift the fit to an ellipse well aligned with the contour points. On the
other hand, in a hyperbola case, an endpoint of the major axis of an ellipse is projected to the
opposite side of the image from the backside of the camera in equation (21) in [8]. This yields
a flipped and scaled ellipse away from the contour points. Subsequently, Robust-Toth
produces wrong results with a hyperbola. We formed a parabolic occluding contour by
placing the sphere centre at C = [1.2,0,1]⊤ with radius R = 1 in metres. We formed a
hyperbolic occluding contour by placing the sphere centre at C = [0,−1.2,0.8]⊤ again with
radius R = 1 in metres. We made 10 trials on each occluding contour with 1 pixel image
noise and 5% erroneous points. In each trial, the erroneous points were randomly chosen
over 100 points which were also randomly chosen from the occluding contour. Figure 5
presents the results. Robust-SpherO substantially outperforms Robust-Toth.

Figure 5: Mean and standard deviation of errors for the parabola (left) and hyperbola (right)
occluding contours with 1 pixel noise and 5% erroneous points. For the hyperbola case
(right), Robust-Toth produced out-of-bound results with a mean of about 0.42 metres.

4.2 Real Data Experiments
4.2.1 Relative Accuracy Evaluation

We evaluate the relative accuracy of the compared methods by reconstructing multiple spheres
whose centre distances are known. We place a target sphere with known radius R in con-
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tact with at least three auxiliary spheres whose radii Ri are also known. This yields the
ground-truth distances between the target sphere’s centre C and the auxiliary spheres’ cen-
tres Ci as ∥C−Ci ∥ = R+Ri. Three auxiliary spheres fully constrain the target sphere’s
centre C, although two solutions exist. We use the compared methods to reconstruct the
respective spheres’ centres Ĉ and Ĉi from which a pairwise error is computed as ei =
|∥ Ĉ− Ĉi∥− (R+Ri) | for each method. Figure 6 reports the results with 3 auxiliary spheres.
The relative error is computed as ∥e∥ = ∥[e1,e2,e3]

⊤∥. The target sphere’s radius was
8.5cm (football) and the auxiliary spheres’ radii were 3.25cm (tennis ball), 3.5cm (green
ball) and 4.75cm (rainbow ball), respectively. The target sphere’s centre was about 40cm
away from the camera. We set the RANSAC threshold τpix = 0.5 pixels which was about
twice of the intrinsic calibration accuracy of the camera. We repeated the experiment 1000
times with both methods. Robust-SpherO yielded 4.76mm mean error with 0.01mm std.
Robust-Toth yielded 6.77mm mean error with 1.9mm std. We also evaluate the relative

A 3D view of the reconstructed balls.

z
x

y

Camera 
frame

Rainbow
ball 

Green
ball 

Tennis ball Foot ball 

Figure 6: The input image with the spheres’ occluding contours (left). A 3D view from
behind the balls reconstructed by Robust-SpherO (right). The rainbow ball was mostly
occluded by the football. We used 100 contour points for each ball.

accuracy of the compared methods at different depths. Figure 7 shows the relative recon-
struction errors in millimetres of the football in contact with a tennis ball, a small basket
ball and a yellow ball. The balls are placed at 1 metre, 2 metres and 3 metres away from
the camera, respectively. Robust-SpherO outperformed Robust-Toth with 5.9mm,
84.6mm and 231.1mm mean errors versus 6.9mm, 91mm and 232.2mm at 1 metre, 2 metres
and 3 metres, respectively. We observe that the reconstruction accuracy mostly depends on
the quality of the segmented occluding contours. The yellow ball is mostly occluded and
segmenting its occluding contours at 2 and 3 metres was significantly difficult. This yielded
the worst relative errors for both methods.

Depth  1m Depth  2m Depth  3m

Figure 7: Mean and standard deviation of relative reconstruction errors (mm) of the football
with respect to auxiliary balls. The experiments are repeated 1000 times.
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4.2.2 Absolute Accuracy Evaluation

We used an Intel RealSense 3D camera to measure 3D surface points of the spheres from
which the spheres’ centres Ci were computed. We used the methods to reconstruct the sphere
centres Ĉi. We then computed an absolute error ei = ∥ Ĉi −Ci ∥ per sphere. We used the
image shown in figure 6 for the experiment, which was taken by the depth camera. We
repeated the experiment 1000 times with both methods. Table 2 lists the mean and std of the
errors in millimetres with respect to the 3D camera measured centres. We observe that the

Table 2: Reconstruction error of the four balls (mean ± std in mm).

Football Tennis ball Green ball Rainbow ball

Robust-Toth [8] 3.3±0.0 4.1±1.9 8.2±1.6 15.2±2.5
Robust-SpherO 3.3±0.0 1.9±0.0 4.2±0.0 7.4±0.0

relative accuracy, as explained in section 4.2.1, computed from the spheres’ centres measured
by the 3D camera was 11.4mm. However, we also observe that the reconstructed spheres are
close to their absolute true locations. Robust-SpherO outperforms Robust-Toth by a
large margin, having a lower absolute error, both on average and in standard deviation.

In some of the 1000 repetition experiments, the standard deviation values computed from
the reconstruction errors of Robust-SpherO remain 0 because in every trial the consensus
set included all the occluding contour points of a ball for the given RANSAC threshold.

4.3 Runtimes

The mean and standard deviation of the runtimes combining the synthetic and real data ex-
periments for Robust-SpherO and Robust-Toth were 7.5± 0.7ms and 13± 0.5ms,
respectively. Robust-SpherO thus brings an overall speed up factor of approximately 1.5
compared to Robust-Toth.

5 Conclusion
We have proposed SpherO, a method to reconstruct a sphere of a prescribed radius from a
single calibrated view of its occluding contour. It is accurate, simple and fast. Its robustified
version Robust-SpherO outperforms the state of the art. In addition, SpherO provides
a closed-form, convex solution for the image conic from the sphere’s occluding contour
points, minimising a geometric error criterion. It may also be possible to find a theoretical
error bound for SpherO, which is however a non-trivial problem. As future work, we will
improve SpherO and Robust-SpherO by replacing the plane-fitting step by an optimal
space-circle-fitting.

Acknowledgement
This work is funded by the projects ANR JCJC - IMMORTALLS and Interreg Sudoe Pro-
gramme (European Regional Development Fund) - REMAIN (S1/1.1/EO111).

Citation
Citation
{Toth and Hajder} 2023



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 11

References
[1] M. Chasles and C. Graves. Two geometrical memoirs on the general properties of cones

of the second degree, and on the spherical conics. Dublin : For Grant and Bolton, 1841.

[2] O. Edlund. Some Notes on Least Squares, QR-factorization, SVD and Fitting. Lecture
notes on Numerical Analysis, Luleå University of Technology, 2013.

[3] R. Halir and J. Flusser. Numerically stable direct least squares fitting of ellipses. In
WSCG98, 1998.

[4] C. Lu, S. Xia, M. Shao, and Y. Fu. Arc-support line segments revisited: An efficient
high-quality ellipse detection. IEEE Transactions on Image Processing, 29:768–781,
2020.

[5] C. Meng, Z. Li, X. Bai, and F. Zhou. Arc adjacency matrix-based fast ellipse detection.
IEEE Transactions on Image Processing, 29:4406–4420, 2020.

[6] K. Shi, X. Li, and H. et al. Xu. Sphere localization from a minimal number of points
in a single image. In Proceedings of the international conference on advances in
computer technology, information science and communications–Volume 1: CTISC, IN-
STICC. SciTePress, pages 65–70, 2019.

[7] J. Sun, H. He, and D. Zeng. Global calibration of multiple cameras based on sphere
targets. Sensors, 16, 2016.

[8] T. Toth and L. Hajder. A minimal solution for image-based sphere estimation. Interna-
tional Journal of Computer Vision, 131:1428–1447, 2023.


