
Stronger Together: Registering Preoperative
Imagery, LUS, and MIS Liver Images

Mohammad Mahdi Kalantari1, Erol Ozgur1, Mohammad Alkhatib1, Navid
Rabbani2, Yamid Espinel2, Richard Modrzejewski4, Bertrand Le Roy3,

Emmanuel Buc2, Youcef Mezouar1, and Adrien Bartoli1,2,4

1 Clermont Auvergne INP, SIGMA Clermont, Clermont-Ferrand, France.
mohammad_mahdi.kalantari@sigma-clermont.fr

2 University Hospital of Clermont-Ferrand, France.
3 University Hospital of Saint-Etienne, France.

4 SurgAR, 22 allée Alan Turing, Clermont-Ferrand, France.

Abstract. This study addresses the critical challenges of accurate tu-
mor localization in minimally invasive surgery (MIS) of the liver, where
limited visibility and the absence of tactile feedback complicate surgery.
The study focuses on integrating all three standard modalities: preopera-
tive 3D models, laparoscopic ultrasound (LUS), and MIS images. Unlike
previous approaches, our method exploits the interrelationships among
all these modalities, without relying on markers or external sensors, to
maximize applicability. It uses an advanced geometric model to integrate
the existing registration constraints between pairs of modalities, such as
the anatomical landmarks, with new spatial constraints, including the
contact of the LUS transducer with the liver and the agreement of the
LUS and the preoperative tumor profiles. Experimental validation on
phantoms and patient data shows that the method boosts accuracy.
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1 Introduction

MIS has revolutionized liver surgery but localizing tumors is difficult. In laparo-
scopic liver resection (LLR), this is mitigated by incorporating two additional
modalities beyond MIS images. First, LUS, which is the gold standard, but has
multiple drawbacks, including the long learning curve, operator dependence, re-
stricted field of view, and low image quality. Second, preoperative 3D models,
reconstructed from preoperative CT or MRI, which are challenging to use due
to organ deformation from gas insufflation and mobilization. Augmented reality
(AR) has been recently attempted to overcome these challenges [12, 5, 14, 7, 3].
However, the existing methods share the limitation of using only two out of the
three typical modalities, resulting in ill-posed registration problems.

We propose to integrate the three modalities in a unified registration, without
the need for markers or external sensors, thereby preserving the sterility and

Implementation available at: github.com/MMKalantari/MultiModalLiverReg
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integrity of the operating room (OR) environment. The proposed registration
method exploits new prominent constraints between the three pairs of modalities.
It concurrently estimates the deformation of the preoperative 3D model and
recovers the 6-DoF LUS pose. It outperforms existing methods based on only
two modalities, as shown through both qualitative and quantitative results on
phantom and patient data.

2 Related Work

We review markerless registration methods for all combinations of two modali-
ties and then for the three modalities. In preoperative 3D model to MIS image
registration, the early method [21] performed rigid registration, which is gener-
ally inaccurate. It was followed by deformable registration methods [14, 12, 5,
10, 4, 2, 9], all guided by anatomical landmark correspondences, leading to im-
proved accuracies. In preoperative 3D model to LUS registration, existing meth-
ods use vessels [16, 19] and kinematic priors [18]. However, even disregarding the
39% failure rate reported in the most recent work [19], this type of registration
remains unstable owing to liver deformation. In LUS to MIS image registra-
tion, existing methods use electromagnetic (EM) tracking [13], magneto-optic
tracking [6], or visual markers [17]. Recently, a markerless vision-based method
has been proposed [8, 7]. Lastly, two prior studies addressed the registration
of all three modalities and bear the closest resemblance to our approach. The
method proposed in [15] is learning-based and patient-specific, requiring retrain-
ing for each individual case and relying on synthetic rendering. In contrast, our
approach is patient-generic and grounded in a principled mathematical model
of inter-modality relationships. This model-based formulation enhances inter-
pretability and enables step-wise error monitoring and control. Moreover, our
method remains effective even when the tumor is not visible in the LUS images.
[22] uses an EM tracker for the LUS probe, manual initialization, and vessel
landmarks. However, EM tracking may be impractical due to sterility and adds
clutter to the OR. In contrast, the proposed method eliminates manual initial-
ization and uses existing OR devices (the laparoscope and the LUS), ensuring
seamless integration.

3 Methodology

3.1 Modelling and Main Assumptions

We use Lap, Prp, and LUS as shorthands for the three modalities. The primary
inputs and outputs of our system are shown in Fig. 1. We assume LUS and Lap
are synchronized, hence a rigid transformation exists between them.

Lap is the MIS camera, aka laparoscope. It gives an RGB image and liver
annotations (we use the automatic segmentor [10] of the silhouette, the falci-
form ligament, and the lower ridge). We use the standard pinhole model, whose
intrinsic parameters are in the 3 × 3 matrix K with fx, fy the focal lengths



Registering the Three Standard Modalities in Liver MIS 3

LUS

Lap

Prp

Laparoscopic Image

Inputs

LUS Image + Tumor Mask

Preoperative 3D Model + 
Anatomical Landmarks

OutputsMultimodal Registration

Fig. 1. Modalities, parameters, and relationships. Optimizable parameters are in red,
fixed ones in green, and cost terms for each pair of modalities (except C1) in blue.

and x0, y0 the principal point in pixels. The camera is calibrated, and the im-
age is undistorted using OpenCV. The projection function is thus Π(X,Y, Z) =
(fxX/Z+x0, fyY/Z+y0). We define the reference coordinate frame for registra-
tion as the standard pinhole coordinate frame with origin at the camera center.
Registration is thus to transform all other entities to the Lap coordinate frame.

LUS is the laparoscopic ultrasound probe. The image is obtained when the
transducer touches the liver. This provides a gray-level image and a binary tumor
segmentation mask is generated manually. Following [8, 7], the probe is modeled
by a spherocylinder (a cylinder for the head part and a sphere for the tip), with
a known radius r > 0. The probe’s coordinate frame has its origin at the sphere’s
center, axis Z aligned with the cylinder axis and axis X intersecting with the
linear transducer. The probe pose (R ∈ SO3, T ∈ R3) cannot be estimated from
the laparoscopy image only, because of the rotational symmetry of the sphero-
cylindrical probe model about axis Z, a known issue [8]. Using Euler angles, we
thus decompose the pose’s rotation as RX(α)RY (β)RZ(θ) and represent the pose
in two parts. Part 1 contains the 5 DoF recoverable from the laparoscopy image
only, ξ = (α, β, T ). Part 2 contains the 6th DoF, namely θ, requiring an extra
constraint to be recovered. Finally, the probe has a single extrinsic parameter e
defining the imaging plane offset axis Z. The intrinsic parameters, s = [sx, sy],
are pixel-to-mm scales read from the US screen.

Prp is the preoperative image, typically CT or MRI. We assume a preopera-
tive 3D model is reconstructed with MITK as a triangulated mesh with vertices
denoted DPrp in the preoperative coordinate frame. This comprises the liver sur-
face surf(DPrp), the internal tumors, and the anatomical landmarks (falciform
ligament and lower ridge). Registration searches the mesh deformation repre-
sented by new vertices D in the Lap coordinate frame.
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3.2 Problem Statement and Cost Functions

We use the above modeling to define a minimization problem. The cost func-
tion C has 8 terms Ci with weights λi > 0, i ∈ [1, 8]. The first cost term
is a mesh biomechanical deformation energy. All other cost terms capture the
modality-pair constraints on registration, the first 3 terms being replicated from
the literature and the last 5 being novel. Some terms overlap, as they may be
used in initialization or refinement.
Deformation energy (Prp) [12]. Cost term C1(D) maintains the preopera-
tive 3D model’s structural integrity during deformation using the neo-Hookean
model.
Anatomical landmarks (Prp–Lap) [10]. Cost term C2(D) is the distance
between the preoperative 3D model’s anatomical landmarks after deformation
and projection, and their correspondence in the surgical image.
Probe reprojection (Lap–LUS) [8]. Cost term C3(ξ) =

∑
q∈S d(q,Π(ξ)) mea-

sures the sum of point distances d(·, ·) between each point q of the observed 2D
LUS contour S and the reprojection Π(ξ) of the spherocylinder representing the
LUS probe to the surgical image.
Probe contact (Prp–LUS) - non-collision. Cost term C4(D, ξ) prevents probe-
liver collision by ensuring the probe remains outside the liver. We sample Nprobe =
520 points on the LUS probe stored in Pprobe. The cost is based on the signed
distance d±(p, surf(D)) from a point p ∈ Pprobe to the liver surface surf(D).
By convention, d± is positive outside the liver. The cost is finally activated at a
point p using the Heaviside function H(·), giving:

C4(D, ξ) =
∑

p∈Pprobe

H (−d±(p, surf(D))) . (1)

Probe contact (Prp–LUS) - position. Cost term C5(D, ξ) is the distance
between the LUS probe and the liver surface.

C5(D, ξ) =
∑

p∈Pprobe

d(p, surf(D)). (2)

Probe contact (Prp–LUS) - orientation. Cost term C6(D, ξ, θ) is the absolute
angle ang(·, ·) between the LUS probe’s imaging plane and the liver surface nor-
mals along the transducer. We sample Ntrans = 32 points on the LUS transducer
stored in Ptrans. For a point p ∈ Ptrans, the cost uses the liver surface normal
N (p, surf(D)) at the closest point of p, and the probe orientation U(ξ, θ), giving:

C6(D, ξ, θ) =
∑

p∈Ptrans

ang (N (p, surf(D)),U(ξ, θ)) . (3)

Tumor profile (Prp-LUS) - shape. Cost term C7(D, ξ, θ, e) is the distance be-
tween the tumor profile from LUS, denoted by Pprof, and the slicing U(D, ξ, θ, e)
of the preoperative 3D model along the LUS imaging plane. We sample Nprof

points from U with a uniform distance of 1mm, resulting in typically Nprof ∈
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Algorithm 1: Optimization Criterion
Inputs: DPrp (initial liver mesh), s (LUS scales), I (laparoscopic image),

K (laparoscope intrinsics)
Outputs: D (deformed liver), ξ (5-DoF LUS pose), θ (6th DoF LUS pose),

e (LUS extrinsic)
/* Initialization */

1 D ← reg_Prp_to_Lap(DPrp, I,K) // Use [10]
2 ξ ← estimate_5DoF_LUS_Pose(I,K) // Use [8]
3 D, ξ ← argminD,ξ C4(D, ξ) + C5(D, ξ) // Probe-liver contact
4 [θ, e]← [argminθ C6(D, ξ, θ), 0] // Transducer-liver contact

/* Refinement */
5 converged← False
6 while not converged do

/* Differential evolution minimization */
7 ξ, θ, e← argminξ,θ,e C7(D, ξ, θ, e) + λ3C3(ξ)

/* Gauss-Newton minimization */
8 D− ← D // Save current deformation
9 D ← argminD C1(D)+λ2C2(D)+λ4C4(D, ξ)+λ5C5(D, ξ)+λ8C8(D, ξ, θ, e)

10 if ∥D −D−∥ < τ then converged ← True // Convergence verification
11 end

[30, 250] points. We construct the transformation matrix E from the LUS param-
eters ξ, θ, e, which maps the LUS image coordinate frame to the base coordinate
frame and assemble the scale matrix S = diag(sx, sy) from scale vector s. Using
these, a LUS tumor profile point p is transformed to the Lap coordinate frame
as SE−1p, giving:

C7(D, ξ, θ, e) =
1

Nprof

∑
p∈Pprof

min
i

(
d(SE−1(p− p̄), Ui − ū)

)
, (4)

where centroids p̄ = mean(P) and ū = mean(U) are for translation invariance.
Tumor profile (Prp-LUS) - position. Cost term C8(D, ξ, θ, e) =

∥∥SE−1p̄− ū
∥∥

is the distance between the centroids of the tumor profiles from LUS and Prp.

3.3 Minimization Method

The optimization problem involves a large number of unknowns (typically 600 to
800), an 8 cost terms of different nature (smooth or non-continuously differen-
tiable, most of them non-convex), proscribing random initialization. We propose
an initialization and refinement method in algorithm 1.
Initialization. Structured initialization exploits variable dependencies and ex-
isting solution methods. It starts with [10] which finds initial deformation pa-
rameters D, and follows with [8] which finds an initial LUS 5-DoF pose ξ. A
first level of LUS to Prp constraint is then introduced through C4 and C5, en-
suring proper contact between the LUS probe and the liver surface by updating
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# Phantom

1 2 3 4 5 6 7 8 Avg

Base Method [10] 37.68 23.44 23.46 17.01 20.92 21.08 20.52 23.64 23.47
Base + Contact -26% -3% -6% +23% +9% +3% -18% -15% -4%
Base + All -49% -72% -36% -55% -35% -48% -24% -22% -43%

Table 1. TRE (mm) for the base method in the phantom study, with percentage
changes from contact-only and all proposed constraints.

D and ξ. Finally, the missing LUS parameters are initialized while accounting
for all optimization variables. Specifically, the missing LUS pose rotation angle
θ is initialized using the liver surface normals, while the extrinsic offset e is set
to zero, initializing the transducer close to the probe tip.
Refinement. We split the minimization into two parts. First, we consider the
non-smooth terms C3 and C7, which we optimize by means of differential evolu-
tion. Second, we consider the smooth terms –all the others– which we optimize
by Gauss-Newton. Both steps use the SciPy library. We accelerate and stabilize
the process using dimensionality reduction [12], reducing the mesh vertices to
200, and an explicit coding of the Jacobian matrix function. Convergence occurs
when the deformation parameters change under a threshold τ .

4 Experimental Results and Discussion

We used constant hyperparameters, empirically set at λ2 = 0.1, λ3 = λ4 = λ5 =
10, λ8 = 3, and τ = 3.5.

4.1 Phantom Study

This study simulates 8 deformations to a 3D liver model with a virtual tumor
following [20, 1]. The deformed models are 3D printed, with known GT tumor
position, and anatomical landmarks. An instance of the experiment setup is
brought in Fig. 2a. We use a real LUS probe and simulate the LUS image. We
first estimate the LUS pose using an Aruco marker. The imaging plane is then
intersected with the GT tumor, and Gaussian noise is added to the resulting
contour points. Then the anatomical landmarks in the laparoscope image are
annotated manually, and the rest of the experiment follows algorithm 1. The
simulated LUS detects the tumor in the deformed model (and not the GT tumor).
The results are shown in Table 1. The mean absolute error (MAE) for the pose
angle θ is 10.3◦ with 6.3◦ StDev, and for the extrinsic parameter e it is 1.2mm
with 0.4mm StDev. The benefit in terms of tumor Target Registration Error
(TRE) of co-registering the 3 modalities in our method is striking, with an
average reduction of 43% compared to existing work.
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Fig. 2. Experiments: (a) phantom, (b) public benchmark, (c) patients qualitative.

4.2 Public Benchmark

We use the public dataset [17], which allows for a direct comparison of the
TRE between methods and provides ground truth for the LUS imaging plane
obtained using markers on the probe (these markers are not used by our method).
Fig. 2b demonstrates an instance of the experiment. Table 2 shows results for
3 patients. The proposed method slightly outperforms the best result [2] for P1
(from 8.25mm to 7.76mm), substantially outperforms the best result [12] for
P3 (from 17.60mm to 8.58mm), and underperforms the best result [10] for P4
(from 7.23mm to 12.35mm). As observed, our method outperforms the existing
approaches when the tumor on the surgery day closely resembles the preoperative
model, as can be seen on average without P4 that the error from the best result [9]

Tumor TRE (mm) Tumor

MA M1 M2 M3 LMR NM Ours evolution

P1 15.14 8.25 9.49 14.87 17.40 14.82 7.76 No
P3 30.48 28.40 25.04 22.40 17.60 20.15 8.58 No
P4 16.29 15.83 18.35 7.23 17.00 12.95 12.35 Yes

Avg. w/o P4 22.81 18.33 17.27 18.64 17.50 17.49 8.17 No
Avg. 20.63 17.49 17.63 14.83 17.33 15.97 9.56 Mixed
Table 2. Tumor TRE on public benchmark [17]. ‘Tumor evolution’ indicates a change
in tumor size between preoperative imaging and surgery. MA is manual rigid registra-
tion, M1 is [2], M2 is [9], M3 is [10], LMR is [12], and NM is [14].
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is reduced by 53%, from 17.27mm to 8.17mm by our method. It also continues to
function effectively even when there is tumor growth between the preoperative
imaging and the surgery day, though the performance may be affected in such
cases. The average MAE estimation for θ is 8.7◦ with 4.7◦ StDev.

4.3 Qualitative Study

We conducted a qualitative study on two additional patients with 5 images, il-
lustrated in Fig. 2c, with 4 validation steps. (i) The 5-DoF LUS pose ξ was
validated by comparing the silhouette of the reprojected LUS probe model to
Lap, using the optimized pose parameters, with the segmented LUS probe. The
average IoU in the experiments was 97%. (ii) The 6th DoF LUS pose θ was eval-
uated by uniformly sampling values in [0, 2π) by steps of 0.1◦. For each value,
we compared the LUS image tumor with the tumor cross-section obtained from
Prp. The estimated θ always obtained the least distance, with an average of
1.2mm, indicating its optimality. (iii) Liver deformation was evaluated using
the distance between the anatomical landmarks reprojected from the optimized
model and their observation in Lap; the average distance was 31±6 pixels, which
is reasonable given the large HD image resolution. (iv) The tumor shape and
translation were evaluated before and after optimization. If the tumor or sur-
rounding tissue exhibited significant deformation, i.e. changing the volume more
than 20%, it indicated inconsistencies in the optimization process. Likewise, if
the translation was insufficient to align the tumor with the desired contour, it
suggested suboptimal initialization, leading the algorithm to enforce local adjust-
ments constrained by other optimization parameters. In the experiments, neither
a significant tumor deformation nor an insufficient translation was observed.

4.4 Discussion

Validating registration in surgery is highly challenging. Our approach has been
tested retrospectively on 6 patients and 8 phantoms. Qualitative results from 2
patients, along with qualitative and quantitative results for the 8 phantoms and
Patients P1 and P3 of [17] highlight the benefits brought by using all 3 standard
modalities together. In Section 4.2, Patient P4 highlights the method’s depen-
dency on the similarity between the preoperative tumor model and the actual
tumor on the surgery day. If the preoperative model deviates significantly from
intraoperative reality, the method remains functional but introduces some errors.
That said, it is a natural requirement: if a mismatch exists between the preop-
erative and intraoperative models, an augmented reality method should actually
not be used at all. In addition, Patient P2, excluded from Table 2, highlights the
base deformation model’s importance. If the base model [10] fails to converge
during initialization, subsequent optimization becomes infeasible.

The optimization algorithm runs in 4±1 minutes on an average laptop. With
automated intraoperative image annotation [11] and manual tumor annotation in
the LUS image, the entire process completes in under 6 minutes, demonstrating
its clinical feasibility for single-shot augmented reality prior to resectioning.
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5 Conclusion and Future Work

This study presents a novel approach to tumor localization in minimally invasive
liver surgery by leveraging the interrelationships among laparoscopic imaging,
laparoscopic ultrasound, and preoperative models without requiring additional
markers or external sensors. Experimental validation on real patient data, in
addition to phantom studies, highlights the method’s superiority over state-of-
the-art techniques, achieving high precision while maintaining an acceptable run-
time. These results, combined with positive feedback from surgeons regarding
workflow integration, demonstrate the potential of this approach to advance
tumor localization in liver minimally invasive surgical procedures.

As future work, three directions are proposed. First, automating tumor seg-
mentation in LUS images by means of a neural network. Second, developing a
real-time tumor tracking pipeline would leverage the proposed method as an ini-
tialization and allow continuous tumor tracking during surgery. Third, exploiting
the proposed method in other MIS procedures.
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