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ABSTRACT We propose WS-DeepSfT, a novel deep learning-based approach to the Shape-from-Template
(SfT) problem, which aims at reconstructing the 3D shape of a deformable object from a single RGB
image and a template. WS-DeepSfT addresses the limitations of existing SfT techniques by combining
a weakly-supervised deep neural network (DNN) for registration and a classical As-Rigid-As-Possible
(ARAP) algorithm for 3D reconstruction. Unlike previous deep learning-based SfT methods, which require
extensive synthetic data and depth sensors for training, WS-DeepSfT only requires regular RGB video of the
deforming object and a segmentation mask to discriminate the object from the background. The registration
model is trained without synthetic data, using videos where the object undergoes deformations, while ARAP
does not require training and infers the 3D shape in real-time with minimal overhead. We show that WS-
DeepSfT outperforms the state-of-the-art, in both accuracy and robustness, without requiring depth sensors
or synthetic data generation. WS-DeepSfT thus offers a robust, efficient, and scalable approach to SfT,
bringing it closer to applications such as augmented reality.

INDEX TERMS Non-rigid, Shape-from-Template, weak-supervision, registration, wide-baseline,
template-based, 3D reconstruction

I. INTRODUCTION

In Shape-from-Template (SfT) [1], the objective is to infer
the 3D shape of a deformable object from a single input
image and the registration of this image to an object tem-
plate. The template consists of a reference 3D shape in a
known position and deformation, usually represented by a 3D
mesh, along with a texture map that describes its appearance.
Solving SfT involves two main tasks: 1) registration, where
a transformation or warp function is found that matches
points on the reference 3D shape with pixel positions in
the input image, and 2) reconstruction, where the deformed
3D shape is recovered in the camera coordinate system. SfT
has potential applications in computer graphics by enabling
the digital scanning of object deformations to be used as
digital 3D assets [2]–[4]. It is also relevant in the industry,
where it may be used to analyse deformations in materials or
structures to improve their design, safety, or understanding,
such as for aerospace manufacturing [5], [6], landing mats
in gymnastics [7], clothes [8], and in medicine, for analysing
deformations in organs [9], [10] and human injuries [11]. SfT
is also crucial for developing Augmented Reality (AR) appli-

cations, where a computer-generated 3D object is rendered
and overlaid onto a live image stream. SfT enables AR by
estimating the object deformation in the camera coordinate
system, allowing augmentations decided on the reference
model to be rendered and overlaid in the real images. AR can
be used in medicine to design Computer-Aided Interventions
(CAI) tools, helping surgeons conduct minimally invasive
surgeries [12]–[15]. These medical operations are performed
with an endoscope to limit the size of incisions and reduce
recovery time. However, using these tools diminish surgeon
perception, creating a highly challenging scenario, even for
experienced surgeons. To help overcome these challenges,
AR displays 3D representations of the organ’s surface and
tumours, enhancing the surgeon’s perception [16], [17].

Solving SfT is highly challenging due to the demanding
conditions in real settings. Specifically, solving the registra-
tion task requires finding visual correspondences between
the template texture map and a single input image. These
two domains are usually significantly distinct, mainly due
to projection distortion, surface deformations, occlusions,
self-occlusions, and lighting conditions. Solving the SfT
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reconstruction task is also highly complex, since an infinite
number of 3D shapes share the same 2D projection and
thus, are compatible with the estimated warp. A deformation
constraint is commonly applied to limit the space of possible
solutions. There exist multiple deformation models, either
purely geometrical, such as isometry (preserving geodesic
distances) [18], [19], conformity (preserving surface an-
gles) [1], [20], equiareality (preserving surface areas) [21],
or physically inspired, such as material elasticity [22], [23].
We consider that the object of interest undergoes approximate
isometric deformations, which is accurate for many real
objects and deformations, and represents the most frequently
used deformation model in SfT.

Existing methods for solving isometric SfT can be cate-
gorised into classical methods and deep learning methods.
Classical methods use feature matching to solve the regis-
tration step and non-convex optimisation to reconstruct the
deformed shape. These methods fail when facing imaging or
texture challenging conditions. Furthermore, the non-convex
optimisation process requires a good initialisation and usu-
ally limits its deployment in real-time applications. Recently,
differentiable physics simulators and renderers have been
incorporated to SfT methods, increasing the accuracy of the
3D reconstructions at the expense of even higher optimisation
time. On the other hand, deep learning methods solve SfT by
training a regression function to solve the registration and
reconstruction tasks in real time. However, these methods
require a large amount of labeled data, which is extremely
complicated to obtain for real scenes. Therefore, they rely on
generating synthetic data to train these models, downgrading
performance in real settings.

The first complete learning pipeline for solving SfT,
DeepSfT, was proposed in [24]. DeepSfT achieves more
accurate results than previous SfT methods while running in
real-time on GPU-based hardware using a Deep Neural Net-
work (DNN). However, DeepSfT suffers from major draw-
backs. It requires large amounts of labelled synthetic data
and real data captured with RGB-D sensors. Its performance
depends significantly on the quality of the synthetic data,
making it crucial for the geometry and deformation simula-
tions to closely match the real scenes in order to overcome
the render gap. Therefore, an expert-level knowledge of ad-
vanced physical simulators is needed to generate such data. A
fine-tuning step is also necessary when applying this method
to real scenes, where the labelling obtained from the depth
sensor is used to train the DNN along with a photometric
loss. The convergence of this training process is affected by
external environmental conditions, such as lighting and a lack
of rich texture in the template. Finally, a post-processing
step is required to find the complete deformed surface, as
the DNN model only recovers a depth map of the surface’s
visible part.

We propose WS-DeepSfT, a new SfT solution based on
a hybrid architecture, where the registration step is solved
with a DNN model and the reconstruction step is based
on a classic mesh processing algorithm. We use a weakly-

supervised approach to train the registration DNN model us-
ing only RGB videos of the object undergoing deformations,
not requiring synthetic data generation or depth sensors. The
only requirement is that the object can be segmented from the
background and that some frames in the training videos show
the object in its reference shape, i.e. that of the template. This
is an important step in making SfT methods useful in real
applications by allowing training with virtually any object
that can be recorded in video. For the reconstruction step
we use the As-Rigid-As-Possible (ARAP) [25] algorithm to
infer the 3D shape of the object from the registration solution,
removing the necessity of depth sensors or training. Contrary
to other classical methods, ARAP can be executed in real
time and only requires a few iterations to reach convergence.
We show that the proposed WS-DeepSfT is comparable to
or better than DeepSfT, even when the latter is supervisely
trained, and achieves real-time processing. We show our
results in two new synthetic and three new real datasets
to evaluate the performance of the proposed solution and
compare it with the existing approaches.

This paper is divided into the following sections. Sec-
tion II reviews the start-of-the-art methods in SfT. Section
III presents the SfT problem and the proposed solution
principles. Sections IV and V elaborate on the proposed
registration and reconstruction steps. Section VI states the
experimental setup and evaluation methods. It discusses the
choice of WS-DeepSfT’s hyperparameters in detail. Finally,
Section VII reports conclusions and proposes future lines of
research.

II. PREVIOUS WORK
We review previous SfT works by distinguishing between
classical methods in Section II-A and learning-based meth-
ods in Section II-B. Classical methods are based on optimiza-
tion and use deformation models. In contrast, learning-based
methods train a neural network to estimate the SfT outputs
from its inputs.Table 1 summarizes the characteristics of
the different methods presented throughout this section and
compares them with the proposed solution.

A. CLASSICAL METHODS
This section covers analytical methods, which model the
reconstruction step as Partial Differential Equations (PDEs)
after assuming registration is solved, followed by Energy-
based methods, based on minimising a cost function for
registration and reconstruction, either separately (decoupled
methods) or simultaneously (integrated methods). Finally,
recent integrated methods based on differentiable renderers
and physics simulators are discussed.

1) Analytical Methods
Analytical methods tackle the SfT problem by formulating
constraints as PDEs, yielding well-posed convex solutions in
a single step. However, these methods are often less accurate
than others and require a refinement step using iterative meth-
ods. As a result, they are typically used as an initialisation
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SfT method
Baseline
capability

Solves
registration

Solves
reconstruction

Needs
training

Needs
labels

Accuracy
Inference

time
References

Analytical methods Wide No Yes No No Low Low
[1], [18]

[21], [26], [27]
Energy-based

methods (integrated)
Short Yes Yes No No

Depends on
conditions

Low [28]–[31]

Energy-based
methods (decoupled)

Wide Yes Yes No No
Depends on
conditions

Medium
[19], [23]

[22], [32]–[37]
Physics simulation

methods
Wide Yes Yes Yes No High High [38]–[40]

Deep learning
methods

Wide Yes Yes Yes Yes
Depends on

synthetic data
Low [24], [41]–[44]

WS-DeepSfT Wide Yes Yes Yes
No, needs
keyframes

High Low Proposed

TABLE 1: Summary of the state-of-the-art methods presented in Section II.

step for non-convex, energy-based approaches. These meth-
ods are commonly classified according to the assumptions
made about the deformation model. Specifically, [1], [18],
[26], [27] address isometric deformations by solving a system
of non-linear first-order PDEs. While isometry has been the
most extensively studied model, there exist other deformation
models, such as conformity [1], preserving local angles, or
equiareality [21], preserving local areas. Both the conformal
and equiareal models introduce ambiguities that must be
resolved by introducing other image cues or boundary condi-
tions, raising major concerns on their practical applicability.

2) Energy-based Methods

Energy-based methods minimise a non-convex cost function
through iterative optimisation, typically consisting of a data
term that ensures photometric or reprojection consistency
and a regularisation term based on deformation priors. These
methods are categorised into two groups: 1) integrated meth-
ods [28]–[31], where the registration and reconstruction are
estimated jointly, and 2) decoupled methods [19], [22], [23],
[32]–[35], where registration and reconstruction are solved
independently.

Integrated methods [28]–[31] perform registration and re-
construction simultaneously. They are mainly used in short-
baseline scenarios, such as continuous video streams [28]–
[30], where they minimise a non-convex function by deform-
ing the 3D reference template until its projection aligns with
the input image. However, due to their non-convexity, these
methods may converge to incorrect local minima and fail
when the short-baseline conditions are not met. Despite this
drawback, these approaches are highly effective in handling
complex, high-frequency deformations and can often do so
densely and in real time. Nevertheless, they require a good
initialisation [31] and additional information, such as point
correspondences [28], pixel-level photo-consistency models

[29], [30], or temporal consistency [31].
Decoupled methods [19], [22], [23], [32]–[37] estimate the

registration and reconstruction functions separately. While
they use well-established registration techniques, they tend
to produce sub-optimal results by not fully exploiting the
interdependencies that bind between registration and recon-
struction. These methods typically begin by solving registra-
tion using keypoint-based feature matching algorithms such
as SIFT [35], [36], often incorporating filtering [22], [37] or
mismatch removal [35] to minimise errors. These approaches
operate on individual images and do not require temporal
consistency, performing well even under significant deforma-
tions. However, when the feature-matching algorithm fails
due to challenging image or texture conditions, its errors
propagate to the registration and reconstruction of the ob-
ject. Moreover, these methods use an optimisation process
to improve accuracy, which limits their application in real-
time wide-baseline scenarios to simple objects and simple
deformations. In order to expand the scope to more complex
deformations, RobuSfT [35] uses multi-core parallelisation
and removes ambiguities by preserving the neighbourhood
structure of matches. It improves previous methods in ro-
bustness to occlusions, large deformations and fast motions,
although its accuracy still relies on the precision and number
of the established point matches.

3) Physics Simulation Methods

Classical SfT techniques rely on deformation models to con-
strain the range of potential solutions. However, the assump-
tions underlying these models are often not entirely met,
resulting in inaccuracies in the final reconstructions. A more
recent research direction within integrated methods incorpo-
rates differentiable physics simulations and renderers [38]–
[40]. These approaches aim to improve the solution quality
by constraining an object’s motion based on physically mean-
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ingful parameters. They provide smoother, higher-quality 3D
reconstructions and reduce reprojection errors compared to
classical methods. Nevertheless, these techniques typically
require several minutes or even hours to optimise a single
scene, making them unsuitable for real-time applications.

The method proposed in [38] is the first to integrate a dif-
ferentiable physics simulator and renderer to optimise forces
and material properties. Using accurate elastic deformation
priors, it addresses challenging cloth deformations and simu-
lates physical processes to resolve complex local folds. By
minimising the pixel-wise photometric error between the
input image and the estimated surface reprojection, it ef-
fectively uses texture information without being constrained
by the mesh resolution. While this approach achieves high
physical realism in surface deformations, it struggles with
capturing small, high-frequency wrinkles.

In contrast, [39] introduces a physics-based neural network
that infers the shape and physical properties of cloth in
monocular video sequences, accounting for inertia and force
interactions. This neural network provides stable simulations
of cloth dynamics, ensuring physically plausible reconstruc-
tions. It is trained in a self-supervised manner by minimising
the photometric error between rendered and real-world video
frames. This method significantly reduces computation time
while achieving results comparable to [38].

The method in [40] introduces contour and perspective
constraints into a physics simulator to restrict the template’s
movement range, improving convergence and optimisation
accuracy by reducing shape inference errors in non-visible
areas. The method initially relies on [35] to estimate the
template’s position, although this can be prone to errors due
to insufficient feature points or mismatches. Following this,
a mass-spring mechanical simulator is used to enforce mate-
rial properties and deformation laws on the estimate, while
bilateral mesh denoising ensures smoothness. This approach
provides a marked improvement over RobuSfT in scenarios
involving complex bending and deformation.

B. DEEP LEARNING METHODS

Deep learning methods learn a mapping function between the
input image and the SfT solution. These approaches solve
registration and reconstruction simultaneously in a single
feed-forward pass, significantly improving runtime perfor-
mance compared to energy-based methods. However, these
approaches typically require annotated data, which is almost
impossible to acquire for registration in real-world scenes.
Additionally, most methods are limited to flat templates or
regular meshes with a restricted and fixed number of vertices.
These methods differ mainly in how they parameterise the 3D
coordinates and in their learning strategies. Moreover, most
are texture- and template-specific, meaning that a model only
handles one object, hence with limited ability to generalise to
novel shapes, although recent research has shown promising
results in generalising across shape families. Based on this,

deep learning methods can be categorised into object-specific
and generic approaches.

1) Object Specific

The first solutions using DNN-based approaches [41], [42]
were limited to low-vertex, regular, and rectangular tem-
plates, with performance decreasing as the number of vertices
increased due to the corresponding growth in network size.
These methods are fully supervised and thus require labelled
data, which is notoriously difficult to obtain for real-world
scenes. Consequently, they rely on synthetically generated
data, which reduces their accuracy in real scenes due to the
rendering gap between simulated and real environments.

DeformNet [41] addresses SfT by iteratively predicting
the position of each 3D template vertex in the image. The
estimated 2D coordinate of the vertex is progressively refined
in three iterations. A depth estimation network is then used
to reconstruct the 3D mesh. However, the mesh is limited to
10 × 10 vertices arranged regularly, restricting the method’s
broader applicability.

HDM-net [42] uses three-channel 2D maps to model the
3D coordinates of a regular 73 × 73 vertex mesh. The loss
function is the difference between the network’s outputs and
the reconstruction labels from a synthetic dataset.

DeepSfT [24] is trained for a specific template (in terms
of shape and texture map) by embedding this information
into the DNN’s weights. The network outputs pixel-level
depth and registration maps of the template’s visible surface
in the input image, allowing it to represent 3D objects of
arbitrary and complex shapes. A post-processing step using
the ARAP model is required to recover the hidden parts of the
surface. Initially trained on synthetic data, DeepSfT is fine-
tuned using real data with a photometric loss and a supervised
depth loss, requiring an RGB-D sensor for this step. Its key
strengths are its high accuracy and ability to recover shapes
with any number of vertices.

2) Object Generic

IsMo-GAN [43] builds on the work of [42] by using ad-
versarial learning to train both an object-detection network
and a discriminator. This approach improves reconstruction
accuracy in real images compared to earlier methods and
performs well on textureless surfaces.

Texture-generic DeepSfT [44] extends the work of [24],
making the method adaptable to new texture maps at runtime
without the need for fine-tuning, thus achieving texture in-
variance. The architecture comprises two neural networks: a
segmentation DNN to detect the template and an SfT module
to solve registration and reconstruction. Both networks re-
quire the template’s texture map as input to facilitate texture
generalisation. Similarly to its predecessor, a post-processing
step using the ARAP model is needed to recover the full 3D
shape. This method achieves comparable results to previous
DNN texture-specific approaches and performs well under
challenging deformation and imaging conditions.
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FIGURE 1: Geometric modelling of SfT. Data written in green is known a priori, meanwhile data written in red needs to be
estimated to solve SfT.

III. METHODOLOGY

A. PROBLEM DESCRIPTION

This section covers the basic concepts that define the SfT
problem. Figure 1 depicts the main elements and functions
involved in SfT.

The template T is composed of two primary components:
a 3D mesh and its associated texture. The 3D mesh is defined
by a set of vertices (TV ) and their connectivity information
(TT for triangles). The texture is defined by an RGB image
A of size HT × WT , along with a set of UV coordinates
Tu−v that map each vertex (and thus each triangle) to specific
locations within the texture image. The deformed surface S
is also represented as a 3D mesh that shares the topology
and appearance of the template. It is defined by a set of
vertices SV , which differ from those of the template while
maintaining the template triangulation TT and texture A. The
deformed surface S and the template T are related by a quasi-
isometric deformation (see Section V). The input image I is
an H×W RGB image showing the projection of S through a
pinhole camera with known intrinsic parameters. Due to self
and external occlusions, only a subset of S is visible in the
image. We define the visibility in the input image as a binary
mask M, the same size as I. The image points showing the
surface projection are labelled as “1” in the mask and “0”
otherwise.

The objective of SfT is to find S from I and T . Solving
SfT involves a registration step and a reconstruction step. The
registration step consists in finding correspondences between
the template T and the image I. The warp η : (u, v) →
(uT , vT ) defines the mapping between image coordinates
(u, v) and texture coordinates (uT , vT ) in the template. We
approximate η as a discrete two-channel image W , which has
the same size as the input image:

W(u, v) =

{
η(u, v) M(u, v) = 1

(−1,−1) M(u, v) = 0
(1)

(u, v) ∈ [0, . . . ,H − 1]× [0, . . . ,W − 1] (2)

The coordinates (−1,−1) lie outside the template texture
and indicates that the surface is not visible at that particular
position, incorporating the mask M into W . The recon-
struction step involves finding the 3D shape of the surface,
defined by the set of vertices SV , from the registration warp
and the template. We define the surface embedding function
X : (u, v) → (x, y, ρ), which maps image coordinates
(u, v) to 3D points (x, y, ρ) that belong to the surface with
respect to the camera’s projection origin. The only unknown
in recovering X is the surface depth ρ, as the other two
components, i.e., x and y, can be obtained from the image
coordinates (u, v), the intrinsic camera parameters, and ρ
using the following expressions:

x(u, v) =
ρ(u, v)

fx
(u− u0) (3)

y(u, v) =
ρ(u, v)

fy
(v − v0) (4)

where fx and fy are the horizontal and vertical focal lengths,
and u0 and v0 are the image coordinates of the principal
point. We define the surface depth map as the following
single-channel image D:

D(u, v) =

{
ρ(u, v) M(u, v) = 1

−1 M(u, v) = 0
(5)

(u, v) ∈ [0, . . . ,H − 1]× [0, . . . ,W − 1] (6)

In this step, the mask M(u, v) is inferred from the reg-
istration warp W(u, v), where points not belonging to the
template are assigned a (−1,−1) value.
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Existing SfT methods compute the depth map and then
recover the rest of the surface that is not visible in the input
image. In contrast, we compute the surface directly from the
warp using a mesh processing step.

B. PROPOSED SOLUTION METHOD
Figure 2 shows a general diagram of the proposed SfT
method. We use a DNN encoder-decoder architecture to solve
the registration step. This DNN takes the input image I
and the segmentation mask M as inputs and estimates the
registration warp image W . We propose a weakly-supervised
learning process to train the registration DNN, removing the
necessity for synthetic image generation and RGB-D sensors,
which are required by DeepSfT.

Our training data consist of unlabelled, raw real video
sequences gathered and saved frame-by-frame without pre-
processing. The training sequences must fulfill three main
requirements: 1) the first frame of each sequence shows a
rigid transformation of the template reference shape, 2) the
deformation and pose changes between consecutive frames is
mild, allowing optical flow methods to generate point tracks,
and 3) the object can be segmented from the background.
This process is further explained in Section IV.

Once the registration has been solved, we apply the ARAP
algorithm to solve the reconstruction problem from the es-
timated warp. This method takes the previously obtained
registration map W and the template T as input and estimates
the deformed surface S. Since ARAP does not need training,
it can be directly used with real data. This process is further
explained in Section V.

IV. REGISTRATION STEP
This section expands on the proposed registration DNN
model and weakly-supervised training method.

A. NETWORK ARCHITECTURE
Figure 3 shows the encoder-decoder architecture used to
build the registration DNN. It is based on the Main Block
used in the DeepSfT DNN [24], so it uses convolutional
and deconvolutional residual feed-forward structures based
on the ResNet50 model. This design propagates the infor-
mation to deeper layers while preserving the spatial high-
frequency details. We have removed the output dedicated
to the depth map in DeepSfT, which is not needed in our
design, and added the segmentation mask M as an addi-
tional input. We model the registration DNN as the function
W = DW (I,M, θw), where θw are the network weights
and W is the estimated warp image. The estimated warp W
is filtered after inference using the mask M to remove invalid
points.

B. WEAKLY-SUPERVISED TRAINING
We propose a new weakly-supervised training method for the
registration DNN that does not require direct supervision and
can be trained directly on real data.

1) Principles and Training Data
The training data must meet several conditions. First, the data
should be acquired as video sequences where the surface
deforms gradually from its rest shape, which corresponds
to the template shape, ensuring that the baseline conditions
between frames are minimal. The core idea is to use optical
flow methods to compute correspondences between adjacent
frames in the sequence, which then serve as weak super-
vision. Second, we require some frames in the sequence
to display the template shape, subject to an unknown rigid
transformation that can be computed later using robust rigid
tracking methods [45] [46]. We refer to these frames as
“keyframes,” and assume they are identified in the sequence,
e.g., the first frame of each video sequence is a keyframe.
Third, segmentation of the object of interest from the back-
ground is required for all frames in the sequence. To achieve
this, we use foundational segmentation models to segment
the input images with minimal user interaction. We use Track
Anything [47], a tool based on the Segment Anything Model
(SAM) [48], which extends the segmentation from SAM
across the full length of a video sequence. Track Anything
allows us to segment an entire input sequence based on
the results of applying SAM to just the first frame of the
sequence. This simplifies the segmentation process during
training and makes it accessible to non-expert users. It is
important to highlight that the previous requirements only
apply to the training sequences. During inference, the method
works independently for each single image and does not
require optical flow methods, which makes it able to cope
with wide-baseline conditions.

Based on the above data, we propose to train the regis-
tration DNN given in Section IV-A with a compound loss
as shown in (7), involving three terms: the matching loss
LM , enforcing the estimated optical flow between frames,
the rigidity loss LR, including the pose estimation in the
keyframes, and a regularisation term LS , enhancing the
smoothness of the solution. Each term in the equation will
be introduced in the following sections:

L = λM LM + λR LR + λS LS (7)

2) Matching Loss
We construct the matching loss by computing the optical flow
between pairs of consecutive images Ii and Ij with j = i+1.
Given a position (u, v) in image Ii, the optical flow allows
us to find its correspondence in image Ij at (u+ δu, v+ δv).
The correspondence (u, v) → (u + δu, v + δv) is valid if
it is a visible point on the surface in both images, meaning
Mi(u, v) = 1, and Mj(u + δu, v + δv) = 1. Using the
registration DNN, we compute the two warp images Wi

and Wj corresponding to Ii and Ij . Since the SfT warp
maps points from the image plane to template coordinates, a
correspondence between two images should point to the same
template coordinate (see Figure 4 for a graphical depiction).
Thus, we aim to minimise the following Euclidean distance
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FIGURE 2: Proposed Shape-from-Template method architecture. The inputs of the networks are coloured in blue, the learning-
based algorithms are in green meanwhile the non-learning ones are in purple, and the outputs of the system are in yellow.

FIGURE 3: Registration Network Architecture: We adopt a modified version of the architecture proposed in [24], a Fully
Convolutional Network (FCN) based on the ResNet50. In our version, we introduce the image mask as an additional input,
remove the depth output, and replace the final activation layer with a sigmoid layer.
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FIGURE 4: Graphical depiction of the matching loss LM .
The optical flow (δu, δv) is computed using PWC-Net. The
registration maps Wi and Wj , estimated by the registration
network introduced in Section IV-A, are used to establish
correspondences between frames. Ii and Ij represent the
input images, and A denotes the known texture map of the
template.

during training:

di,j(u, v) = ∥Wi(u, v)−Wj(u+ δu, v + δv)∥2. (8)

The matching loss is designed so that the distance in (8) is
minimised across pairs of frames in the training sequences
and over all valid correspondences. To construct the loss,
we generate a batch of images grouped into Ng randomly
selected sets of frames. Each group k consists of Nf frames
Ik,i for i = 1, . . . , Nf , taken from the same sequence and
sorted chronologically. Frames are spaced within the group
following a uniform distribution with a maximum frame
gap, which is a training parameter tuned in our experiments.
Keeping a small gap is important to ensure that the optical
flow method produces accurate flow estimates. We compute
the optical flow between consecutive frames in each group,
resulting in Nf − 1 pairs of optical flow maps. We denote
dki,j(u, v) as the distance defined in (8) for frames i and j in
group k, corresponding to image coordinates (u, v). The loss
is defined as follows:

LM = γ

Ng∑
k=1

Nf−1∑
i=1

∑
(u,v)∈Rk

i,j

w(dki,i+1(u, v), cM ), (9)

where Rk
i,j represents the region of valid correspondences

for the pair of frames i, j in group k, and γ is a normalisation
factor depending on the number of points used in the loss.
The function w is the Welsch Loss [49]:

w(x, c) = 1− exp

(
−1

2

(x
c

)2)
, (10)

where c = cM is a scalar hyperparameter that controls the
influence of residuals and sensitivity to large errors in the
optical flow estimation that might affect the training process.
The diagram in Figure 5 visually represents the explained
methodology. In our experiments, we use PWC-Net [50] to
compute the optical flow although any other modern method
would be valid. More details are given in Section IV-C.

3) Rigidity Loss
The matching loss introduced in the previous section cannot
be used alone to train the registration DNN, as it suffers
from degeneracy. The optimisation process can indeed reach
a global minimum of LM by mapping all image posi-
tions to the same coordinates in the template, resulting in
LM = 0. Therefore, it is necessary to complement this
loss with an additional loss that prevents the solution from
“shrinking” to a single template coordinate. To address this,
we design the rigidity loss, a function only applicable to
“keyframes”—frames in the training sequence where the ob-
ject’s shape is known, corresponding to the template’s shape
but with an unknown rigid transformation. We automatically
determine this transformation using standard rigid tracking
methods. With the template shape, we can compute the
warp image Ŵ for that specific frame and use it for direct
supervision.

The first step is to find point matches between the template
texture map T and the input image I, corresponding to a
keyframe. We use the state-of-the-art point matcher Light-
Glue [51], an improved version of SuperGlue [52]. This
algorithm extracts local features from both the input image
and the texture map using SuperPoint [53] or DISK [54].
After that, it uses self and cross-attention layers to reject non-
matchable points. The Sinkhorn algorithm is used to establish
correspondences between the feature sets and perform the
pair assignments. For planar templates, such as those used in
the experimental results section, we compute a homographic
transformation between the template texture map and the
input image using a robust estimator based on RANSAC. The
warp image is then obtained according to this transformation
as follows:

Ŵ(u, v) =

{
ûT (u, v), v̂T (u, v) M(u, v) = 1

(−1,−1) M(u, v) = 0
(11)

ûT (u, v) =
h1u+ h2v + h3

h7u+ h8v + h9
(12)

v̂T (u, v) =
h4u+ h5v + h6

h7u+ h8v + h9
, (13)

where hi for i = 1, . . . , 9 are the coefficients of the ho-
mographic transformation between the keyframe and the
template. For non-planar objects, a robust pose estimation
method can be used to find the rigid transformation (i.e.,
composed of a rotation matrix R and a translation vector
T ) between the camera coordinates and the 3D template.
The computation of Ŵ(u, v) becomes more complex than in

8 VOLUME 4, 2016



S. Luengo-Sanchez et al.: Weakly-Supervised Deep Shape-from-Template

FIGURE 5: Proposed self-supervised matching loss LM . This loss uses the spatiotemporal association between frames to match
pixels corresponding to the same point in the template, enforcing their registration maps to coincide. Given a batch of Ng ×Nf

input frames and its masks, we first compute the segmented images. Then, we conduct two tasks: 1) we use the input images
and masks to obtain the registration maps Wu

i and Wv

i through the registration network (top branch), 2) we pair up consecutive
segmented images in each group k, run them through the optical flow network PWC-Net and filter out invalid pairs of pixels
(bottom branch). Once both tasks have been completed successfully, we compute the loss LM using (9).

(11), as it requires using a rasterisation method to determine
the barycentric coordinates of each image coordinate in the
template, using the rigid transformation estimated earlier and
the template’s triangular mesh.

The rigidity loss is then computed as:

LR =
1

Nk

K∑
i=1

w(∥Wi − Ŵi∥, cR), (14)

where K is the set of keyframes in the batch, Ŵi is the
i-th keyframe estimated warp using rigidity and Wi is the
estimated warp using the registration DNN. We use w for the
Welsch Loss [49] and cR for its hyperparameter, as shown
previously in (10).

4) Smoothing Loss

Finally, we add an edge-aware smoothing term to reduce
the high-frequency noise in the registration output while
preserving the boundaries in the registration map W . For
this purpose, we use the bilateral filtering loss from [55].
Given a batch of Nb images, where Ii,c denotes the i-th
image and c ∈ {0, 1, 2} represents its colour channel, and
Wi corresponds to its estimated warp image, the smoothing
loss is defined as:

LS =
1

Nb

∑
exp

(
−σ

3

∑
c

∣∣∣∣∂Ic∂u

∣∣∣∣
) ∣∣∣∣∂W∂u

∣∣∣∣+
+ exp

(
−σ

3

∑
c

∣∣∣∣∂Ic∂v

∣∣∣∣
) ∣∣∣∣∂W∂v

∣∣∣∣ ,
(15)
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where σ modifies the edge weight in the smoothing term. Its
value is determined in Section IV-B. The first-order partial
derivatives of (15) are implemented using finite differences
to make them differentiable with respect to the network
parameters.

C. IMPLEMENTATION DETAILS
We use the Stochastic Gradient Descent (SGD) optimiser to
train our network with a learning rate of 0.0001. Additionally,
we use a weighted sum given by (7) to balance the three
different losses to avoid degeneration of the gradient due to
ambiguities. We use the rigidity loss as a reference and assign
it a weight of λR = 1 and cR = 0.01 for the Welsch Loss
hyperparameter. Then, we experimentally select a weight of
λS = 25 for the smoothing loss and a weight of λM = 1.25
for the matching loss, with a value of σ = 150 for the edge
weight and a value of cM = 0.005 for the Welsch Loss
hyperparameter respectively. Some of these values will be
addressed forward in Section VI-F. The network was trained
for 200 epochs although the matching and smoothing losses
were not activated until epoch 20 for convergence purposes.
We use a mini-batch of 9 images and divide it into Ng = 3
groups of Nf = 3 frames. Only the first group contains a
keyframe (K = 1) and each group belongs to a different
sequence. In each iteration, the time step between frames is
picked from a uniform distribution, with a minimum of 1 and
a maximum that depends on the deformations present in the
dataset. We choose a time step for each dataset that produces
a meaningful mean displacement value of 5 pixels, which
is sufficient to avoid large displacements while minimising
noise influence. The registration network achieves an infer-
ence time of 0.058 seconds and a frame rate of 17.2625 fps
on an Nvidia GTX 3090 GPU. Consequently, it is compatible
with real-time applications.

V. RECONSTRUCTION STEP
We recover the deformed surface’s 3D vertices SV , from the
template mesh T and the warp image W obtained in the
registration step. We propose a reconstruction method based
on solving the following minimisation:

SV = argmin
SV

(E(SV )) (16)

E(SV ) = Ed(SV ,W) + λaEiso(SV ) + λsEs(SV ), (17)

where Ed is a reprojection data term that ensures the recon-
struction is coherent with the estimated warp, Eiso enforces
isometry, and Es enforces surface smoothness. The hyperpa-
rameters λa and λs control the weights of the isometry and
smoothness terms, respectively. All terms involve the known
template mesh T , which is composed of vertices TV and
triangles TT .

A. THE DATA TERM
The data term is obtained by sampling W to extract Nd point
correspondences pi → qi, where i = 1, . . . , Nd, ensuring

that they correspond to visible points on the surface using
the mask, i.e. M(pi) = 1, i = 1, . . . , Nd. We compute the
barycentric coordinates αi, βi, γi of each point qi within the
template mesh, identifying the mesh triangle that contains the
point. Since T and S share the same topology, the barycentric
coordinates of a point are preserved. Consequently, pi in
the image corresponds to a 3D point Qi in S, defined as
Qi = αiV1,i + βiV2,i + γiV3,i, where Vk,i are the vertices
of the triangle in SV associated with point i. We propose the
following reprojection data term:

Ed(SV ) =

Nd∑
i=1

∥Pi ×KQi∥2

∥Pi∥2
, (18)

where P⊤
i = (p⊤i 1), K is the camera’s intrinsic 3×3 matrix,

and × denotes the cross product. The term Ed is quadratic in
SV .

B. THE ISOMETRIC TERM
We follow the approach of [56], [57] to construct the isomet-
ric energy term, which encourages each triangle in the mesh
to transform quasi-rigidly. Given that TT has NF triangles,
we define the 3 vertices of face f as TV,f in the template, and
SV,f in the deformed surface. The isometric energy term is
defined as the following sum:

Eiso(SV ) =

NF∑
f=1

Eeuc(SV,f , TV,f ) (19)

Eeuc(X,Y ) = min
R,t

3∑
i=1

∥RYi + t−Xi∥2, (20)

where Eeuc(X,Y ) involves computing the closest rotation
R ∈ SO(3) and translation t ∈ R3 that aligns the template
triangle Y = (Y1, Y2, Y3) to the deformed surface triangle
X = (X1, X2, X3), with Xi, Yi ∈ R3 for i = 1, 2, 3, and
then computing the alignment error. The term Eiso is non-
convex due to the involvement of rotation matrices and the
nested optimisation required for Eeuc. To address this, we
follow [56] to convert it into a convex quadratic energy by
using a first-order approximation of the rotation term, R ≈
(I + skew(r))R0, where skew(r) is a 3× 3 skew-symmetric
matrix, r ∈ R3 is a rotation vector, and R0 ∈ SO(3) is
an approximation of R, computed as the best-fitting rotation
between the template triangle Y and the previous available
estimate of X (i.e., the result from the last optimisation
iteration). By replacing R with (I + skew(r))R0 in (19),
Eeuc(X,Y ) admits a closed-form solution that is quadratic in
X . Therefore, the energy term Eiso becomes quadratic in SV .
This approximation requires that R0 is computed accurately
and updated at each iteration, as described in Section V-D.

C. THE SMOOTHING TERM
We use the thin-shell bending energy term to define Es(SV ),
which is quadratic in SV and is designed to penalise high
changes in the template curvature. We use the discrete form
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described in [58]. This method works by taking the four ver-
tices from every pair of neighbouring triangles and measuring
the degree to which their motion deviates from affine motion.
The result is a bending matrix, B, that is used to compute Es:

Es(SV ) = ∥B vec(SV)∥22, (21)

where vec(SV) is a column vector containing the coordinates
of all vertices in SV .

D. OPTIMISATION ALGORITHM
To optimise (16), we first reduce the dimensionality of the
solution by expressing the set of vertices vec(SV ) as a linear
basis vec(SV ) = AbΦ, where Ab is obtained as the nb last
singular vectors of the bending matrix B used in (21), and
Φ ∈ Rnb is the unknown parameter vector. We transform
(16) to use Φ as the unknown parameter:

Φ = argmin
Φ

(E(AbΦ)) . (22)

We initialise the solution by projecting the template surface
onto the basis Ab:

Φ0 = A⊤
b vec(TV ) (23)

At each iteration k, the algorithm computes Φk by min-
imising (22) which is quadratic and convex on Φk. We then
compute the set of mesh vertices by computing vec(SV )k =
AbΦk. Importantly, we use the solution to the last iteration
vec(SV )k to linearise the isometric energy term. We stop the
optimisation after a few iterations or if ∥Φk − Φk−1∥ < ϵ.
In practice, we set λs to a very small value, since nb also
controls the smoothness of the solution, leaving λiso, nb

and the number of iterations as the main hyperparameters
of the reconstruction step. Further implementation details
are provided in Section V-E. Once SV is estimated, we
can easily obtain the associated depth map by using a z-
buffer rasterization method. This is used in the experiments to
compare our reconstruction results with other methods, such
as DeepSfT, that recover the depth map.

E. IMPLEMENTATION DETAILS
The template meshes in our dataset are composed of NV =
12 × 12 equally spaced vertices, which form a total of
NF = 242 triangular faces. In our experiments, we sample
Nd = 104 image positions, which is sufficient given the com-
plexity of these templates. We find that nb ≈ 250 bases and
λs = 10−5 represent large deformations accurately, keeping
a smooth surface and significantly reducing the computation
time needed. We set λiso = 10, achieving a correct balance
between the isometric and reprojection constraints. Finally,
we use ϵ = 10−5 and a maximum of Niters = 25 iterations.

VI. EXPERIMENTAL RESULTS
A. DATASETS
Due to the dataset requirements explained in Section III-B,
none of the existing publicly available SfT datasets are suit-
able for training our network. Therefore, we have created

five new datasets with thin-shell templates to evaluate our
method and compare its results with the state-of-the-art. The
datasets have been generated from three example texture map
images: 1) “Fruits”, an image with bright colours and texture
variety (Figure 6), 2) “Zaius”, exhibiting darker colours and
poorer texture (Figure 7), and 3) “Cloth”, with a simpler
texture but fine details (Figure 8). For texture maps 1) and
2), we generated a synthetic dataset using a bending paper
simulation and record a real dataset by printing the texture
map in a piece of paper. For 3), we used a cloth bag with a
printed texture. Since the deformations of this material differ
from those observed in paper, we did not create a synthetic
dataset, as it would not faithfully represent its real behaviour.
The texture map resolution and shape information for each
template are shown in Table 2.

FIGURE 6: “Fruits” dataset texture map.

FIGURE 7: “Zaius” dataset texture map.

FIGURE 8: “Cloth” dataset texture map.

Each dataset consists of 70 video sequences, with 300
frames each, making 21000 images in total. The first frame of
each sequence is a keyframe, showing the template shape and
is then deformed gradually through the rest of the sequence.
Each dataset has been split into three parts: the first 50 se-
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Texture map (px) Template (mm)
Width Height Width Height

Synthetic
Zaius 480 270 480 270
Fruits 480 270 480 270

Real
Zaius 689 384 288 159
Fruits 2186 1217 590.81 328.92
Cloth 2237 2222 247.5 246.0

TABLE 2: Templates’ dimensions.

quences are used to train the network, the next 13 sequences
are used to determine the best hyperparametetrisation of the
network, and the remaining sequences are used to compare
the proposed solution with state-of-the-art methods. The
selection of hyperparameters will be further discussed in
Section VI-F.

1) Synthetic Datasets
We have created a synthetic dataset for each planar tem-
plate described in Table 2. Although our weakly-supervised
methodology is able to work directly with real scenes, syn-
thetic data allow us to generate registration and reconstruc-
tion ground truth, not available in real data. The datasets
were generated by digitally simulating quasi-isometric de-
formations of a piece of paper folding around the surface
of a cylinder of variable radius. The paper’s position and
orientation relative to the cylinder surface varies slightly
between frames, as well as the radius of the cylinder, to gen-
erate different deformations. The rendering process mimics
the Kinect 2 camera intrinsic parameters, along with an ini-
tial random camera pose and random camera displacements
throughout the sequence. The resolution of the generated
images is 480×270 pixels. To avoid frames where the object
is out of sight, the relative motion between the camera and the
surface is limited, so at least three-quarters of the template
is always in the line of sight of the camera. In addition, we
constrain the minimum radius of the cylinder to ensure that
the back of the texture map remains unseen in all frames
and the paper does not bend into itself. The initial values
and the possible range of the parameters used to generate
the dataset are shown in Table 3. We obtain registration
and reconstruction ground truth to quantitatively compare
different methods and optimise the model hyperparameters.
During training with synthetic scenes, we use the registration
ground truth for the keyframes, instead of the pose estimation
process required in real scenes. This allows us to better
evaluate the performance of the matching loss in our ablation
studies.

2) Real Datasets
We have recorded three real datasets based on the “Fruits”,
“Zaius” and “Cloth” templates, using a Microsoft Kinect
v2 which provides RGB and depth data at 30 frames per
second (fps). The depth maps are aligned with the RGB
images that have been resized to 480 × 270 pixels to fit
the requirements of our registration DNN. The depth data

gathered is only used to evaluate reconstruction accuracy and
is not used during training, and the registration labels are
not provided. To create real thin-shell templates for paper-
like datasets, we print the texture maps with sizes A2 for
“Fruits” and A4 for “Zaius”, cut them to maintain the texture
map proportions, and attach two handles to both sides of
the paper to perform manual deformations in the template
without producing occlusions. For “Cloth”, we use a squared
cloth bag with the texture map printed in its center and hold it
with a hanger to perform manual deformations. As explained
in Section IV-B3, we need to generate an estimate of the
ground-truth data for the keyframes in order to implement the
rigidity loss and avoid the uniform solution of the matching
loss. To obtain a registration map of rigid frames, we used
a state-of-the-art pose estimation method, as explained in
Section IV-B3.

3) Data Augmentation
We perform data augmentation to increase the generalisa-
tion of the network during the training phase. We perform
affine transformations of the image and add noise, so the
intrinsic characteristics of the template (such as colour and
structure) are not modified. We apply the data augmentation
with random transformation parameters among certain limits
to avoid invalid frames. First, the input image is shifted by
a maximum of 0.2 times the size of the input image and
rotated by a maximum of 60◦. There is an exception with
the real “Zaius” dataset which is not rotated at all due to
the template falling out of the images in some frames. After
that, we apply blur with a probability of 0.33, which can be
motion blur (with a kernel of size 3) or Gaussian blur (µ = 0,
σ = [0.0001, 0.0004]), with equal likelihood.

B. COMPARED METHODS
We compare the proposed technique with three state-of-the-
art methods that are compatible with the generated datasets.
They are described next. We add a clipping stage to the output
of these methods to avoid registration values of valid regions
to point at positions outside of the template.

1) LightGlue + BS
The first method estimates the registration between the tem-
plate and the input image by applying a sparse point matching
algorithm. We use the same state-of-the-art method as in the
rigidity loss, LightGlue [51], to extract point matches and
remove mismatches as explained in Section IV-B3. Then, we
apply a Bicubic B-spline (BBS) algorithm with the ground-
truth mask as the region of interest to densify the sparse 2D
correspondences according to the properties of the template
and obtain a dense registration map. Finally, we utilise the
input mask to remove invalid points that might fall outside of
the template due to errors in the estimation process. Once the
registration maps have been obtained, we apply a 2D to 3D
reconstruction method to recover the 3D deformed shape. To
make a fair comparison, we apply ARAP, the same algorithm
as in our method that was explained earlier in Section V.
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Parameter Initial value
Range

of values
Standard
deviation

Maximum
Variation

Rotation around axis X (rad) 0* / last sequence [-0.5, 0.5) 0.03 -
Rotation around axis Y (rad) 0* / last sequence [-0.5, 0.5) 0.03 -
Rotation around axis Z (rad) 0* / last sequence [-0.5, 0.5) 0.03 -
Displacement in axis X (mm) [-120, 120) [-120, 120) 20 [-48, 48)
Displacement in axis Y (mm) [-67.5, 67.5) [-67.5, 67.5) 10 [-27, 27)
Displacement in axis Z (mm) [486, 491) [432, 648) 10 [-100, 100)
Radius of the cylinder (mm) ∞ [216,∞) 260 -

Rotation angle of template to axis Z (rad) 0* [-π/2,π/2) 0.1 -
Number of control mesh points 8 - - -

Sequence length (frames) 300 - - -

TABLE 3: Generation parameters for the synthetic dataset. *: Rotations start at 0 in the first sequence of the dataset, but do not
reset afterwards. The rest of the parameters reset to a value inside the initial value range at the beginning of the sequence.

2) RAFT

We also compare our registration DNN with RAFT [59], a
state-of-the-art DNN optical flow method. RAFT estimates
the displacement of the pixels between the template and
the image, which is equivalent to performing dense point
matching between both images and thus, can be used to
estimate the warp image. However, optical flow algorithms
do not work properly in a wide-baseline scenario. Since
there is a substantial disparity in the object size between
the input image and the template, we need to add a pre-
processing step that adjusts the template’s size or otherwise
the RAFT DNN is unable to find the optical flow between
the images. Thus, we add padding to the texture map, so
the template in the reference image has a similar occupancy
ratio as the object in the target images. Due to this fact,
two post-processing steps are needed: one to turn the optical
flow (relative coordinates) into a registration map (absolute
coordinates), and a second one to transform the coordinates
from the padded reference template into the original one.
We have chosen a padding value of -1 to automatically label
invalid optical flow predictions that lead to points outside of
the template in the padded reference. After that, the ground-
truth mask is applied to remove artefacts generated by the
optical flow during the registration process. Finally, ARAP is
applied to obtain the 3D reconstruction from the registration
maps.

3) DeepSfT and DeepSfT+ARAP

Lastly, we compare our method with DeepSfT [24]. In our
experiments, the DeepSfT DNN has been trained in the
synthetic dataset of each corresponding template, using both
registration and depth ground-truth supervision. This method
could not been tested on the “Cloth” dataset due to the lack
of a synthetic dataset required for training. In the original
implementation, DeepSfT also includes a fine-tuning step to
adapt it to real data that requires depth data. We do not add
this step to DeepSfT since it would be unfair to compare
it with our method which does not require a depth sensor.
We test the performance of DeepSfT, both registration and

depth outputs, and DeepSfT+ARAP, where we apply ARAP
reconstruction to the registration solution, discarding the
depth output.

C. EVALUATION METRICS
First, we evaluate the performance of all methods using
synthetic data, where we have registration and reconstruction
labels. We use the following metrics:

• The Root Mean Squared Error (RMSE) of the regis-
tration and depth map:

EW =

√
γ
∑

(u,v)∈R

∥∥W(u, v)−W(u, v)
∥∥2 (mm),

(24)

ED =

√
γ
∑

(u,v)∈R

∥∥D(u, v)−D(u, v)
∥∥2 (mm),

(25)
where W , D are the ground-truth maps and W , D are
the estimated maps. The region R contains the pixel po-
sitions that lie in the intersection of the estimated mask
and the ground-truth mask. Factor γ is the normalization
factor equal to the inverse of the number of evaluated
pixel positions.

• The 3D error (d3D) is the distance between the esti-
mated 3D position and the closest point in the ground
truth:

d3D =

√
γ
∑

(u,v)∈R

∥∥X (u, v))−X (unb, vnb)
∥∥2
2
(mm),

(26)
where X (unb, vnb) is the nearest neighbour point in the
ground-truth image embedding to the estimation X , as
described in Section III-A.

• The Intersection over Union (IoU), measures the dis-
crepancies between the detection area of the prediction
and the ground-truth mask. The detection area encapsu-
lates points where the evaluated method has produced
a valid registration prediction. In the case of DeepSfT,
proper depth prediction must be considered as part
of this area. When the estimated IoU is lower than
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70%, we consider that the system cannot recover the
registration and reconstruction maps properly, and we
classify the prediction as a catastrophic failure. Those
cases have been removed from the metric estimations
and are counted separately. The IoU threshold has been
experimentally established to be the value at which
ARAP performance drops due to the lack of accurate
registration.

• The Photometric Error (EPh) is evaluated as the mean
L2 error between the intensity functions of the input
image I and the synthesised input image I, which is
obtained by warping the template’s texture map into
the input image using the estimated warp, as explained
in [24]. This representation of the network prediction
allows us to directly compare the output of the network
with the inputs. However, this measurement is not as
accurate as the registration error since it may contain
noise introduced by illumination changes between the
template and the input image:

EPh =

√
γ
∑

(u,v)∈R

∥∥I(u, v)− I(u, v)
∥∥2
2
(n.u.) (27)

In addition, a few graphical examples of the method’s perfor-
mance in medium to difficult frames are shown in Tables 6,7,
8 and 9. The visual depictions include the synthesised image
and the registration, depth and 3D error maps estimated as
the absolute difference between the ground truth and the
prediction. We also compare the projection of 3D meshes
into the camera coordinates to obtain a clearer picture of the
reconstruction of the shape, and the synthesised image with
the input image by overlaying the former over the latter by
applying (28):

Ioverlay =
I + I
2

(28)

For the real datasets, we keep the depth and photometric
errors and the IoU-related metrics. In this case, we remove
points from the ground truth whose depth is lower than 10
mm, as they come from inaccuracies of the depth sensor and
would interfere with the evaluation process. We also add the
following metrics between I and the synthesised image I to
further evaluate the results:

• Peak Signal-to-Noise Ratio (PSNR) (dB) is a measure-
ment commonly used in computer vision to quantify
the discrepancy of a distorted image with respect to the
original image.

• Structural Similarity Index Measure (SSIM) esti-
mates the perceived variations in structural information,
luminance and contrast between a target image and a
reference image considered of perfect quality.

We also include some graphical examples of the results in
medium to difficult frames for the real datasets in Tables
12, 13, 14, 15, 16 and 17. We use the same representations
of the methods’ performance as in the synthetic case, with
the exception of the registration error that is replaced by the
photometric error since its ground truth is not available.

D. EVALUATION WITH SYNTHETIC TEMPLATES
In this section, we analyse the performance metrics and
qualitative results achieved by the different methods in the
synthetic datasets. The numerical results obtained by each
method are presented in Table 5, while a few graphical
examples of the method’s performance in medium to difficult
frames are shown in Tables 6, 7, 8 and 9. The input images
corresponding to the frames used for this qualitative evalua-
tion are presented in Table 4.

As shown in Table 5, our model WS-DeepSfT outper-
forms its competitors in both datasets and across all metrics,
achieving robust predictions even in challenging conditions.
LightGlue+BS achieves the second-best ranking in registra-
tion and photometric error in the “Fruits” dataset by a close
margin. Nonetheless, its performance drops significantly in
“Zaius” due to the lack of features in the texture, where it
is overtaken by RAFT, which shows robustness on texture-
poor surfaces. However, RAFT’s weaknesses, similar to other
optical flow methods, become apparent in the presence of
large displacements, as in the “Fruits” dataset, where it ranks
as the third-best method. Finally, DeepSfT is the lowest-
performing method in “Fruits” and second-to-last in “Zaius”.
This behaviour is attributed to the dataset’s variability and
size, as DeepSfT heavily relies on the availability of a large
amount of training data with a wide range of deforma-
tions and lighting conditions. Although WS-DeepSfT uses a
similar DNN, our training strategy successfully overcomes
these drawbacks by reducing the amount of required training
data and minimising outliers and noise, especially along the
template boundaries, as shown in Tables 6, 7, 8 and 9.

The results obtained in registration are directly related
to the depth and 3D errors since ARAP uses the former
combined with the template information predict the latter,
as we observe in Table 5. The only exception is DeepSfT,
which predicts its own depth map without ARAP and thus
reduces its dependency on registration accuracy. Neverthe-
less, WS-DeepSfT still outperforms DeepSfT in 3D metrics
since the registration errors are lower. On the other hand,
LightGlue+BS and DeepSfT+ARAP fail to accomplish an
accurate reconstruction of the 3D mesh through ARAP due
to the presence of large errors in the registration maps,
which results in high depth and 3D errors. It must be noted
that DeepSfT also produces its own segmentation instead
of using an input mask. This feature leads to an increase
of errors in the boundaries of the template and a higher
number of gross errors, which results in larger overall errors
in registration and reconstruction. This behaviour is observed
in the registration error maps of Tables 6, 7, 8 and 9, where
the predictions of this method achieve much lower errors in
the middle of the template compared to the boundaries.

Aside from blunders, most of these methods fail to make
predictions for some pixels inside the region of interest
defined by the input mask, as seen in the boundaries of
DeepSfT predictions, in the predictions of LightGlue+BS in
Tables 7, and 9 or in the left side of the RAFT prediction in
9. WS-DeepSfT consistently produces better and more stable
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Zaius Fruits
Example 1 Example 2 Example 1 Example 2

TABLE 4: Example frames for the qualitative results in synthetic datasets.

Zaius
EW (mm) EPh (n.u.) ED (mm) d3D (mm) IoU Failures

LightGlue+BS 76.0006 0.1905 850.2050 779.8587 0.9167 284
RAFT 17.1158 0.0957 60.9973 45.8062 0.9824 0
DeepSfT 54.6259 0.1205 58.1608 35.8589 0.9591 0
DeepSfT+ARAP 54.6260 0.1205 766.3440 667.1372 0.9515 0
WS-DeepSfT 7.9275 0.0907 26.8419 20.2382 1.0000 0

Fruits
EW (mm) EPh (n.u.) ED (mm) d3D (mm) IoU Failures

LightGlue+BS 3.7701 0.1960 48.5261 42.4192 0.9817 0
RAFT 15.9341 0.1896 19.1145 12.8020 0.9287 104
DeepSfT 29.5810 0.2018 20.1214 11.7167 0.9636 191
DeepSfT+ARAP 51.2252 0.2097 117.5677 84.9531 0.9552 33
WS-DeepSfT 3.3347 0.1721 6.0404 4.3278 1.0000 0

TABLE 5: Quantitative evaluation results on synthetic test data on the “Zaius” and “Fruits” datasets.

Model I′ Iover Registration Error (mm) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EW = 48.85 ED = 728.14 d3D = 621.13

RAFT

EW = 17.09 ED = 94.10 d3D = 68.18

DeepSfT

EW = 56.21 ED = 96.57 d3D = 42.69

DeepSfT+ARAP

EW = 56.21 ED = 872.94 d3D = 778.27

WS-DeepSfT

EW = 8.80 ED = 73.20 d3D = 49.60

TABLE 6: Qualitative results in example 1 of the “Zaius” synthetic dataset are shown. Lighter pixels correspond to higher
errors. The colour representation saturates at 30 mm for the registration error and at 250 mm for the depth and 3D distance
maps. In the 3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.
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Model I′ Iover Registration Error (mm) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EW = 214.23 ED = 823.17 d3D = 697.64

RAFT

EW = 10.89 ED = 16.52 d3D = 10.82

DeepSfT

EW = 41.90 ED = 55.09 d3D = 35.57

DeepSfT+ARAP

EW = 41.90 ED = 545.88 d3D = 419.03

WS-DeepSfT

EW = 11.90 ED = 31.16 d3D = 20.45

TABLE 7: Qualitative results in example 2 of the “Zaius” synthetic dataset are shown. Lighter pixels correspond to higher
errors. The colour representation saturates at 30 mm for the registration error and at 250 mm for the depth and 3D distance
maps. In the 3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.

Model I′ Iover Registration Error (mm) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EW = 3.55 ED = 2.67 d3D = 2.07

RAFT

EW = 15.37 ED = 15.79 d3D = 10.55

DeepSfT

EW = 37.45 ED = 32.28 d3D = 14.25

DeepSfT+ARAP

EW = 37.45 ED = 177.37 d3D = 83.36

WS-DeepSfT

EW = 6.44 ED = 12.03 d3D = 7.93

TABLE 8: Qualitative results in example 1 of the “Fruits” synthetic dataset are shown. Lighter pixels correspond to higher
errors. The colour representation saturates at 30 mm for the registration error and at 250 mm for the depth and 3D distance
maps. In the 3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.
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Model I′ Iover Registration Error (mm) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EW = 72.31 ED = 358.28 d3D = 292.00

RAFT

EW = 15.72 ED = 13.25 d3D = 9.38

DeepSfT

EW = 29.09 ED = 22.11 d3D = 12.90

DeepSfT+ARAP

EW = 29.09 ED = 73.23 d3D = 60.34

WS-DeepSfT

EW = 3.57 ED = 6.41 d3D = 4.50

TABLE 9: Qualitative results in example 2 of the “Fruits” synthetic dataset are shown. Lighter pixels correspond to higher
errors. The colour representation saturates at 30 mm for the registration error and at 250 mm for the depth and 3D distance
maps. In the 3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is couloured red.

predictions, even in the most challenging areas or frames
where other methods fail. This fact has a high impact on
the metrics since invalid pixels and frames are not computed
in the mean of the error, therefore boosting the metrics of
the other methods. Despite this, our method outperforms the
other methods and achieves lower registration and recon-
struction errors while avoiding catastrophic failures even in
the most demanding circumstances.

Thus, our system is robust against the complexity of the
database whereas other methods fail in challenging textures
(LightGlue+BS) or large shapes (RAFT). Furthermore, using
a separate network to compute the segmentation allows us
to reduce the number of blunders on the boundary of the
template, which constitutes a great hindrance in methods
such as DeepSfT. The robustness of the network enables
ARAP to obtain a more accurate 3D reconstruction and more
visually appealing synthesised results. These reasons validate
our proposal as it improves the actual state of the art in SfT
for synthetic templates.

E. EVALUATION WITH REAL OBJECTS
Real results follow a similar pattern to the synthetic scenario,
as we observe in Tables 11, 12, 13, 14, 15, 16 and 17. In
this case, the frames used for the qualitative evaluation are
presented in Table 10. The results are consistent with the
expected outcomes given the performance shown in synthetic
data. It is noteworthy that the render gap between synthetic

and real data has a large impact on the results as there is
a significant increase in the error and the number of failed
frames for most methods in the “Zaius” and “Fruits” datasets,
although it is especially remarkable on the former.

Comparing the synthetic and real results, we observe that
WS-DeepSfT outmatches the other models in the “Fruits”
and “Cloth” datasets and performs extremely well in the
“Zaius” dataset, either as the best or second best method,
depending on the scope of the evaluation metric. It excels
at metrics that evaluate the entire image, such as PSNR or
SSIM, while also achieving excellent results in the others.
This is because the other methods fail to make valid estima-
tions of the registration map in challenging pixels, leading
to their removal in the calculation of per-pixel metrics such
as ED or EPh and increasing their performance in these
metrics. Consequently, our approach yields higher perceived
quality in the synthesised images generated from registra-
tion estimations. Moreover, this property makes our solution
the only method that avoids catastrophic failures across all
datasets.

RAFT achieves similar results as our method in the “Za-
ius” dataset but its performance drops in the “Fruits” and
“Cloth” datasets due to large displacements, as it happens
in the synthetic “Fruits” dataset. LightGlue+BS also delivers
similar results in the “Fruits” dataset given its rich texture,
but is not able to obtain accurate results on registration or
reconstruction metrics in the “Zaius” dataset due to failures
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Zaius Fruits
Example 1 Example 2 Example 1 Example 2

Cloth
Example 1 Example 2

TABLE 10: Example frames for the qualitative results in real datasets.

Zaius
ED (mm) EPh (n.u.) PSNR (dB) SSIM IoU Failures

LightGlue+BS 537.3366 0.1500 29.0467 0.9600 0.9330 45
RAFT 61.7937 0.1197 31.1017 0.9753 0.9748 140
DeepSfT 373.4796 0.1362 29.2424 0.9571 0.8689 255
DeepSfT+ARAP 266.9596 0.1362 29.2424 0.9571 0.8690 255
WS-DeepSfT 69.9365 0.1332 31.8683 0.9773 1.0000 0

Fruits
ED (mm) EPh (n.u.) PSNR (dB) SSIM IoU Failures

LightGlue+BS 15.3206 0.2569 20.6800 0.8710 0.9678 0
RAFT 36.0014 0.2486 20.0392 0.8764 0.9325 1
DeepSfT 189.2932 0.2990 18.6272 0.8120 0.8947 721
DeepSfT+ARAP 178.8990 0.2990 18.6273 0.8120 0.8947 721
WS-DeepSfT 14.6969 0.2557 21.1394 0.8874 1.0000 0

Cloth
ED (mm) EPh (n.u.) PSNR (dB) SSIM IoU Failures

LightGlue+BS 51.4537 0.3206 20.6393 0.9001 0.9566 144
RAFT 35.4192 0.3000 21.6649 0.9253 0.9784 0
WS-DeepSfT 17.4831 0.3116 22.2931 0.9255 1.0000 0

TABLE 11: Quantitative evaluation results on real test data on the “Zaius”, “Fruits” and “Cloth” datasets.

in the feature matching algorithm. It also achieves mediocre
results in the “Cloth” dataset due to its lack of texture
in larger areas. Finally, DeepSfT and DeepSfT+ARAP are
unable to overcome the render gap between synthetic and
real in the “Zaius” and “Fruits” datasets. These methods rely
on training on a very large (over 100K images) and complex
synthetic dataset with varying lighting and deformations to
learn the task. Since the synthetic datasets used for the
training are more simplistic, these methods fail to achieve
comparable results to the other methods. Furthermore, these

methods could not be trained in the “Cloth” dataset since the
synthetic data generator could not reproduce the complexity
of deformations in this new material.

These experiments also assess the validation of ARAP as
a separate reconstruction method in real data to remove the
necessity of using a depth sensor for supervised training. As
observed in Tables 11, 12, 13, 14, 15, 16 and 17 this method
is able to properly reconstruct the template, even in difficult
frames within a reasonable error.
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Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 0.12 ED = 93.00 d3D = 49.19

RAFT

EPh = 0.09 ED = 186.42 d3D = 102.68

DeepSfT

EPh = 0.12 ED = 413.19 d3D = 376.65

DeepSfT+ARAP

EPh = 0.12 ED = 339.31 d3D = 242.54

WS-DeepSfT

EPh = 0.10 ED = 99.61 d3D = 63.71

TABLE 12: Qualitative results in example 1 of the “Zaius” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.

Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 0.13 ED = 50.29 d3D = 32.27

RAFT

EPh = 0.10 ED = 51.15 d3D = 33.02

DeepSfT

EPh = 0.14 ED = 397.23 d3D = 374.40

DeepSfT+ARAP

EPh = 0.14 ED = 191.07 d3D = 154.25

WS-DeepSfT

EPh = 0.12 ED = 58.35 d3D = 38.33

TABLE 13: Qualitative results in example 2 of the “Zaius” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.
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Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 0.27 ED = 29.31 d3D = 18.59

RAFT

EPh = 0.24 ED = 88.00 d3D = 30.70

DeepSfT

EPh = 0.30 ED = 188.57 d3D = 139.24

DeepSfT+ARAP

EPh = 0.30 ED = 130.71 d3D = 74.17

WS-DeepSfT

EPh = 0.25 ED = 17.69 d3D = 3.92

TABLE 14: Qualitative results in example 1 of the “Fruits” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.

Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 16.34 ED = 53.20 d3D = 38.34

RAFT

EPh = 0.25 ED = 22.39 d3D = 16.34

DeepSfT

EPh = 0.38 ED = 211.28 d3D = 158.35

DeepSfT+ARAP

EPh = 0.38 ED = 267.33 d3D = 195.65

WS-DeepSfT

EPh = 0.26 ED = 13.85 d3D = 7.49

TABLE 15: Qualitative results in example 2 of the “Fruits” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.
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Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 0.43 ED = 36.47 d3D = 18.52

RAFT

EPh = 0.42 ED = 39.26 d3D = 23.46

WS-DeepSfT

EPh = 0.42 ED = 13.08 d3D = 6.45

TABLE 16: Qualitative results in example 1 of the “Cloth” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.

Model I′ Iover Photometric Error (n.u.) Depth Error (mm) 3D Error (mm) 3D Mesh Comparison

LightGlue+BS

EPh = 0.30 ED = 30.74 d3D = 20.74

RAFT

EPh = 0.28 ED = 35.01 d3D = 20.02

WS-DeepSfT

EPh = 0.30 ED = 14.04 d3D = 7.33

TABLE 17: Qualitative results in example 2 of the “Cloth” real dataset are shown. Lighter pixels correspond to higher errors.
The colour representation saturates at 0.5 for the photometric error and at 250 mm for the depth and 3D distance maps. In the
3D Mesh Comparison column, the ground-truth surface is coloured blue, and the predicted mesh is coloured red.

F. ABLATION STUDY
We evaluate the network to make design choices about its
hyperparameters. We compare different parametrisations on
the challenging synthetic dataset “Zaius”, to quantitatively
analyse its performance in complicated environments and
templates. For this study, the DNN is trained in the training
split and evaluated on a 500-image subset of the validation
split; thus the test split is only used to compare against
the other state-of-the-art methods and it has not been seen
previously. We use the registration (EW ) and photometric
errors (EPh) to analyse the different versions of the model.
We present the results of the ablation study in Table 18.

1) Calibrating The Gradient Descent

The system has been trained with SGD, since other optimis-
ers presented worse convergence. Furthermore, the introduc-
tion of the optical flow and smoothing losses is delayed 20
epochs, to avoid an early degradation of the gradient due
to noise and undesired local minima. We also explore the
learning rate parameter space to achieve an optimal gradient
descent. We have found that a learning rate of 10−4 obtains
the best results in RMSE and photometric metrics, with an
improvement of up to 18.5%.

VOLUME 4, 2016 21



S. Luengo-Sanchez et al.: Weakly-Supervised Deep Shape-from-Template

Model Hyperparameters
Learning Rate λR cR λM cM λS Max. Step Delay Registration Error (mm) PhotometricError (n.u.)

0.0010 1 0.010 0.25 0.015 0 5 0 73.090 0.16060
0.0010 1 0.010 0.25 0.015 0 5 20 8.557 0.08949
0.0050 1 0.010 0.25 0.015 0 5 20 7.255 0.08158
0.0001 1 0.010 0.25 0.015 0 5 20 7.222 0.08124
0.0005 1 0.010 0.25 0.015 0 5 20 7.808 0.08359
0.0001 1 0.010 0.25 0.001 0 5 20 8.184 0.08290
0.0001 1 0.010 0.25 0.005 0 5 20 6.618 0.07966
0.0001 1 0.010 0.25 0.010 0 5 20 6.785 0.07974
0.0001 1 0.010 0.25 0.050 0 5 20 7.665 0.08288
0.0001 1 0.010 0.00 - 0 - - 8.901 0.08576
0.0001 1 0.010 0.05 0.005 0 5 20 8.555 0.08592
0.0001 1 0.010 0.10 0.005 0 5 20 7.347 0.08199
0.0001 1 0.010 0.75 0.005 0 5 20 6.141 0.07818
0.0001 1 0.010 1.25 0.005 0 5 20 5.797 0.07624
0.0001 1 0.010 1.50 0.005 0 5 20 5.924 0.07642
0.0001 1 0.010 2.00 0.005 0 5 20 5.817 0.07932
0.0001 1 0.010 1.25 0.005 10 5 20 6.318 0.08285
0.0001 1 0.010 1.25 0.005 25 5 20 5.696 0.07767
0.0001 1 0.010 1.25 0.005 50 5 20 5.836 0.07658
0.0001 0.1 0.010 1.25 0.005 25 5 20 304.000 -
0.0001 1 0.010 1.25 0.005 25 5 20 5.696 0.07767
0.0001 10 0.010 1.25 0.005 25 5 20 9.049 0.08596
0.0001 1 0.001 1.25 0.005 25 5 20 302.100 -
0.0001 1 0.010 1.25 0.005 25 5 20 5.696 0.07767
0.0001 1 0.100 1.25 0.005 25 5 20 21.540 0.12950

TABLE 18: Results of the ablation study. In the first section, we evaluate the optimum learning rate and the importance of
delaying the introduction of the matching and smoothing loss. Next, we test different configurations for the parameters and
weights of the matching loss. Afterwards, we assess the impact of a regularisation loss. Finally, we validate the chosen values
for they rigidity loss hyperparameters. We use the registration error and the photometric error to measure the performance of
each variation of the model. Missing photometric errors correspond to predictions where the model collapsed and, therefore,
the synthesized image could not be generated.

2) Matching Loss Parametrisation
We select the Welsch Loss function to compute the matching
loss LM , aiming to prevent errors from the optical flow
prediction from propagating through the network training.
The Welsch function includes the parameter c to control the
penalty applied to mismatches, which is crucial to be man-
aged carefully. Low values remove important information,
worsening the performance from a registration error of 7.222
mm to 8.184 mm in our experiments. On the other hand,
excessively high values reduce the weight of useful informa-
tion and increase the influence of mismatches, leading to an
additional error of 0.443 mm compared to the initial value of
cM = 0.015. After carefully analysing this parameter range,
we set cM to 0.005, achieving an 8.36% reduction in the
registration error and an 8.8% reduction in the photometric
error compared to the initial value, and a 19.1349% and
3.9083% reduction, respectively, compared to the worst-case
scenario.

Next, we evaluate the balance between the matching loss
LM and the rigidity loss LR. We set λR = 1 for the
rigidity loss with cR = 0.01, and then analyse the model’s
performance with different weights for the matching loss.

The best results are achieved with λM = 1.25, which reduces
the error by 34.85% compared to the baseline model that
uses only the rigidity loss. Although the rigidity loss achieves
acceptable error rates, a closer examination shows it fails
to accurately estimate deformations, producing good results
only on flat parts of the surface. The proposed loss function
effectively reduces the error by focusing on learning from the
deformed sections of the object. Lower values of λM increase
the influence of the rigidity loss, which does not perform
well with deformations, resulting in higher average errors.
Conversely, higher λM values do not improve performance
because mismatches in the optical flow prediction dominate
the rigidity loss information, introducing more noise and
leading to poorer predictions.

3) The Benefits of Regularisation
Finally, we add a smoothing loss to introduce regularisation
and increase the performance of the system. This loss aids us
to prevent overfitting and reduce the impact of noisy parame-
ters. We achieve a reduction of 1.74% of the registration error
with λS = 25 for the smoothing loss. We select λS = 25 over
the other options due to its lower registration error, since this
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metric is more precise than the photometric error, which is
influenced by noise.

4) The Critical Role of the Rigidity Loss
The hyperparameterisation of the rigidity loss is crucial for
the system’s performance. A low weight, such as λR = 0.1,
fails to prevent gradient degradation, whereas higher values
like λR = 10 negatively affect the model’s ability to adapt
to deformations, resulting in suboptimal results. Through
our experiments, we found that λR = 1 provides the best
balance, offering stability without compromising the model’s
performance under deformation. The parameter cR, which
regulates the Welsch loss, also has a significant impact on the
solution’s effectiveness. Smaller values, such as cR = 0.001,
lead to loss saturation and prevent the model from learning
properly, causing training to become stuck in a local min-
imum with no viable predictions. Conversely, larger values
like cR = 0.1 stretch the Welsch function along the x-axis,
resulting in a lower rigidity loss but ultimately producing
suboptimal performance due to poor loss balancing.

5) Strengths and Weaknesses of the Proposed Method
The proposed solution addresses several limitations of cur-
rent state-of-the-art methods, resulting in significantly re-
duced errors in the estimated registration and reconstruction.
Our wide-baseline approach proves more robust than short-
baseline methods, such as RAFT, when coping with varia-
tions in illumination and deformation, and it does not re-
quire temporal coherence during inference. Furthermore, the
adopted network architecture performs well even in regions
with limited texture, where feature-based algorithms, such as
LightGlue+BS, struggle to detect or accurately match scene
features to those of the template. We also present a novel
weakly supervised strategy that can be trained directly on
real-world, unlabelled data, avoiding the need to synthesise
training datasets as required by DeepSfT. Since real images
are inherently more complex than synthetic ones, previous
deep neural learning-based SfT approaches often encoun-
tered difficulties when real-world conditions deviated from
the training domain. By training solely on real data, our
method avoids these domain gaps and, in so doing, both
improves performance and reduces the overall data require-
ments.

The proposed method nonetheless has weaknesses. Our
weakly supervised approach presupposes the availability of
keyframes in the training data, which imposes constraints
on how the data is recorded. Ensuring accurate pose esti-
mation between the template and these keyframes is critical
to prevent degeneracy during training via the rigidity loss.
In addition, the main supervision signal arises from optical
flow estimation and the associated matching loss function,
making highly accurate optical flow calculations essential
for successful registration. Finally, the method relies on
semantic segmentation to identify the template within the
image. While we assume this step to be largely addressed by
foundational models such as SAM—demonstrably effective

across a wide range of objects and scenarios—this reliance
introduces an additional external dependency in the pipeline.

VII. CONCLUSIONS
We introduced WS-DeepSfT, the very first dense, wide-
baseline, real-time SfT solution for deformable surfaces
based on deep learning that can be directly trained on non-
annotated real data. WS-DeepSfT uses optical flow and pose
estimation to exploit the temporal and template informa-
tion from video sequences to solve SfT accurately. The
proposed approach is the first DNN SfT method to predict
high-resolution meshes without requiring special sensors or
synthetic labelled data, thus avoiding the render gap by
training directly in real images. Furthermore, it provides
higher robustness compared to state-of-the-art methods by
learning a dense representation of the object, thus not relying
on appearance-specific features or spatiotemporal correlation
during inference.

Experiments on synthetic and real thin-shell datasets show
that it outperforms the existing methods and achieves a great
reduction of catastrophic failures, gross errors and outliers,
which leads to a sizable boost in performance metrics. WS-
DeepSfT is especially desirable for critical applications due
to its capacity to produce highly reliable predictions. Fu-
ture works include additional self-supervision methodologies
exploiting other image cues such as colour or shading, ex-
tending the method to work with generic objects of different
topologies and adding a pre-processing step to enhance the
quality of the input frames.
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