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Abstract

Purpose. Augmented Reality in Minimally-Invasive Surgery has made tremen-
dous progress in organs including the liver and the uterus. The core problem of
Augmented Reality is registration, where a preoperative patient’s geometric dig-
ital twin must be aligned with the image of the surgical camera. The case of the
kidney is yet unresolved, owing to the absence of anatomical landmarks visible in
both the patient’s digital twin and the surgical images. Methods. We propose a
landmark-free approach to registration, which is particularly well-adapted to the
kidney. The approach involves a generic kidney model and an end-to-end neu-
ral network, which we train with a proposed dataset to regress the registration
directly from a surgical RGB image. Results. Experimental evaluation across
four clinical cases demonstrate strong concordance with expert-labelled registra-
tion, despite anatomical and motion variability. The proposed method achieved
an average tumour contour alignment error of 7.3 ± 4.1 mm in 9.4 ± 0.2 ms.
Conclusion. This landmark-free registration approach meets the accuracy, speed
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and resource constraints required in clinical practice, making it a promising tool
for Augmented Reality-assisted Partial Nephrectomy.

Keywords: Registration; Deep learning; Augmented reality; Digital Twin;
Robot-assisted partial nephrectomy

1 Introduction

Minimally-Invasive Surgery has many advantages, including reduced hospital stay,
intraoperative blood loss and operative time, but the localisation of the organs’ internal
structures is challenging. Computer-Assisted Surgery (CAS) addresses such localisa-
tion challenges, with a promising solution overlaying the organ’s geometric digital twin
directly on the surgical video. This Augmented Reality (AR) approach relies on the
ability to reconstruct a 3D model of the organ’s outer shape and internal structures
preoperatively and to register it to the surgical camera video stream intraopera-
tively. AR is particularly desired in Partial Nephrectomy (PN), which is the surgical
resection of part of the kidney, usually to remove tumours. PN is nowadays largely
performed mini-invasively (MIPN) by laparoscopy or robot-assistance (RAPN). The
challenges are to localise the tumours, especially the endophytic ones hidden within
the parenchyma, the blood vessels and the urinary excretory tracts. The gold standard
uses intraoperative ultrasound (IOUS). Despite its effectiveness, IOUS presents signif-
icant limitations, including the images being 2D, the presence of artefacts, the limited
depth, the long learning curve and the high dependency on operator experience.

Advanced imaging modalities, which are typically Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI), are used preoperatively for diagnosis and
treatment planning. They are used routinely to characterise the size, location and
morphological complexity of renal tumours. More recently, these imaging data have
been used to reconstruct 3D patient twins, providing a highly detailed and personalised
representation by means of 3D surface mesh models for the parenchyma and the
internal structures. The use of 3D patient twins has recently made its way to the
intraoperative setting via Virtual Reality (VR) applications. They however do not
resolve the localisation challenges.

AR goes a step further by registering and fusing the 3D patient twin with the
intraoperative video. AR for CAS has been researched for a few decades. Technically,
AR typically involves three main steps. The process begins with 1) camera calibration,
which provides the camera’s intrinsic parameters (and the extrinsic parameters for a
stereo camera) and establishes the projection function, mapping 3D points expressed
in the camera coordinate frame to 2D image points. Next, 2) a registration phase is
carried out, where the transformation between the patient’s 3D digital twin and the
camera’s 3D coordinate frames is computed. Finally, 3) a tracking mechanism can be
added to maintain dynamic adaptability to organ and camera motion.

Registration is the core step of AR, for which manual, semi-automatic and auto-
matic approaches have been developed for soft organs. The manual approach involves
an operator to adjust the orientation, position and scale of the 3D digital twin in the
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overlay. The semi-automatic and automatic approaches leverage anatomical landmarks
visible both on the 3D digital twin and within the intraoperative images, such as vessel
bifurcations and organ boundaries, to constrain the registration. The difference is that
the semi-automatic approach requires an operator to mark the landmarks in the image,
while the automatic approach automatically detects them. Unfortunately however, the
kidney presents a significant challenge: its retroperitoneal anatomical location com-
bined with surrounding adipose tissue restrict visualisation, obscure the anatomical
primitives, thus preventing the use of methods developed for other organs. During PN
robust anatomical primitives defined as landmarks that enable reliable 3D/2D match-
ing are frequently absent. Additionally, these primitives are often procedure-based
and vary based on the surgical technique. In rare instances, identifiable structures
like the renal hilum or surface irregularities may be visible. The primary visible land-
marks are the parenchymal surface and exophytic tumour contours. However, these
primitives alone would be insufficient to fully resolve the 3D/2D registration. Neigh-
bouring organs such as the liver, peritoneum and gallbladder have an extent of mobility
independent from the kidney, strongly limiting their utility.

The specific accuracy requirements for kidney surgery are not yet formalised to
the extent observed in other surgical domains. However, relevant benchmarks can be
inferred from comparable procedures. For instance, in hepatectomy, an oncologic mar-
gin of 1 cm is mandated for posterior liver tumours that cannot be reliably localised
intraoperatively, effectively defining a clinical AR accuracy requirement of approxi-
mately 1 cm [1, 2]. Similarly, in myomectomy, myomas smaller than 1 cm often evade
detection and, if missed, may necessitate revision surgery [2, 3]. By analogy, in RAPN,
achieving sub-centimetric registration accuracy is clinically significant, as it facilitates
the precise localisation and resection of small, localised renal masses under 4 cm—cases
for which RAPN is the recommended treatment modality according to the European
Association of Urology guidelines [4].

We propose a landmark-free automatic registration method applicable to the kid-
ney, as shown in figure 1, to enable AR. We take a neural approach, where the surgical
camera image is fed into an end-to-end neural network regressing the desired registra-
tion. We thus rid ourselves of the anatomical landmarks. Our method is based on a
generic kidney model called the shape prototype, which allows us to train our regis-
tration network in a patient-generic manner. A key challenge lies in obtaining training
data, as the ground truth (GT) is not directly measurable in this context. To address
this limitation, a proxy is used, relying on expert-labelled registrations performed
offline through retrospective analysis. We have developed an advanced data labelling
system, which allows the experts to visualise both upstream and downstream frames
to refine the labelling and ensure accurate training data for the learning-based model.

The technical contributions of this work are fourfold: 1) the development of
a landmark-free 3D/2D registration approach based on a shape prototype model
enabling an end-to-end solution, 2) a methodology for generating labelled image
datasets with shape prototype poses addressing the challenge of limited training data
availability, 3) the introduction of a geometry-based automatic kidney canonical frame
detection method, and 4) the design and training of an end-to-end inference network
for pose estimation ensuring robust and automated performance in clinical scenarios.
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The proposed method is validated through quantitative error analysis and AR perfor-
mance evaluation, assessing the transfer accuracy of the shape prototype pose to the
3D patient twin. The evaluation focuses on enhancing the representation of patient-
specific elements including tumours, vessels and urinary excretory tracts to ensure
accurate and clinically-relevant alignment.
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Fig. 1 Pipeline of the proposed landmark-free automatic registration method illustrating the pre-
operative, intraoperative and labelling steps. The section numbers are given in the gray circles.

2 Related Work

We review related work in registration for other organs of the abdomino-pelvic cavity,
then specifically for the kidney, and finally in the problem of human pose estimation,
which shares similarities.

2.1 Registration in Abdomino-pelvic Soft-organ Surgery

Aside from the kidney, 3D/2D registration of soft organs in the abdomino-pelvic cavity
is an active research field mainly focused on the uterus, liver, pancreas and prostate.
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The 3D patient twins are obtained preoperatively from MRI or CT images while
the surgical images are captured from the camera hand-held or integrated into a
robotic-assistance system.

For the uterus [5] and liver [6–9], early solutions relied on a combination of anatom-
ical landmarks and the organ boundaries to guide the numerical optimisation of the
registration parameters. Indeed, these two organs are very well visible and offer land-
marks such as the fallopian tube junctions for the uterus and the lower ridge for
the liver. More recently, the numerical optimisation has been substituted by a neural
network, called Liver Mesh Recovery network, mapping the image landmarks to the
desired registration [10].

When landmarks are not clearly visible, alternative strategies have been developed.
For the pancreas, registration methods include the manual alignment of anatomical
points using an infrared-guided pointing tool [11] and the use of a QR code virtually
embedded in the digital twin and manually placed on the organ [12]. For the prostate,
registration is achieved by integrating the catheter into the digital twin and using it as
a landmark, through its detection using a convolutional neural network (CNN) [13].

2.2 Registration in Partial Nephrectomy

As shown in the surveys [14, 15], registration in PN predominantly relies on man-
ual approaches. Rigid registration typically involves operator-dependent overlay of
the 3D patient twin onto selected surgical images [16–24]. Manual methods are also
used in radical nephrectomy and thrombectomy procedures [25]. Efforts to enhance
3D/2D registration accuracy have explored non-rigid manual adjustments [22], surface-
based [26, 27] and point-cloud based methods [28]. However, these approaches are
limited by their operational complexity and lack of scalability in clinical settings. It
was attempted to adapt the AR system [5] designed for the uterus to the kidney [29]
with limited success, owing to the absence of visible kidney’s anatomical features and
the absence of a distinct organ silhouette, required for effective registration. The recent
CNN-based method automatically computes a rigid registration in two steps [30]. First,
the kidney is segmented in the surgical image, its 3D position and scale are computed
by fitting an ellipse on the segmentation mask. Second, the orientation is regressed by
a ‘RotationCNN’. This work has marked differences with ours. First, the Rotation-
CNN is trained from synthetic data obtained by simulating images from the patient
twin. It is thus patient-specific and must be trained anew for each patient. Second,
the method requires multiple images with smooth camera displacement, quoting “[...]
RotationCNN showed a lack of robustness. [...] When it was tested on organs, it was
necessary to add to the methodology an alternative third approach, based on Opti-
cal Flow (OF), to mitigate the lack of robustness of the RotationCNN.” Third, the
method does not seem to work, quoting “[...] when the organ presents a more complex
structure, such as the kidney [...], the initialisation [of registration] should be manually
performed.” This is not surprising as training on synthetic images where the organ
colour is not available induces a very strong domain gap with the real images.

Therefore, despite extensive research over the past decade, the development of a
clinically viable registration solution for PN remains elusive.
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2.3 Human Pose Recovery from Monocular Images

Human pose recovery uses a single image to estimate a physically plausible mesh that
aligns with the input image and ensures compatibility with the anatomical constraints.
It thus has marked similarities to the registration problem at hand. Most contem-
porary methods rely on combining a parametric body shape model with joint pose
representations, such as SCAPE [31] and SMPL [32]. To solve this problem, two main
categories have evolved: optimisation-based and learning-based methods [33].

Optimisation-based methods initially estimate a coarse body pose and shape
and refine them iteratively by optimising shape parameters to fit multiple image
cues such as silhouettes and landmarks [34]. Although effective, these methods are
computationally intensive and sensitive to initialisation.

Learning-based methods have seen significant progress following the development
of end-to-end frameworks, namely Human Mesh Recovery (HMR) [35], SPIN [36] and
the recent PyMAF [37] and PyMAF-X [38]. HMR begins with a ResNet-50 encoder to
extract image features which are concatenated with pose, shape and camera param-
eters and fed to a regression network. This model leverages Iterative Error Feedback
(IEF) to iteratively refine predictions. Additionally, a discriminator enhances shape
and pose plausibility, especially in scenarios lacking 3D ground truth. Expanding upon
foundation models, PyMAF integrates a feature pyramid structure and alignment
feedback mechanism for multi-scale refinement. PyMAF-X further extends these capa-
bilities to full-body recovery achieving state-of-the-art results in challenging scenarios.
These landmark-free methods are inspiring for PN but adapting them is complex for
two main reasons: first, there is no universally-agreed renal shape model, and second,
the data are scarce and difficult to collect.

3 Methodology

3.1 Overview and Data Collection

Following the dominant trend in AR, we assume that the virtual information is con-
tained in a patient twin, which is defined as a specific digital twin. While the digital
twin is a virtual representation of a physical entity, such as an organ, used for simu-
lation, planning and real-time analysis in medical applications, the patient twin is a
specific digital twin that represents an individual patient’s unique anatomy, tailored
for personalised medical applications. The concept of digital twins may also, in the
existing literature, include various types of information such as biological organ char-
acteristics; in this work, we focus on the 3D shape information of the kidney and its
internal structures. We use patient twin to refer to the preoperative 3D model recon-
structed from CT or MRI and containing 3D mesh surfaces representing the kidney’s
parenchymal shape and the internal structures of interest for AR. We assume that the
patient twin is available preoperatively, as in previous work. In addition, we use shape
prototype to refer to a generic 3D model of the kidney’s parenchyma shape, which
enables the proposed approach to be patient-generic.

The proposed registration method works in two steps. In step 1), the patient
twin is registered to the shape prototype. This is done preoperatively. In step 2), the
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shape prototype is registered to the camera image. This is done intraoperatively. By
combining the transformations obtained from steps 1) and 2), we obtain the desired
transformation from the patient twin to the surgical image, required to achieve AR.
In our experiments, the proposed registration method is combined with a preoperative
patient twin reconstruction method and an intraoperative kidney tracking method,
achieving a highly functional system.

We achieve step 2) by an end-to-end neural network mapping the image to the
registration. This NN is trained in a supervised manner. We thus have to make crucial
choices: the surgical phases which we address and the desired type of transforma-
tion. PN is typically divided into 4 to 16 phases, depending on the authors and the
level of detail. For our approach, we have used five key phases [39, 40]: kidney expo-
sure, vascular dissection, tumour identification and delineation, tumour resection and
tumour bed reconstruction. We focus on the first three phases, occurring before the
parenchymal incision and where AR is typically required.

We collected a comprehensive dataset for kidney pose estimation using seven
high-resolution videos (1280 × 1024 pixels, 60 Hz) recorded from RAPN procedures
performed using the Intuitive Da Vinci Xi surgical system. The corresponding 3D
patient twins were reconstructed via contrast-enhanced CT segmentation by the clin-
ical team involved in the surgery. This team included a primary senior surgeon over
8 years of expertise in the field, assisted by a surgeon with at least 2 years of expe-
rience in RAPN. The segmentation encompassed five anatomical structures: kidney
parenchyma, renal vein, renal artery, urinary tract and tumour. Empirical observations
from over 30 cases indicate that rigid local registration adequately satisfies clinical
requirements for tumour localisation during PN. While accounting for deformations
may offer advantages, especially for extra-organ vessel visualisation.

3.2 Preparation of Preoperative Patient Data

The kidney shape prototype, bean-shaped with a convex lateral and concave medial
border, measures 11 cm in length, 6 cm in width and 3 cm in thickness. Although
modelled for the right kidney, it is also suitable for the left one, as both are nearly
identical in size, differing mainly in anatomical position. It was extracted from the
Z-Anatomy digital atlas.

Preoperative registration computes the transformation Tpt2sp between the patient
twin’s parenchyma (pt) and the shape prototype (sp) in three coarse-to-fine steps
(figure 2). It begins with 1) canonical frame initialisation, where the patient twin’s
frame is set at its centre of mass. The Z-axis is aligned to the superior pole based on
the eigenvectors of the inertia tensor, while the X-axis is aligned through the hilum.
The hilum position is identified by filtering concave vertices near the centre of mass,
considering curvature, proximity, anterior direction and normal alignment to refine
the candidate points. After establishing the canonical frame, a coarse alignment is
performed by aligning the centres of mass and frame axes. Finally, 2) a fine alignment
is achieved using an Iterative Closest Point (ICP) algorithm applied forward and
backward, followed by 3) a Non-Rigid ICP (NR-ICP) step. This comprehensive process
ensures an accurate match between the kidney in the patient twin and the shape
prototype.
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Fig. 2 Coarse-to-fine 3D registration of the Patient Twin (PT) onto the Shape Prototype (SP) in
three steps: 1) canonical model initialisation, 2) coarse alignment via the canonical frame and 3) fine-
tuning with ICP.

3.3 End-to-end Generic Pose Recovery

We described the proposed method to infer the pose of the shape prototype from an
intraoperative image.

3.3.1 Data Labelling

A team of urological surgeons from a high-volume expert center (University Hospital
of Bordeaux, France), hereafter referred to as experts, routinely using intraoperative
ultrasound (IOUS) and virtual reality for image-guided partial nephrectomy, retro-
spectively annotated the calibrated intraoperative videos. These annotations were
conducted by a surgeon with 2 years of experience in RAPN, operating under the
supervision of a senior surgeon possessing more than 8 years of experience in the
field. A dedicated offline application for manually aligning the 3D patient twin onto
keyframes where AR could support the procedure was used. This process was not
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time-constrained, enabling flexible navigation both upstream and downstream within
the video sequences.

Although real-time intraoperative annotation was not feasible, retrospective
labelling was carried out by the same surgical team that conducted the proce-
dures, leveraging their in-depth knowledge of patient-specific anatomy. This approach
improved consistency, as annotators could select keyframes where anatomical struc-
tures were clearly visible and verify information by reviewing temporally adjacent
frames. Furthermore, tumour boundaries had been intraoperatively marked with bipo-
lar energy under IOUS guidance (a routine clinical practice) providing anatomical
reference points that enhanced annotation accuracy across augmented frames.

Following manual alignment, a rigid feature-based tracking algorithm similar to the
method proposed by [5, 41] was subsequently used to temporally and spatially inter-
polate the position of the 3D patient twin. This yielded seven augmented sequences
with expert-verified 3D poses. From 228 manually annotated keyframes representing
approximately 40 working hours, 299,659 tracked frames were automatically generated,
significantly improving efficiency.

A semi-automatic review ensured positional and orientational consistency across
sequences. Automated alerts flagged anomalies such as abrupt frame-to-frame dif-
ferences or values outside the defined 3D workspace. This approach improved the
reliability of labelled data and minimised tracking errors.

The manual expert labels are standardised for deep model training through two
steps: alignment of 3D patient twins with the kidney shape prototype from the Z-
Anatomy atlas (see section 3.2) and the camera intrinsics are standardised with frame
warping (section 3.3.3) to ensure consistency across procedures.

3.3.2 Neural Architecture and Training

We proposed a 3D/2D registration model using a pretrained DINO-BASE-V2
ImageNet backbone as an image encoder, generating feature maps of dimensions
(16, 16, 768) from standardised 224×224 RGB endoscopic images. Each image is paired
with a pose P = (R, T ) between the shape prototype and the camera, with the rota-
tion R ∈ SO(3) and the translation T ∈ R3. These elements form a (1, 12) output
tensor. They were shown to be stable, continuous and learnable [42].

The feature maps are concatenated with the current pose parameters and fed into
a regression module with three fully connected layers using LeakyReLU activation and
dropout to improve gradient flow and prevent overfitting. Pose parameters are itera-
tively refined over three iterations using an Iterative Error Feedback (IEF) mechanism,
aligning the shape prototype with the input image.

The training loss L = λLpose + (1 − λ)Lmesh has two terms, mixed by a hyper-
parameter λ ∈ [0, 1]. The 3D mesh loss Lmesh is defined as the Mean Absolute Error
(MAE) of the euclidean distances between the predicted and manually-labelled mesh
vertices. The pose loss Lpose is defined as the MAE between the normalised predicted
and manually-labelled 12 pose coefficients.

The model is trained over 100 epochs with a batch size of 16 using the AdamW
optimiser—a stochastic optimisation method that decouples weight decay from the
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gradient update and a learning rate scheduler starting at 0.00001. A curriculum learn-
ing strategy gradually increases task complexity, reflecting surgical progression as the
organ undergoes transformations like mobilisation and incisions, deviating from its
original shape and appearance. Data augmentation is used, including blur, noise and
compression of the input images.

3.3.3 Intraoperative Pose Inference

The endoscopic camera is calibrated when surgery starts, determining its intrin-
sic parameters Kreal. During model training, these parameters were unavailable
and default intrinsics Kdefault were used. To align the intrinsic spaces between the
trained model and the calibrated setup, a 2D affine transformation A = KdefaultK

−1
real

is used [43]. The model predicts the pose Psp in the shape prototype coordinate
frame. The corresponding patient twin pose Ppt is obtained by applying the inverse
transformation Tsp2pt = T−1

pt2sp, yielding Ppt = PspTpt2sp.

4 Experimental Results

We validate our method on the collected seven-patient dataset. We use a leave-one-
patient-out (LOPO) approach, training the model on six patients’ data and testing
on the remaining patient.

4.1 Performance Evaluation

The predicted pose, expressed in the patient twin coordinate frame, is compared to
the manually labelled pose. Two types of errors were computed: the pose error which
includes translation and rotation components and the Mean Absolute Error (MAE)
between the mesh vertices. The proposed model was trained on an Ubuntu PC with
Intel Core™ i7-13620H and an Nvidia RTX 4070 GPU card.

Table 1 Overall performance evaluation of the proposed method compared to the manual expert
labels.

Test
patient
ID

PN side Num.
frames for
eval.

Avg.
transla-
tion error
(mm)

Avg.
rotation
error (°)

Avg. ver-
tex error
(mm)

1 Left 38 267 13.21 0.54 14.56
2 Left 35 077 12.63 0.62 14.02
3 Right 29 449 16.17 0.45 16.84
4 Right 15 952 11.50 0.43 12.32
5 Left 66 577 14.36 0.94 15.93
6 Left 60 237 13.44 0.72 15.14
7 Left 54 100 12.16 0.32 12.67

MEAN 13.35 0.57 14.50
STD 1.55 0.21 1.65
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The results in table 1 show the proposed method’s accuracy. Low mean translation
and rotation errors, alongside minimal MAE of the vertices, indicate high concordance
with manual expert labels. Despite anatomical and motion variability, the frame-
work achieved a consistently strong performance. This underscores its capability to
autonomously align the 3D patient twin with the surgical camera image, making it a
valuable asset for AR applications.

4.2 Application to Surgical Guidance

The proposed method is integrated into a broader framework designed to augment still
images and image sequences during RAPN. The intraoperative view is augmented with
hidden anatomical structures transferred from the preoperative 3D patient twin, using
either (1) real-time inference for continuous AR video or (2) automatic registration of
an initial frame followed by rigid tracking [5, 41].

We have conducted a preliminary retrospective evaluation of the clinical relevance
of our system, focusing on time efficiency and accuracy, specifically targeting the
registration error for the tumour. To facilitate quantitative evaluation, we selected
4 cases with exophytic tumours, which allowed direct error measurement. The error
was measured by comparing the projected tumour contour, predicted by registration,
with the real observed tumour contour, as shown in figure 3. The proposed AR system
allows the user to customise the rendering transparency level for each type of structure.
As a reference, manual alignment errors ranged from 3 mm to 9 mm without time
constraints, increasing to 20 mm when limited to 10 seconds. In our experiments, we
observed that registration becomes significantly more difficult for third-party operators
who is not the treating surgeon and has no prior context.

Our method achieves an average execution time of 9.4 ± 0.2 ms (106 FPS) using
PyTorch 2.5.1, encompassing pre-processing (i.e., input standardisation and GPU
transfer) and post-processing (i.e., output transfer to patient twin). The average
tumour contour alignment error was 7.3± 4.1 mm. To our knowledge, this is the only
viable fully automatic 3D/2D registration approach currently available for RAPN.
For comparison, state-of-the-art methods in liver surgery report average errors of 30
mm to 36 mm for patient-specific and generic models respectively [44]. Our approach
delivers significantly lower error without manual input or patient-specific modelling,
which is highly promising for its clinical reliability and practical deployment.

5 Conclusion

We have proposed a landmark-free automatic registration method designed for appli-
cation in partial nephrectomy, directly regressing the pose parameters from an image.
The proposed approach is well-suited to the temporal and human resource constraints
typical of clinical practice. Today, it represents the only feasible solution capable of
achieving a registration accuracy of 7.3 ± 4.1 mm (measured on 4 patients) without
reliance on the expertise of the operating surgeon. Nonetheless, given the early-stage
feasibility evaluation, and although consistency with expert annotations has been
observed, claims of clinical reliability remain preliminary and require validation against
surgical outcomes. The current experiments are based on a small cohort (n=7), with
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Fig. 3 Augmented Reality overlays for a representative test case using the proposed method. All
images correspond to the tumour identification and delineation phase. The top row shows the endo-
scopic view, the second row displays the manually labelled 3D patient twin pose (annotation) and
the third row shows the predicted 3D patient twin pose generated by our method.

tumour error analysis limited to four cases, which restricts statistical power and gen-
eralisability. To mitigate overfitting and support initial generalisation, we employed a
leave-one-patient-out (LOPO) cross-validation strategy. Our current method addresses
only rigid registration but remains relevant for surgical guidance within the restricted
kidney volume surrounding the tumour, where rigid assumptions are locally valid.
However limited exposure remains a limitation of the current system and is not yet
fully characterised for retroperitoneal route due to a lack of data.

Future work will focus on 1) expanding the dataset to include retrospectively
collected cases (n=30) to improve generalisability, 2) integrating a deformation com-
ponent into the model to account for organ shape variations, particularly in vascular
structures, and 3) broadening its applicability to a wider range of surgical phases.
Based on this technical 3D/2D automatic registration module, clinical features such
as tumour infiltration depth, proximity to the collecting system, surgical margins and
perfusion territories will be explored to further support surgical decision-making. In
the short term, this method is intended to serve as a complementary tool to IOUS
with the potential to overcome its current limitations over time.
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[15] Della Corte, M., Quarà, A., De Cillis, S., Volpi, G., Amparore, D., Piramide, F.,
Piana, A., Sica, M., Di Dio, M., Alba, S., Porpiglia, F., Checcucci, E., Fiori, C.:
3d virtual models and augmented reality for radical prostatectomy: a narrative
review. Chinese Clinical Oncology 13(4), 56–56 (2024)

[16] Su, L.-M., Vagvolgyi, B.P., Agarwal, R., Reiley, C.E., Taylor, R.H., Hager,
G.D.: Augmented reality during robot-assisted laparoscopic partial nephrectomy:
toward real-time 3d-ct to stereoscopic video registration. Urology 73(4), 896–900

14



(2009)

[17] Nakamura, K., Naya, Y., Zenbutsu, S., Araki, K., Cho, S., Ohta, S., Nihei, N.,
Suzuki, H., Ichikawa, T., Igarashi, T.: Surgical navigation using three-dimensional
computed tomography images fused intraoperatively with live video. Journal of
endourology 24(4), 521–524 (2010)

[18] Pratt, P., Mayer, E., Vale, J., Cohen, D., Edwards, E., Darzi, A., Yang, G.-Z.:
An effective visualisation and registration system for image-guided robotic partial
nephrectomy. Journal of Robotic Surgery 6, 23–31 (2012)

[19] Chen, Y., Li, H., Wu, D., Bi, K., Liu, C.: Surgical planning and manual image
fusion based on 3d model facilitate laparoscopic partial nephrectomy for intrarenal
tumors. World journal of urology 32, 1493–1499 (2014)

[20] Wang, D., Zhang, B., Yuan, X., Zhang, X., Liu, C.: Preoperative planning and
real-time assisted navigation by three-dimensional individual digital model in
partial nephrectomy with three-dimensional laparoscopic system. International
journal of computer assisted radiology and surgery 10, 1461–1468 (2015)

[21] Porpiglia, F., Fiori, C., Checcucci, E., Amparore, D., Bertolo, R.: Hyperaccu-
racy three-dimensional reconstruction is able to maximize the efficacy of selective
clamping during robot-assisted partial nephrectomy for complex renal masses.
European urology 74(5), 651–660 (2018)

[22] Porpiglia, F., Checcucci, E., Amparore, D., Piramide, F., Volpi, G., Granato,
S., Verri, P., Manfredi, M., Bellin, A., Piazzolla, P., Autorino, R., Morra, I.,
Fiori, C., Mottrie, A.: Three-dimensional augmented reality robot-assisted partial
nephrectomy in case of complex tumours : a new intraoperative tool overcoming
the ultrasound guidance. European urology 78(2), 229–238 (2020)

[23] Schiavina, R., Bianchi, L., Chessa, F., Barbaresi, U., Cercenelli, L., Lodi,
S., Gaudiano, C., Bortolani, B., Angiolini, A., Bianchi, F.M., Ercolino, A.,
Casablanca, C., Molinaroli, E., Porreca, A., Golfieri, R., Diciotti, S., Marcelli, E.,
Brunocilla, E.: Augmented reality to guide selective clamping and tumor dissec-
tion during robot-assisted partial nephrectomy: a preliminary experience. Clinical
genitourinary cancer 19(3), 149–155 (2021)

[24] Amparore, D., Piramide, F., Pecoraro, A., Verri, P., Checcucci, E., De Cillis, S.,
Piana, A., Busacca, G., Manfredi, M., Fiori, C., Porpiglia, F.: Identification of
recurrent anatomical clusters using three-dimensional virtual models for complex
renal tumors with an imperative indication for nephron-sparing surgery: new
technological tools for driving decision-making. European Urology Open Science
38, 60–66 (2022)

[25] Amparore, D., Checcucci, E., Piramide, F., Busacca, G., Volpi, G., De Cillis,
S., Sica, M., Verri, P., Piana, A., Di Dio, M., Fiori, C., Porpiglia, F.: Robotic

15



vena cava thrombectomy with three-dimensional augmented reality guidance.
European Urology Open Science 62, 43–46 (2024)

[26] Altamar, H.O., Ong, R.E., Glisson, C.L., Viprakasit, D.P., Miga, M.I., Herrell,
S.D., Galloway, R.L.: Kidney deformation and intraprocedural registration: a
study of elements of image-guided kidney surgery. Journal of endourology 25(3),
511–517 (2011)

[27] Amparore, D., Checcucci, E., Piazzolla, P., Piramide, F., De Cillis, S., Piana,
A., Verri, P., Manfredi, M., Fiori, C., Vezzetti, E., Porpiglia, F.: Indocyanine
green drives computer vision based 3d augmented reality robot assisted partial
nephrectomy: the beginning of “automatic” overlapping era. Urology 164, 312–
316 (2022)

[28] Zhang, X., Wang, J., Wang, T., Ji, X., Shen, Y., Sun, Z., Zhang, X.: A markerless
automatic deformable registration framework for augmented reality navigation
of laparoscopy partial nephrectomy. International journal of computer assisted
radiology and surgery 14, 1285–1294 (2019)

[29] Teluob, G., Calvet, L., Espinel, Y., Savareux, L., Guandalino, M., Ravel, A.,
Bourdel, N., Chauvet, P., Guy, L., Chabrot, P., Bartoli, A.: Preliminary trial
of augmented reality performed on a regular and a robot-assisted laparoscopic
partial nephrectomies. Videourology 33(3) (2019)

[30] Piana, A., Amparore, D., Sica, M., Volpi, G., Checcucci, E., Piramide, F., De Cil-
lis, S., Busacca, G., Scarpelli, G., Sidoti, F., Alba, S., Piazzolla, P., Fiori, C.,
Porpiglia, F., Di Dio, M.: Automatic 3d augmented-reality robot-assisted partial
nephrectomy using machine learning: our pioneer experience. Cancers 16(5), 1047
(2024)

[31] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
shape completion and animation of people. ACM SIGGRAPH 2005 Papers, 408–
416 (2005)

[32] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl:
A skinned multi-person linear model. Seminal Graphics Papers: Pushing the
Boundaries, Volume 2, 851–866 (2023)

[33] Tian, Y., Zhang, H., Liu, Y., Wang, L.: Recovering 3d human mesh from monoc-
ular images: A survey. IEEE transactions on pattern analysis and machine
intelligence (2023)

[34] Guan, P., Weiss, A., Balan, A.O., Black, M.J.: Estimating human shape and pose
from a single image. In: 2009 IEEE 12th International Conference on Computer
Vision, pp. 1381–1388 (2009). IEEE

[35] Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of

16



human shape and pose. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7122–7131 (2018)

[36] Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct
3d human pose and shape via model-fitting in the loop. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

[37] Zhang, H., Tian, Y., Zhou, X., Ouyang, W., Liu, Y., Wang, L., Sun, Z.: Pymaf:
3d human pose and shape regression with pyramidal mesh alignment feedback
loop. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11446–11456 (2021)

[38] Zhang, H., Tian, Y., Zhang, Y., Li, M., An, L., Sun, Z., Liu, Y.: Pymaf-x:
Towards well-aligned full-body model regression from monocular images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 45(10), 12287–12303
(2023)

[39] Farinha, R., Breda, A., Porter, J., Mottrie, A., Van Cleynenbreugel, B., Van-
der Sloten, J., Mottaran, A., Gallagher, A.G., RAPN-Delphi Surgeons Group:
International expert consensus on metric-based characterization of robot-assisted
partial nephrectomy. European Urology Focus 9(2), 388–395 (2023)

[40] De Backer, P., Peraire Lores, M., Demuynck, M., Piramide, F., Simoens, J.,
Oosterlinck, T., Bogaert, W., Shan, C.V., Van Regemorter, K., Wastyn, A., Chec-
cucci, E., Debbaut, C., Van Praet, C., Farinha, R., De Groote, R., Gallagher,
A., Decaestecker, K., Motttrie, A.: Surgical phase duration in robot-assisted
partial nephrectomy: A surgical data science exploration for clinical relevance.
Diagnostics 13(21), 3386 (2023)

[41] Chandelon, K., Bartoli, A.: Tracking better, tracking longer: automatic keyframe
selection in model-based laparoscopic augmented reality. International Journal of
Computer Assisted Radiology and Surgery 17(8), 1507–1511 (2022)

[42] Geist, A.R., Frey, J., Zobro, M., Levina, A., Martius, G.: Learning with 3d
rotations, a hitchhiker’s guide to so (3). arXiv preprint arXiv:2404.11735 (2024)

[43] Fuentes-Jimenez, D., Pizarro, D., Casillas-Pérez, D., Collins, T., Bartoli, A.: Deep
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