
DOCTORAL SCHOOL OF ENGINEERING SCIENCES

THESIS

to obtain the degree of Doctor awarded by

Clermont Auvergne University

(Decree of July 5, 1984)

Speciality
Computer Vision

presented and publicly defended by

Ivan MIKHAILOV

on 28 March 2025

Interactive Segmentation and its Use at Scale through Concurrent
Annotation and Training

Supervisor: Adrien BARTOLI

Co-supervisor: Nicolas BOURDEL

Adrian BASARAB, Professor, University of Lyon, President of the Jury, Examiner

Nicolas THOME, Professor, Sorbonne University, Reviewer

Elsa ANGELINI, Professor, Télécom Paris, Reviewer

Benoit CHAUVEAU, Radiologist, Clermont-Ferrand University Hospital, Invited Member



ÉCOLE DOCTORALE DES SCIENCES POUR L’INGÉNIEUR

THÈSE

pour obtenir le grade de Docteur délivré par

l’Université Clermont Auvergne

(Décret du 5 Juillet 1984)

Spécialité
Vision par Ordinateur

présentée et soutenue publiquement par

Ivan MIKHAILOV

le 28 Mars, 2025

Segmentation interactive et son utilisation à grande échelle par
annotation et entraînement simultanés

Directeur de thèse : Adrien BARTOLI

Co-encadrant de thèse : Nicolas BOURDEL

Adrian BASARAB, Professeur, Université de Lyon, Président du Jury, Examinateur

Nicolas THOME, Professeur, Sorbonne Université, Rapporteur

Elsa ANGELINI, Professeur, Télécom Paris, Rapporteur

Benoit CHAUVEAU, Radiologue, CHU Clermont-Ferrand, Invité



ii



Abstract

Machine Learning (ML) is a field of study focused on developing statistical algorithms that en-

able systems to learn from data and make predictions or decisions without explicitly programmed

instructions. These algorithms are embodied in models, which represent the learned patterns

and relationships within the data. The learning process, typically referred to as training, involves

adjusting the model’s parameters based on the input data. Once trained, the model can be uti-

lized to make predictions or decisions on new, unseen data. Data annotation is a cornerstone of

ML, as it involves creating ground truth labels, descriptive categories or markers assigned to each

data point, that guide the training process. These annotations help ensure that the model learns

meaningful information during training, leading to better predictions. An ML model is often an

Artificial Neural Network (ANN), which consists of layers of connected artificial neurons. Deep

Learning (DL) is a subset of ML that utilizes deep networks, characterized by an increased num-

ber of layers, which often results in superior performance in exchange for a larger training dataset

required.

The demand for large, annotated datasets is particularly pronounced in medical imaging,

where accurate and efficient annotation remains a significant challenge due to the complexity

of medical data, the need for domain expertise, and the critical implications of model predic-

tions. Segmentation, a key task in medical image interpretation, exemplifies these challenges.

Specifically, it requires precise per-pixel delineation of anatomical structures and pathologies nor-

mally done by a medical expert, which is time-consuming and scales poorly with the growth of the

dataset. Medical image annotation thus poses two primary challenges: (1) the need for clinically-

adapted annotation solutions, which speed up annotation and improve performance, and (2) the

need for dedicated systems designed for annotation at scale to produce the training data for the

latter. We outline the basis for each challenge in turn.

Medical image segmentation can be done manually, automatically, or using semi-automatic

(interactive) segmentation algorithms. The resulting segmentations are typically used for diag-

nostics or a number of downstream tasks, such as to generate 3D models for surgical Augmented

Reality (AR) as in this work. Given the high stakes of medical applications, interactive segmenta-

tion algorithms are more adapted to the clinical environment. This is due to the medical expert’s

involvement, who has the option to correct the segmentation proposed by the model, if neces-

sary. Therefore, for efficient correction there is a need for the model to be able to interpret user

corrections and infer their intention, which is not fully considered by existing approaches.

Efficient annotation systems typically utilize a neural annotation predictor that is initially

trained on data produced by classical tools. This predictor then remains fixed throughout the

annotation process. This is suboptimal for two key reasons: (1) the trained predictor should be

already available, and (2) the predictor does not benefit from new annotations as the annotation

process progresses. This means that extensive annotated data is required upfront to obtain an effi-

cient annotation tool, which is especially challenging for tasks where the available annotated data

is limited. An example is Female Pelvis MRI (FPMRI) segmentation, which is one of the key appli-

cations of this thesis. Simply, this creates a circular dependency where annotated data is required

to produce more annotated data - an issue, which is not directly addressed in the literature.

In this thesis, we address the two primary challenges in medical image annotation by intro-
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ducing four distinct contributions applied to segmentation specifically and annotation in gen-

eral. These contributions are categorized into two data-centric and two application-centric ap-

proaches, with the data-centric contributions laying the foundation for the application-centric

ones. On the data side, we introduced a new FPMRI segmentation dataset, Female Pelvis MRI

dataset (FPMRId), and investigated its inter-expert variability. On the application side, we pro-

posed two key solutions tailored for clinical and industrial use. The first addresses the need for

clinically-adapted annotation tools, and the second provides a dedicated system for large-scale

annotation. First, we propose a general framework for interactive segmentation not limited to

a specific domain, which improves performance by incorporating the way the user typically ap-

proaches segmentation. Specifically, existing interactive segmentation methods do not utilise the

sequential order of user interactions, as they typically disregard the sequence in which corrections

are made. The proposed solution addresses this limitation by introducing an interaction memory,

which preserves the order of user inputs, and incorporates it into the training. In this way, the

model treats each correction based on previous inputs, resulting in higher accuracy with fewer

interaction steps. Second, we proposed Single Active Interactive Model (SAIM), a framework that

integrates data selection, annotation, and training into a unified architecture via model-sharing

to enable efficient annotation at scale. SAIM is a ‘two-in-one’ solution, where the shared model is

both an annotation tool and a predictor, ready to be deployed. SAIM operates on a loop. It uses

the shared model pre-trained on a few hundreds of images to select the most informative data

for annotation, suggest the annotations and interactively correct them, if necessary. The model is

then updated with the produced annotations. This process is repeated until stopped or all avail-

able data is annotated. This approach mitigates the need for upfront availability of large anno-

tated datasets. Specifically, it allows to start with limited annotated data and gradually improve

the model, while reducing the annotation workload through data selection. At the same time, the

model remains deployable for the task at any stage. Although SAIM is applied to medical imaging

segmentation, it is not restricted to any specific task or domain.
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Résumé

L’apprentissage automatique (Machine Learning, ML) est un domaine d’étude qui se concen-

tre sur le développement d’algorithmes statistiques permettant aux systèmes d’apprendre à partir

de données et de faire des prédictions ou de prendre des décisions sans recourir à des instructions

explicitement programmées. Ces algorithmes se concrétisent sous forme de modèles, lesquels

représentent les motifs et les relations appris au sein des données. Le processus d’apprentissage,

appelé « entraînement », consiste à ajuster les paramètres du modèle en fonction des données

d’entrée. Une fois entraîné, le modèle peut être employé pour effectuer des prédictions ou pren-

dre des décisions sur de nouvelles données, encore jamais observées. L’annotation des données

constitue une pierre angulaire de l’apprentissage automatique : elle consiste à associer, à chaque

point de données, des étiquettes vérités terrain, des catégories descriptives ou des marqueurs. Ces

annotations orientent le processus d’entraînement et aident à garantir que le modèle assimile des

informations pertinentes, aboutissant à de meilleures prédictions. Un modèle d’apprentissage

automatique est fréquemment un réseau de neurones artificiels, formé de couches de neurones

artificiels interconnectés. L’apprentissage profond (Deep Learning, DL) est une sous-catégorie de

l’apprentissage automatique qui exploite des réseaux dits « profonds », caractérisés par un nombre

accru de couches, offrant souvent de meilleures performances, mais nécessitant en contrepartie

un volume de données d’entraînement plus important.

La demande de grands ensembles de données annotées est particulièrement marquée en im-

agerie médicale, où l’annotation précise et efficace demeure un défi majeur en raison de la com-

plexité des données, de la nécessité d’une expertise spécialisée et des implications critiques des

prédictions du modèle. La segmentation, tâche clé dans l’interprétation des images médicales,

illustre bien ces difficultés. En effet, elle exige une délinéation précise — pixel par pixel — des

structures anatomiques et des pathologies, opération généralement réalisée par un expert médi-

cal, chronophage et mal adaptée à l’accroissement continu des ensembles de données. Ainsi,

l’annotation en imagerie médicale soulève deux défis principaux: (1) la nécessité de solutions

d’annotation cliniquement adaptées, capables d’accélérer l’annotation et d’en améliorer les per-

formances, et (2) la nécessité de systèmes spécifiquement conçus pour l’annotation à grande

échelle, afin de produire les données d’entraînement requises par ces solutions. Nous détaillons

successivement les bases de chacun de ces défis.

La segmentation d’images médicales peut s’effectuer manuellement, automatiquement ou

à l’aide d’algorithmes de segmentation semi-automatique (interactifs). Les segmentations

obtenues sont généralement employées à des fins diagnostiques ou pour diverses tâches

ultérieures, comme la génération de modèles 3D en réalité augmentée (RA) chirurgicale, à l’instar

du travail présenté ici. Étant donné l’importance critique des applications médicales, les algo-

rithmes de segmentation interactive sont mieux adaptés au contexte clinique. Cela s’explique par

l’intervention de l’expert médical, qui peut, le cas échéant, corriger la segmentation proposée par

le modèle. Par conséquent, pour optimiser ces corrections, il importe que le modèle sache inter-

préter les interventions de l’utilisateur et en déduire l’intention sous-jacente, aspect qui n’est pas

pleinement pris en compte par les approches actuelles. Les systèmes d’annotation efficaces re-

courent généralement à un prédicteur neuronal d’annotation préalablement entraîné à partir de

données issues d’outils classiques. Ce prédicteur demeure ensuite figé tout au long du processus
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d’annotation. Cette approche est sous-optimale pour deux raisons principales: (1) le prédicteur

entraîné doit déjà être disponible, (2) le prédicteur ne bénéficie pas des nouvelles annotations qui

apparaissent au fur et à mesure de l’avancement du processus. Ainsi, un important volume de

données annotées est requis dès le départ pour obtenir un outil d’annotation performant, ce qui

constitue un défi majeur pour les tâches où les données annotées disponibles sont limitées. Un

exemple marquant est la segmentation en IRM du pelvis féminin (Female Pelvis MRI, FPMRI), qui

représente l’une des applications clés de cette thèse. En pratique, cela crée une dépendance cir-

culaire, dans laquelle il faut déjà disposer de données annotées pour en générer davantage — un

problème qui n’est pas directement traité dans la littérature.

Dans cette thèse, nous répondons aux deux principaux défis liés à l’annotation d’images médi-

cales en proposant quatre contributions distinctes, appliquées à la segmentation de manière spé-

cifique et à l’annotation de façon générale. Ces contributions se répartissent en deux approches

centrées sur les données et deux approches axées sur les applications, les premières établissant le

socle des secondes. Côté données, nous avons introduit un nouvel ensemble de données de seg-

mentation FPMRI (Female Pelvis MRI dataset, FPMRId) et étudié sa variabilité inter-observateur.

Côté applications, nous avons proposé deux solutions majeures répondant aux besoins cliniques

et industriels. La première aborde la nécessité d’outils d’annotation adaptés au contexte médi-

cal, et la seconde met à disposition un système dédié à l’annotation à grande échelle. Première-

ment, nous proposons un cadre général pour la segmentation interactive, non restreint à un do-

maine spécifique, qui améliore les performances en tenant compte de la manière dont l’utilisateur

aborde habituellement la segmentation. En effet, les méthodes existantes de segmentation inter-

active ne prennent pas en considération l’ordre séquentiel des interactions de l’utilisateur, pas-

sant généralement outre la succession des corrections. La solution proposée s’attaque à cette

limite en introduisant une « mémoire d’interaction », qui préserve l’ordre des interactions de

l’utilisateur et l’intègre dans l’entraînement. Ainsi, le modèle interprète chaque correction au

regard des interactions précédentes, ce qui se traduit par une plus grande précision avec moins

d’étapes d’interaction. Deuxièmement, nous présentons Single Active Interactive Model (SAIM),

un cadre intégrant la sélection de données, l’annotation et l’entraînement au sein d’une architec-

ture unifiée, via un mécanisme de partage de modèle, pour permettre une annotation efficace à

grande échelle. SAIM constitue une solution « deux-en-un », dans laquelle le modèle partagé as-

sure simultanément les fonctions d’outil d’annotation et de prédicteur, prêt à être déployé. SAIM

fonctionne en boucle : le modèle partagé, pré-entraîné sur quelques centaines d’images, est util-

isé pour sélectionner les données les plus informatives à annoter, proposer des annotations et, si

besoin, les corriger de manière interactive. Il est ensuite mis à jour à partir de ces annotations

nouvellement produites. Ce processus se répète jusqu’à ce qu’il soit arrêté ou que l’ensemble

des données disponibles soit annoté. Cette approche atténue le besoin de disposer dès le départ

de vastes volumes de données annotées. Concrètement, elle permet de démarrer avec un nom-

bre limité de données annotées, d’améliorer progressivement le modèle et de réduire la charge

d’annotation grâce à la sélection de données. Par ailleurs, le modèle reste utilisable pour la tâche

visée à chaque étape. Bien que SAIM soit appliqué à la segmentation en imagerie médicale, il n’est

en aucun cas limité à une tâche ou un domaine particulier.
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Résumé étendu

Contexte. Parmi les tâches fondamentales de l’analyse de données figure la segmentation

d’image, qui consiste à attribuer une étiquette à chaque pixel afin de délimiter des structures

pertinentes. En imagerie médicale, la segmentation vise généralement à isoler des régions

anatomiques ou des lésions et constitue une étape indispensable pour de nombreuses applica-

tions. Les segmentations obtenues sont ensuite exploitées pour le diagnostic ou pour divers traite-

ments en aval, tels que la génération de modèles 3D destinés à la réalité augmentée (RA) chirur-

gicale, comme dans le présent travail. L’une de ces applications est l’assistance par RA lors de la

chirurgie coelioscopique de l’utérus. La chirurgie coelioscopique est une procédure mini-invasive

réalisée au moyen de petites incisions dans la paroi abdominale, permettant une récupération

plus rapide qu’après une chirurgie ouverte. Durant l’intervention, le chirurgien s’appuie sur un

écran diffusant en temps réel la vidéo d’un cœlioscope introduit par l’une de ces incisions. Cepen-

dant, contrairement à la chirurgie ouverte, où le chirurgien peut voir et palper directement les

tissus, la cœlioscopie ne fournit ni retour haptique ni visibilité directe, ce qui complique la procé-

dure. La RA peut pallier ces limitations en offrant des repères visuels supplémentaires et en su-

perposant des informations anatomiques pertinentes dans le champ de vision du praticien. Dans

un pipeline RA à l’état de l’art pour la chirurgie cœlioscopique de l’utérus, une imagerie par ré-

sonance magnétique (IRM) ou une tomodensitométrie (TDM) préopératoire de l’utérus de la pa-

tiente est d’abord segmentée afin de produire un modèle 3D de l’organe et de ses structures in-

ternes d’intérêt. Ce modèle 3D est ensuite superposé à l’organe réel dans la vidéo cœlioscopique

affichée à l’écran du chirurgien et suivi en temps réel. Le chirurgien peut ainsi « voir à travers »

l’organe et planifier les interventions avec une précision accrue.

La production d’un tel modèle en milieu clinique n’est pas triviale. La segmentation doit être

précise, générée rapidement et supervisée par des experts médicaux. Même des erreurs mineures

peuvent entraîner de graves risques peropératoires ; inversement, un temps d’annotation exces-

sif peut rendre l’ensemble de la solution inapplicable. Satisfaire ces exigences s’avère complexe

pour plusieurs raisons. Contrairement aux images naturelles, qui sont abondantes, interpréta-

bles et largement étudiées, bénéficiant de ce fait d’outils d’annotation à l’état de l’art, les im-

ages médicales présentent des difficultés supplémentaires. Elles sont difficiles à obtenir en rai-

son de réglementations strictes sur la confidentialité, nécessitent une expertise disciplinaire, sont

généralement annotées manuellement et demeurent ardues à interpréter. Plus précisément, les

techniques d’imagerie médicale telles que la TDM et l’IRM produisent des données tridimension-

nelles, obligeant les spécialistes à consacrer un temps considérable à l’examen minutieux des

structures volumiques sur plusieurs plans. De surcroît, les régions d’intérêt et les pathologies

sont complexes, variables et se prêtent rarement à des représentations uniformes et nettes, ce

qui engendre une interprétation subjective : deux experts peuvent diverger quant aux limites et à

la nature d’une même région anatomique. Ces contraintes sont particulièrement marquées dans

certains domaines spécifiques, comme par exemple l’IRM pelvienne féminine (IRMPF), qui de-

meurent de ce fait relativement peu explorés. Alors que des domaines de recherche plus explorés,

tels que le cerveau ou les poumons, bénéficient d’études plus matures et de modèles de fonda-

tion, l’IRMPF ne disposait encore, en 2024, que d’un seul ensemble de données public. Dans

ce contexte, la segmentation se heurte à d’importants obstacles : elle est bien plus laborieuse,
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chronophage, dépendante de données annotées rares et s’adapte mal à la croissance des jeux de

données. Dès lors, une solution idéale pour l’annotation d’images médicales devrait satisfaire

quatre exigences principales : (1) être efficace, en réduisant le temps d’annotation tout en amélio-

rant les performances ; (2) être pilotée par un expert avec un effort minimal ; (3) reposer sur un jeu

de données réaliste, effectivement obtenable et annotable en pratique ; et (4) être évolutive, afin

de rendre faisable l’annotation de vastes jeux de données d’imagerie médicale. Conformément

à ces critères, les approches d’apprentissage automatique (Machine Learning, ML) ont démontré

une performance supérieure pour de nombreuses tâches médicales.

L’apprentissage automatique est un domaine d’étude qui se concentre sur le développement

d’algorithmes statistiques permettant aux systèmes d’apprendre à partir de données et de faire des

prédictions ou de prendre des décisions sans recourir à des instructions explicitement program-

mées. Ces algorithmes se concrétisent sous forme de modèles, lesquels représentent les motifs

et les relations appris au sein des données. Le processus d’apprentissage, appelé « entraînement

», consiste à ajuster les paramètres du modèle en fonction des données d’entrée. Une fois en-

traîné, le modèle peut être employé pour effectuer des prédictions ou prendre des décisions sur

de nouvelles données, encore jamais observées. L’annotation des données constitue une pierre

angulaire de l’apprentissage automatique : elle consiste à associer, à chaque point de données,

des étiquettes vérités terrain, des catégories descriptives ou des marqueurs. Ces annotations ori-

entent le processus d’entraînement et aident à garantir que le modèle assimile des informations

pertinentes, aboutissant à de meilleures prédictions. Un modèle d’apprentissage automatique est

fréquemment un réseau de neurones artificiels, formé de couches de neurones artificiels intercon-

nectés. L’apprentissage profond (Deep Learning, DL) est une sous-catégorie de l’apprentissage au-

tomatique qui exploite des réseaux dits « profonds », caractérisés par un nombre accru de couches,

offrant souvent de meilleures performances, mais nécessitant en contrepartie un volume de don-

nées d’entraînement plus important.

Face aux défis exposés, cette thèse traite l’ensemble des composantes majeures d’une solution

d’apprentissage automatique pour la segmentation d’images médicales : collecte, annotation

et analyse des données ; conception du système de segmentation ; conception d’un cadre de

montée en charge de l’annotation. Plus précisément, nous présentons quatre contributions

distinctes, regroupées en deux approches centrées sur les données et deux approches centrées sur

l’application, les premières servant de fondement aux secondes. Le premier groupe, axé sur les

données, comprend : (1) le jeu de données IRMPF et (2) l’étude de variabilité inter-experts menée

sur ce jeu. Le second groupe, orienté application, rassemble : (3) un système de segmentation

interactive et (4) un cadre économe en données pour l’annotation à grande échelle appliquée à la

segmentation. Nous détaillons chacune de ces quatre contributions dans les sections suivantes.

Jeu de données IRMPF. Nous avons constitué et annoté un jeu de données de segmentation

IRMPF avec l’appui d’experts médicaux du CHU de Clermont-Ferrand. À notre connaissance, il

s’agit du premier jeu de cette ampleur comportant les segmentations des structures anatomiques

suivantes : utérus, vessie, cavité utérine, col de l’utérus, fundus et paroi antérieure ; ainsi que les

annotations des pathologies suivantes : tumeurs, endométriose et adénomyose. Ce jeu de don-

nées reflète la complexité de la segmentation IRMPF et présente des annotations multi-classes,

multi-étiquettes, multi-instances et multi-composants. Il se compose de volumes IRM annotés

manuellement par des radiologues experts, couvrant de fortes variations de forme, taille et texture
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de ces structures. Notre contribution porte à la fois sur le jeu de données lui-même et sur son

processus de création : collecte des données, lignes directrices d’annotation et défis associés. Les

annotations ont été réalisées sur des plateformes spécialisées, et le développement du corpus a

été suivi, documentant l’évolution de la collecte, de l’annotation et l’impact des changements de

plateforme. Le jeu de données est désormais stabilisé ; il a servi à l’entraînement et à l’évaluation

des autres contributions, à l’étude utilisateur de la contribution #3 et à l’analyse de variabilité

inter-experts de la contribution #2.

Étude de variabilité inter-experts. Nous avons conduit, en collaboration avec un expert médical,

une étude mono-centrique de variabilité inter-experts. Plus précisément, nous avons réalisé une

analyse rétrospective portant sur 10 patientes ayant bénéficié d’une IRM pelvienne 1,5 T avec

séquences axiales T2 Propeller de 5 mm d’épaisseur. Les volumes ont été segmentés par 6 radio-

logues d’expérience variable, générant des segmentations de l’utérus, de la vessie, des myomes

utérins, de la cavité utérine et du col de l’utérus. Pour quantifier la corrélation entre experts,

nous avons calculé à partir de ces segmentations : (1) le coefficient de Dice, comparé deux à deux

entre experts, et (2) le volume de chaque structure anatomique pour chaque expert. Nous avons

ensuite agrégé ces résultats en calculant, pour chaque expert puis pour chaque série, la moyenne

et l’écart-type de ces métriques. Par ailleurs, l’algorithme STAPLE a été utilisé afin de générer,

pour chaque patiente, une segmentation de référence produite à partir des segmentations de

l’ensemble des radiologues ; la corrélation de chaque segmentation individuelle à cette référence

a également été évaluée. L’étude a mis en évidence : une excellente corrélation inter-experts

pour le volume utérin, une très bonne corrélation pour les fibromes et la vessie, une corrélation

satisfaisante pour la cavité utérine et une corrélation modérée pour le col de l’utérus. Ces résultats

indiquent que la segmentation de l’utérus est un processus fiable et reproductible, appuyant le

développement potentiel d’outils de segmentation automatiques ou semi-automatiques.

Segmentation neuronale interactive. La segmentation d’images médicales peut être réal-

isée manuellement, automatiquement ou à l’aide d’algorithmes semi-automatiques (interactifs).

Compte tenu des enjeux élevés des applications médicales, les algorithmes interactifs sont les plus

adaptés au milieu clinique : l’expert peut corriger, si nécessaire, la segmentation proposée par le

modèle. Pour que cette correction soit efficace, il faut que le modèle interprète les corrections

de l’utilisateur et en déduise son intention, point que les approches existantes ne considèrent

pas complètement. En particulier, les méthodes interactives actuelles n’exploitent pas l’ordre

séquentiel des interactions, négligeant la chronologie des corrections. La solution proposée sur-

monte cette limite grâce à une mémoire d’interaction qui préserve l’ordre des entrées utilisateur

et l’intègre à l’entraînement.

Nous présentons un système interactif général de segmentation d’images multi-classe fondé

sur l’apprentissage profond, dans lequel un réseau de base est placé dans une boucle d’interaction

utilisateur dotée d’une mémoire des interactions. Cette mémoire est modélisée explicitement

comme une séquence d’états successifs du système, à partir de laquelle le réseau apprend ses

représentations, assimilant ainsi le processus de raffinement de la segmentation. L’entraînement

est complexe, l’entrée du réseau dépendant de sa sortie précédente. Nous adaptons le réseau

à cette boucle en introduisant un utilisateur virtuel, modélisé par la simulation dynamique des

clics itératifs de l’utilisateur réel. Nous avons évalué notre système face aux méthodes existantes
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sur des tâches de segmentation multi-classe exigeantes, notamment l’IRMPF ainsi que la seg-

mentation du foie et du pancréas sur scanner, en utilisant des jeux de données internes et publics.

Une étude utilisateur menée auprès de onze professionnels de santé a montré une réduction

significative du temps d’annotation avec notre système par rapport aux outils traditionnels.

Nous avons analysé systématiquement l’influence du nombre de clics sur la précision : après

un seul cycle d’interaction, notre système surpasse les solutions automatiques de configuration

comparable. Nous présentons une étude d’ablation et montrons que notre cadre surpasse les

systèmes interactifs existants.

Annotation interactive avec peu de données et entraînement simultané du modèle. Les sys-

tèmes d’annotation efficaces reposent généralement sur un prédicteur neuronal, d’abord entraîné

sur des données issues d’outils classiques, puis figé pendant tout le processus d’annotation. Cette

approche présente deux limites majeures : (1) le prédicteur doit déjà être disponible, et (2) il ne

bénéficie pas des nouvelles annotations produites au fil du temps. Ainsi, un volume important

de données annotées est requis dès le départ pour disposer d’un outil performant, ce qui est par-

ticulièrement problématique lorsque ces données sont limitées. C’est le cas, par exemple, de la

segmentation IRMPF, l’une des applications clés de cette thèse. Il en résulte une dépendance cir-

culaire : il faut des données annotées pour produire davantage de données annotées, un problème

peu abordé dans la littérature.

Nous proposons un cadre appelé SAIM, qui intègre en une seule architecture les trois étapes

de sélection des données, d’annotation et d’entraînement. SAIM se distingue des travaux existants

par trois propriétés : (1) il utilise un prédicteur interactif profond ; les outils classiques ne sont

donc pas nécessaires et le prédicteur peut être pré-entraîné avec peu de données pour fournir des

annotations de qualité ; (2) un modèle unique est partagé entre les trois étapes, de sorte qu’il reste

déployable et s’améliore au fur et à mesure des annotations ; (3) SAIM recourt à l’apprentissage ac-

tif pour maximiser l’impact de chaque annotation sur les performances du prédicteur, accélérant

ainsi sa progression. En pratique, SAIM est une solution « deux-en-un » : le modèle partagé sert à la

fois d’outil d’annotation et de prédicteur prêt à l’emploi. SAIM fonctionne en boucle : pré-entraîné

sur quelques centaines d’images, le modèle sélectionne les données les plus informatives, pro-

pose les annotations et les corrige de manière interactive si besoin, puis il est mis à jour avec ces

nouvelles annotations. Le processus se répète jusqu’à l’arrêt ou jusqu’à l’annotation complète du

corpus. Cette approche réduit le besoin initial de vastes jeux de données annotées ; elle permet

de démarrer avec un volume restreint, d’améliorer progressivement le modèle tout en diminuant

la charge d’annotation grâce à la sélection de données, et de maintenir le modèle déployable à

chaque étape.

Nous avons évalué SAIM dans des scénarios d’annotation simulés en mode automatisé,

sur des jeux de données de segmentation intégralement annotés couvrant cinq tâches : (1)

segmentation sémantique multi-classe IRM du pelvis féminin ; (2) segmentation sémantique

multi-classe du foie sur scanner ; (3) segmentation sémantique multi-classe du pancréas sur scan-

ner ; (4) segmentation cardiaque IRM, où SAIM est confronté à huit approches d’apprentissage

semi-supervisé (semi-supervised learning, SSL) parmi les meilleures de l’état de l’art ; (5) seg-

mentation d’images naturelles, où SAIM est comparé à trois approches d’auto-apprentissage

(self-training, ST) également à l’état de l’art. Nous avons en outre démontré SAIM dans un scé-

nario réel d’annotation de segmentation rénale IRM avec un utilisateur humain et estimé le gain
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de temps par rapport aux outils classiques. SAIM surpasse aussi bien les outils traditionnels que

les approches de l’état de l’art. Bien qu’appliqué ici à la segmentation d’imagerie médicale, SAIM

n’est lié à aucun domaine spécifique : il permet de lancer une annotation interactive à grande

échelle à partir d’un jeu de données limité et de minimiser la quantité de données à annoter, tout

en améliorant itérativement les performances.
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Chapter 1

Introduction

1.1 Machine Learning

1.1.1 General Points

ML is a discipline within the domain of Artificial Intelligence (AI) (Zhang and Lu, 2021). The goal

of AI is to automate the process of constructing models or systems to perform tasks that tradition-

ally required human intelligence, making it possible for machines to understand and interpret

data with a high degree of accuracy. At its core, AI involves techniques that enable computers to

mimic human behaviour, reproducing or often outperforming human decision-making in tackling

complex problems, either autonomously or with minimal human input. This field addresses nu-

merous challenges, such as knowledge representation, reasoning, learning, planning, perception,

communication, and others, utilising a diverse array of tools and methods.

Specifically, ML deals with the creation and study of statistical algorithms, which can learn

from existing data and generalise to new, unseen data, thereby enabling tasks to be performed

without explicit programmed instructions. In contrast to using an explicit handcrafted set of

rules to construct an analytical model, ML algorithms seek to learn meaningful relationships

and patterns from examples and observations to then make predictions or decisions. Such algo-

rithms usually improve their performance iteratively by incorporating the data they are exposed

to through a process called training. Then, they serve as analytical models, which input data and

output the desired inferred information.

The process of training an ML model involves adjusting the model’s internal parameters based

on the data it is being continuously fed. Such data is called training data, as opposed to validation

and evaluation data, which are used to estimate the model’s performance. During training, the

model is exposed to numerous examples with known outcomes within the training dataset, and

gradually learns to replicate these outcomes by minimising errors in its predictions on validation

and evaluation datasets.

An example of an ML model is an ANN. ANN is a computational model inspired by the brain,

which simulates the way biological neurons process information (Rosenblatt, 1958). An ANN con-

sists of mathematical models of interconnected processing units known as artificial neurons. The

most simple form of an ANN is the basic perceptron. It consists of one layer of input nodes con-

nected to an output node, making it a single-layer ANN only suitable for solving linear problems. A

schematic of the perceptron is shown in figure 1.2. More advanced ANNs expand on this by incor-

porating additional layers and constructing more complex architectures, allowing them to handle
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CHAPTER 1. INTRODUCTION

Figure 1.1: Visualization of the hierarchical relationship among the domains of AI, ML and DL, highlighting
their nested structure. Image source: (Cooler Master, 2024)

non-linear and generally more complex tasks.

ML has gained widespread applicability in recent years, achieving good performance in vari-

ous fields such as computer vision, speech recognition, natural language processing and others.

This progress is largely due to the development of ANNs into more complex deep neural network

architectures with many hidden layers, which have significantly enhanced learning capabilities.

This advancement, known as DL (Talaei Khoei et al., 2023), has enabled systems to achieve remark-

able performance levels, demonstrating superhuman performance in speech, image and hand-

writing recognition, reading comprehension, language understanding and other tasks in many

domains (Kiela et al., 2021, 2023). The hierarchical relationship between the domains of AI, ML

and DL is illustrated in in figure 1.1.

While DL is considered to be a subtype of ML, it is often contrasted with traditional ‘shallow’

ML. This is due to two key specifics of the latter: (1) it often requires feature engineering done by

a domain specialist to extract data representations and (2) it often shows poor performance on

complex data. The shift from ML to DL can thus be described as moving from specialised feature

engineering to general feature learning. In traditional ML, domain expertise is crucial to identify

and design relevant features. This means that despite traditional ML’s ability to model complex

problems, its performance is often constrained by the quality of handcrafted features. DL, on the

other hand, replaces these handcrafted features with generic, adaptable features that are auto-

matically learned during the training process. This is achieved by increasing the depth of a neural

network via the number of layers. Specifically, compared to the basic ANN, Deep Artificial Neu-

ral Network (DNN) generally comprises multiple hidden layers, structured in nested architectures

and feature more sophisticated neurons (Janiesch et al., 2021). The difference between a simple

ANN, which can be also called a Shallow Artificial Neural Network (SNN), and a DNN is shown in

figure 1.4. A key advantage of DL over traditional ML is its superior performance in handling large

datasets and its ability to process unstructured data, such as images and natural languages. This

makes DL particularly effective in scenarios where a high level of abstraction is needed to identify

complex patterns and relationships between data points. Figure 1.3 compares how performance

scales with increasing data for DNN, SNN, and traditional ML. At the same time, DL requires sub-
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Figure 1.2: A schematic of perceptron. Top: general schematic with input, hidden, and output layers. Bot-
tom: in-detail equivalent of the general schematic showing weighted inputs, bias, summation, and activa-
tion function. Image source: (Seidel et al., 2020).

stantial amounts of annotated training data to achieve high accuracy, which is difficult to obtain in

domains where data availability is limited due to legal, technical, ethical and other concerns. For

instance, in the medical field, obtaining annotated data can be challenging due to the rarity of the

medical condition in question and due to the patient records containing sensitive information.

1.1.2 Tasks

Overview

The main ML tasks can be generally aggregated into the following 7 categories (Sarker, 2021b;

Alzubaidi et al., 2021; Shinde and Shah, 2018; Barragán-Montero et al., 2021): (1) classification,

(2) regression, (3) clustering, (4) dimensionality reduction, (5) detection, (6) registration and (7)

segmentation.

Classification. Classification is the task of assigning input data into one of several predefined

categories or labels. More precisely, classification is essentially a function f that maps input

variables X to output variables Y , with Y representing the target categories or labels (Han et al.,

2022). A basic example is email classification, where emails are sorted into categories ‘spam’ or

‘not spam’.

Regression. Regression involves predicting a continuous numerical value based on input data.

It uses various methods to model the relationship between one or more predictor variables X

and a continuous outcome variable Y (Han et al., 2022). A basic example is predicting house

prices based on features like location, size, and the number of bedrooms. The key difference

between classification and regression is that the former predicts discrete class labels, while the

3
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Figure 1.3: Practical performance scaling with increase in data for DNN, SNN, and traditional ML. The
image is adapted from (Ng, 2016).

latter predicts continuous quantities. Regression models are extensively applied across numerous

domains, including financial forecasting, where they predict market trends and asset prices;

cost estimation for project planning; trend analysis in marketing; time series estimation for

understanding temporal data patterns; and modelling drug responses in pharmacology.

Clustering. Clustering is the process of grouping a set of objects or data points by similarity.

Therefore, the objects in the same category (or cluster) are more related to each other than to

those in other groups (Han et al., 2022). It is often used as a data analysis technique to discover

trends or patterns in data. A basic example is customer segmentation, where customers are

grouped based on purchasing behaviour.

Dimensionality reduction. ML data processing is challenging due to the abundance of high-

dimensional data. Thus, dimensionality reduction targets reducing the number of random

variables under consideration by obtaining a set of principal variables. For this purpose, both

feature selection and feature extraction are used. Feature selection involves retaining a smaller

subset of the original features (Sarker et al., 2020a), while feature extraction creates new features

from the existing data (Sarker et al., 2020b). A basic example of a dimensionality reduction

method is Principal Component Analysis (PCA) (Pearson, 1901), which reduces the dimensions of

data while preserving as much variance as possible.

Detection. Detection refers to identifying the presence and location of objects within a given

context, often involving both classification and localization (Kaur and Singh, 2023). Classification

assigns input data to predefined categories, determining what an object is. Localization specifies

the precise position of these objects, typically by providing bounding boxes around them. Thus,

detection identifies not only the class of objects, but also whether they are present in an image

or dataset and where. It is commonly used in computer vision with a basic example being object

detection in images, such as detecting and locating cars and pedestrians in a street photo or video.

Registration. Registration is the process of aligning data from different sources into a single

coordinate system (Unberath et al., 2021). The input data for registration can take various forms,

such as point clouds, voxel grids, and meshes. Registration is often used in medical imaging and
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Simple Artificial Neural Network (ANN) Deep Artificial Neural Network (DNN)

Figure 1.4: The basic difference between the simple Artificial Neural Network (left) and Deep Artificial Neu-
ral Network (right) architectures.

Image source: (Waldrop, 2019).

computer vision to align data from multiple sources or from different viewpoints. A common

example is aligning Positron Emission Tomography (PET) and Magnetic Resonance Imaging

(MRI) scans of the same patient to provide a comprehensive view that combines metabolic

information from PET with anatomical details from MRI. Another example is aligning 3D scans of

an object taken from multiple perspectives to create a complete 3D model.

Segmentation. Segmentation involves partitioning data into distinct segments for further analy-

sis. It can be seen as the classification of each data point: for example, assigning a label to every

pixel in an image or to every word in a text. This task is commonly used in fields such as image

processing and natural language processing.

Image Segmentation

Image segmentation is a crucial component of many visual understanding systems. It involves

dividing images into distinct segments or objects (Szeliski, 2022). Specifically, image segmentation

entails classifying each pixel (in 2D) or voxel (in 3D) into a class that represents the object it belongs

to. As opposed to image classification, which assigns a single label to the entire image, image

segmentation provides detailed understanding at the pixel or voxel level and is generally more

complex. Examples of image segmentation results are shown in figure 1.5.

There are three general types of image segmentation, grouped based on the envisioned

goal (Minaee et al., 2021). They are semantic segmentation, instance segmentation, and panoptic

segmentation:

• Semantic segmentation involves labelling each pixel in an image with a category from a

predefined set of object classes, such as human, car, tree, or sky.

• Instance segmentation extends semantic segmentation by identifying and delineating each

distinct object instance within the image. However, it specifically focuses on instances

rather than the entire scene. For example, in an image of a group of people, instance seg-

mentation would partition each individual person, assigning a unique identifier to each one,

while ignoring non-object regions like the background.
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Figure 1.5: Examples of image segmentation results on natural scenes. Object segmentations are repre-
sented with semi-transparent coloured masks directly overlaid on the objects themselves. All images show
instance segmentation except the one in the bottom row’s centre, which is an example of semantic segmen-
tation. Image sources: (Cheng et al., 2021; Cordts et al., 2016).

• Panoptic segmentation combines the strengths of both semantic and instance segmenta-

tion. It provides a comprehensive view by labelling each pixel with both the object cate-

gory and distinguishing between instances where applicable. This approach offers a unified

framework that handles both stuff (amorphous regions like sky or grass) and things (distinct

objects like cars or people).

The literature features a wide array of image segmentation algorithms. Among the early tech-

niques are thresholding (Otsu et al., 1975), region growing (Nock and Nielsen, 2004), k-means clus-

tering (Dhanachandra et al., 2015), and watershed algorithms (Najman and Schmitt, 1994). Other

methods incorporate advanced mathematical models and optimization techniques to handle

complex image structures. Among them are active contours (Kass et al., 1988), graph cuts (Boykov

and Jolly, 2001) conditional random fields and Markov random fields (Plath et al., 2009), and

sparsity-based approaches (Starck et al., 2005). In recent years, however, DL became a dominant

force in image segmentation in many tasks, with preceding methods now mostly considered clas-

sical. DL offers significant performance enhancements and often achieves top accuracy scores

on widely-used benchmarks. Notable examples of such DL methods are SAM (Segment Anything

Model) (Kirillov et al., 2023) and SAM 2 (Ravi et al., 2024) targeting task-agnostic image segmen-

tation, where the latter shows a significant improvement over the State of the Art (SOTA) methods

for both image and video segmentation (Ravi et al., 2024).

Image segmentation plays a crucial role in various domains. Some of the notable applications

are the domains of medical image analysis, autonomous driving and remote sensing:

• In the field of medical imaging, advanced segmentation techniques, particularly those

based on DL, assist radiologists by improving the accuracy and efficiency of interpreting

medical scans (Tajbakhsh et al., 2020). For example, image segmentation is pivotal for tasks

such as tumor detection and disease diagnosis, such as in (Amyar et al., 2020) for CT classi-

fication and segmentation to simplify COVID-19 screening.

• In autonomous driving, image segmentation is essential for enabling vehicles to perceive

and understand the environment. By segmenting visual input into distinct categories, such
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as roads, pedestrians, vehicles, and obstacles, autonomous driving systems can make in-

formed decisions about navigation and collision avoidance (Muhammad et al., 2022).

• Remote sensing concerns the analysis of satellite images. Image segmentation allows re-

searchers to track changes over time, monitor natural resources, and plan sustainable devel-

opment. Specifically, some of the applications are land cover classification, environmental

monitoring, precision agriculture (Paoletti et al., 2019) and urban planning (Gao et al., 2020).

1.1.3 Applications

ML in general and DL specifically are widely applied across various sectors, including medicine,

natural language processing, speech recognition, cybersecurity, smart agriculture, business and

financial services, virtual assistant and chatbot services, object detection and recognition, recom-

mendation and intelligent systems (Sarker, 2021a) and others. The diversity of tasks being ad-

dressed with deep learning technologies is very high, including diagnosing COVID-19 (Islam et al.,

2020), cancer classification (Sevakula et al., 2018), sentiment analysis (Wang et al., 2019b), object

detection in X-ray images (Gu et al., 2020), network intrusion detection (Al-Qatf et al., 2018), stock

trend prediction (Ishwarappa, 2021), and disaster management (Aqib et al., 2018). Statistics on

domains of application of notable AI systems is shown in figure 1.6.

Applications of ML in medicine are of special importance, since it presents unique chal-

lenges that demand specifically-tailored solutions. The medical domain is characterised by time-

sensitive decision-making, high stakes involving patient health and safety, and the requirement for

experts to be constantly responsible for making numerous critical clinical decisions at all times.

ML addresses these challenges in 3 main ways: (1) by quickly processing vast amounts of com-

plex data, not feasible or doable by human experts (Abadia et al., 2022), (2) by automating routine

diagnostic tasks, thus reducing the burden on experts (Fan et al., 2022) and (3) by enhancing pre-

cision in diagnosis and treatment, allowing for detection of patterns and anomalies that may be

overlooked or difficult to identify (Najjar, 2023).

Figure 1.6: General domains of notable AI systems by year of publication, starting from 1989. The authors
define ‘notable’ systems based on multiple criteria, such as advancing the state of the art and having histor-
ical significance. Image source: (Giattino et al., 2023).
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1.1.4 Challenges

ML approaches in general, and DL in particular, face 6 key challenges. They are: (1) data availabil-

ity and quality, (2) data annotation, (3) data imbalance, (4) interpretability and explainability, (5)

catastrophic forgetting and (6) underspecification.

Data Availability and Quality. Although ML models can perform well with less data, they often

require substantial amounts of annotated data to scale effectively and achieve their best potential

performance. However, obtaining the data can be expensive and time-consuming, particularly in

fields like medicine, where data is often limited and contains sensitive information. Furthermore,

the quality of this data can vary significantly, with issues such as incomplete annotations, noise,

and inconsistency, which can hinder model performance.

Data Annotation. Data annotation is a crucial step in the development of ML algorithms, as it

involves producing accurate labels to ensure that ML algorithms learn meaningful patterns and

make reliable predictions. In many fields, including medicine, the annotation process is complex

and costly due to the need for expert input and the detailed nature of the data. Medical data,

in particular, must be meticulously curated and annotated by experts, such as radiologists or

pathologists, to ensure that annotations accurately reflect the conditions depicted in the data.

This requirement adds significant complexity and expense to the process, as these experts are in

high demand and limited in availability.

Data Imbalance. Dataset imbalance means that certain classes contain significantly more sam-

ples than others. This imbalance can pose significant challenges to the development of effective

ML models (Johnson and Khoshgoftaar, 2019). For instance, in medicine, datasets often have

a skewed ratio of positive to negative cases, with negative cases far outnumbering the positive

ones. This is commonly seen in medical imaging datasets where the number of healthy images

vastly exceeds the number of images showing pathological conditions. Such imbalance can lead

to biased models that perform well on the majority class but poorly on the minority class. This is

particularly concerning in medical applications where the accurate detection of minority cases,

such as rare diseases or conditions, is crucial for patient care and treatment. Models trained on

imbalanced data may fail to detect these minority cases effectively, leading to increased false

negatives, where the model incorrectly identifies an unhealthy case as healthy.

Interpretability and Explainability. As ML approaches become more complex, their decision-

making processes often resemble ‘black boxes’, making it difficult to understand how they

reach specific predictions. This opacity arises from their architecture: for example, deep neural

networks can contain millions of parameters spread across numerous layers. These models learn

features from data, but the connections between input data and final predictions are not readily

interpretable by humans. This lack of transparency poses significant challenges in high-stakes

fields like healthcare and finance, where decision-making transparency is crucial.

Catastrophic Forgetting. Specific to DL, there is a challenge in incorporating new information

into a DL model, which arises from the model losing the ability to recall previously learned

data (Lee et al., 2019; Wang et al., 2023). For instance, if a model trained to classify 1,000 types of
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flowers is fine-tuned with a new flower type, it might perform poorly on the original classes. This

issue is common in tasks where continuous flow of data is expected.

Underspecification. Underspecification is a challenge, which arises when models exhibit strong

performance during training but falter in real-world applications (D’Amour et al., 2022). This issue

occurs because minor alterations in data or environmental conditions can result in significant

variations in model predictions, compromising their reliability. To mitigate underspecification, it

is crucial to assess how models perform under a wide range of conditions, helping to uncover and

address potential points of failure.

1.2 Data Annotation

1.2.1 General Points

Data annotation is the process of assigning specific descriptions, known as labels, to each data

point in a dataset. These labels can be directly used for analytical purposes or to produce new data

representations. Currently, they often serve as the ‘ground truth’ information for the ML models,

where they are employed for learning, validation and evaluation. As per definition, ground truth

is considered unquestionably true, thus labels reflect the contents or desired outputs of a model

for each data point.

It can be seen that a large part of the ML challenges are directly dependent on the input data.

Currently, the volume of data used for training remains one of the main drivers of the model’s

performance growth with no end in sight (Liu et al., 2023). Hence, there is a need for large, high-

quality datasets to ensure robust model performance. Thus, the key challenge is efficient and

accurate data annotation, which is difficult to achieve: it is exacerbated by the need for domain

expertise, difficulties in data interpretation and critical nature of model decisions in many do-

mains - for example, in medical imaging (Whang et al., 2023).

Figure 1.7: Examples of image-level annotations for lung lobes in a coronal view of a chest CT. The anno-
tations are divided into two categories: strong and weak, based on the exhaustiveness and precision of the
information provided. Noisy annotations can result from inaccuracies or inconsistencies introduced by any
annotation tool or process, which is why an example is not provided. The image is adapted from (Tajbakhsh
et al., 2020).
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Data annotation applies to all kinds of data, and the annotations can contain any kind of in-

formation. However, the exact process of data annotation varies significantly depending on the

type of data and the tools employed. This is clearly seen with the following three basic distinctive

data types - images, text and audio:

• Images are annotated with labels that identify and categorise visual elements within the pic-

ture. Image annotation might include drawing bounding boxes around objects, identifying

pixel-wise segments, or marking whole images for classification tasks. Some examples of

image-level annotations are shown in figure 1.7.

• Text is tagged for various attributes such as sentiment or topic categories. Text annotations

help in understanding the structure and meaning of text, crucial for applications like natural

language processing.

• Audio is often labelled with transcriptions, speaker identifications, or emotional tone. Audio

annotations enable tasks like speech recognition and sentiment analysis.

1.2.2 Approaches

Traditional data annotation often relies on extensive manual effort, where humans annotate data

based on their understanding and expertise mostly using classical tools. An annotation tool is

usually a piece of software with a Graphical User Interface (GUI), which allows the annotators

to directly interact with the data and provide annotations using a number of instruments. The

underlying functionality is task- and data-dependent. For example, in the context of image an-

notation, these tools enable users to import images and use drawing and tagging instruments to

create bounding boxes, polygons, or detailed segmentation masks directly on the images. Many

of these tools also integrate some level of automation in order to assist annotators. For exam-

ple, they might automatically suggest object boundaries based on its colour intensity. The output

usually needs to be adjusted due to the imprecision of such methods. This blend of manual and

semi-automated targets reduces the annotation time, while benefiting from manual precision.

More advanced data annotation methods often incorporate ML and, more specifically, DL.

These methods may reduce the reliance on purely manual annotation directly or indirectly. Di-

rect methods enhance the annotation instruments. Typically, it is a DL model trained on a large

dataset, which is employed to suggest annotations then validated or corrected by the annotator.

Indirect methods address other aspects of the data annotation process. They include crowdsourc-

ing annotations (Su et al., 2012), data selection in order to annotate only select data points (termed

‘active learning’ (Tharwat and Schenck, 2023)) and usage of data with no, incomplete or noisy an-

notations.

Data annotation is especially challenging in the context of image segmentation, which is time-

consuming due to per-pixel annotations and requires high precision, since even minor inaccura-

cies can lead to significantly different outcomes in applications such as medical imaging or au-

tonomous vehicle navigation. To address this, image segmentation is approached from multiple

angles in the literature. The main ones are: (1) the degree of user involvement and (2) the nature

of the annotation algorithm.
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1.3 Image Segmentation by User Involvement

Image segmentation approaches may be split in three categories, depending on the degree of user

involvement. They are: (1) manual, (2) automatic and (3) semi-automatic. The choice of the cat-

egory impacts both the segmentation process and the immediate quality of the outcomes. Fur-

thermore, it is closely aligned with the specific requirements of the task at hand, where the degree

of human involvement should be adjusted according to the precision and scale needed. For ex-

ample, in fields like medical imaging, where accuracy is paramount and human expert control is

obligatory, a higher degree of user involvement is often necessary (Mosqueira-Rey et al., 2023).

Conversely, in applications such as real image generation, where scalability is crucial, methods

with less or no direct user involvement may be more suitable. We discuss each category in turn

below.

1.3.1 Manual

Manual image segmentation requires an annotator to visually assess and delineate areas of

interest in images. Typically, the annotator draws boundaries around and colour-codes specific

regions directly within the images. This method relies heavily on the annotator’s ability to

interpret complex visual information and make judicious decisions about where boundaries

between segments lie based on their understanding of the context and the nature of the task.

Therefore, in high-risk domains the annotator is usually a domain expert.

Advantages: This method generally offers highest accuracy and detail.

Disadvantages: It is highly time-consuming and subject to human error, fatigue, and inconsis-

tency in annotation quality across different individuals or sessions.

1.3.2 Automatic

Automatic image segmentation predominantly employs ML algorithms, and especially DL models

such as Convolutional Neural Network (CNN), to analyse and segment images autonomously,

without the need for human intervention (Yu et al., 2023). These models are trained on large

datasets to learn where to draw segment boundaries, completely automating the segmentation

process.

Advantages: This method is fast and scalable, capable of processing large batches of images far

more quickly than human annotators.

Disadvantages: Even the most robust algorithms may produce errors. However, the automatic

methods lack the possibility to correct these errors, which is not acceptable in high-risk domains,

such as medical imaging.

1.3.3 Interactive (semi-automatic)

Interactive or semi-automatic image segmentation typically involves an automatic algorithm

under user control. In a simple setup, the algorithm may suggest a segmentation, which the

expert may then review and correct, if necessary. This, however, is suboptimal, since the cor-

rection process may not benefit from the same algorithm, forcing the expert to refine the initial
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segmentation proposal manually (Mosqueira-Rey et al., 2023). Therefore, in more advanced

systems, the way the user provides the input is often changed. The time-consuming boundary

drawing may be replaced with simpler scribbles or clicks, which are used to indicate the region of

interest. With these inputs as a direct guidance, an advanced interactive algorithm then produces

a complete annotation. This allows to combine human expertise with automated assistance, in a

way, which simplifies segmentation process, but retains human control at the same time.

Advantages: This approach balances efficiency and precision, harnessing the speed of automated

methods while incorporating crucial human control to ensure accuracy.

Disadvantages: The need for human intervention can still be time-consuming. Thus, finding the

optimal balance between automation and interactivity is crucial.

Choosing the appropriate segmentation method depends on balancing the requirements for pre-

cision, speed, and scalability of the application. Interactive segmentation methods, which benefit

from both expert control and automation provided by ML algorithms, are particularly effective in

a clinical environment, where accuracy cannot be compromised.

1.4 Image Segmentation by Approach Type

Image segmentation has experienced significant evolution over the years. We can broadly cate-

gorise image segmentation algorithms into three groups based on the nature of the underlying

algorithms: classical, neural, and hybrid (Yu et al., 2023).

1.4.1 Classical

Classical image segmentation methods are rooted in techniques that explicitly analyse the inten-

sity, colour, texture, and continuity of the image data. They use handcrafted features to produce

segmentations. Common methods include thresholding (Otsu et al., 1975), region growing (Nock

and Nielsen, 2004), edge detection techniques (Canny, 1986), k-means clustering (Dhanachan-

dra et al., 2015), watershed algorithms (Najman and Schmitt, 1994), graph cuts (Boykov and Jolly,

2001), random walker (Grady, 2006a), Geodesic Image Segmentation (GEOS) (Criminisi et al.,

2008), random forest (Lindner et al., 2013), Suzuki-Abe algorithms (Suzuki et al., 1985) and seman-

tic texton forests (Johnson and Shotton, 2010). For reference, segmentation results of 5 classical

methods are shown in figure 1.8. Due to the handcrafted features, these methods are often in-

teractive by design, allowing users to set parameters such as intensity thresholds or connectivity

criteria, which allows them to guide the segmentation process directly.

Classical methods deliver satisfactory performance in simple scenarios. They are usually made

available along with manual segmentation instruments in image segmentation software (Yu et al.,

2023). However, as image acquisition technology continues to advance, the complexity of image

details and overall variability of image data have significantly increased. The need to perform seg-

mentation in specialised domains beyond real images, such as thermal imaging, hyperspectral

scans, and seismic data, presents significant challenges. Advanced segmentation tasks in these

modalities frequently encounter complex structures with poorly defined contours and overlap-

ping elements, further complicated by noise and artefacts. These complexities demand segmen-
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Source Thresholding Suzuki-Abe K-Means Watershed

Figure 1.8: Segmentation results for 4 classical segmentation methods on microscopic cell images. Image
source: (Hussain, 2024)

tation models that are not only robust but also highly adaptive, capable of distinguishing sub-

tle nuances despite these complicating factors. Traditional feature extraction methods based on

handcrafted rules fall short of addressing these demands, making them either completely ineffec-

tive or prolonging segmentation time.

1.4.2 Neural

Neural methods for image segmentation predominantly utilise DL models, with several types of

network architectures being especially influential. Originally, Fully Connected Neural Network

(FC) was widely used for segmentation, due to its ability to learn features across the entire input

space. However, its limitation of requiring fixed-size, small images led to the development of the

patch classification algorithm for image segmentation (Li et al., 2014). Further, full connections

were replaced with convolutions, allowing the input of images of any size and improving perfor-

mance. This resulted in a CNN (LeCun et al., 1989) being applied to various tasks, and its subtype,

Fully Convolutional Neural Network (FCN) (Long et al., 2015), mainly being used for segmenta-

tion. Now, CNNs remain the most common network architecture, designed to process pixel data

and effectively capture image features. However, many architectures were proposed, which ap-

proach learning from different angles. The notable among them are: FCN-based encoder-decoder

architecture (Ronneberger et al., 2015), Recurrent Neural Network (RNN) (Sherstinsky, 2020) and

Transformer (Vaswani, 2017), based on the concept of attention (Bahdanau et al., 2014). A number

of network architecture concepts were proposed, such as multi-scale feature extraction (He et al.,

2015), skip connections (Wiener, 2019) and dilated convolution (Chen et al., 2014). The field con-

tinues to rapidly evolve, with one of the latest advances being SAM 2 (Ravi et al., 2024), showing a

significant improvement over SOTA.

Developing interactive systems that integrate DL poses significant challenges. Unlike classical

methods with controllable parameters, DL models are not initially designed for interactive use. To

enable a typical user workflow, which allows to iteratively correct the result until satisfaction, DL

methods necessitate a feedback loop, where the outputs of the model are continually reintroduced

as inputs. This is not trivial, since DL methods are usually trained on static datasets and may

struggle to adapt to dynamic user interactions in real-time. They are thus more difficult to adapt

for applications requiring user feedback.
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1.4.3 Hybrid

Hybrid approaches integrate neural networks with classical methods. The resulting methods

usually aim to harness DL for the segmentation, while classical algorithms are used for refine-

ment (Chen and Pan, 2018) or regularisation.

Refinement. Basic hybrid systems might use a neural network to propose a segmentation and a

classical method like graph cuts to refine these proposals with or without user feedback (Chen and

Pan, 2018; Lu et al., 2018). The success of such methods strongly depends on how effectively the

classical components are integrated to complement the neural network outputs. Furthermore,

it is very probable that segmentations produced by SOTA neural approaches might degrade as a

result of such refinement as shown in (Aflalo et al., 2022). To combat this, more advanced hybrid

systems adopt end-to-end approaches, such as in (Xie et al., 2023).

Regularisation. Regularisation in ML refers to a set of techniques used to prevent overfitting by

adding additional information or constraints to a model. The goal of regularisation is to improve

the model’s ability to generalise to new, unseen data. This is done by penalising overly complex

models or by incorporating prior knowledge, often provided by classical methods, thereby pro-

moting simpler and more robust solutions. A common approach involves incorporating a reg-

ularisation term into the loss function (Nosrati and Hamarneh, 2016). In the context of image

segmentation, various forms of prior knowledge can be integrated into DL frameworks, including

adjacency rules (Ganaye et al., 2019), shape constraints (Oktay et al., 2018) or topology specifica-

tions (Keshwani et al., 2020).

Currently, as it can be seen in both recent (Bilic et al., 2023) and older (Antonelli et al., 2022)

challenges, featuring a large number of competing methods, hybrid methods are rarely encoun-

tered both among the competing and the top-scoring methods. This is further evidenced by a very

recent SAM 2 SOTA comparison (Ravi et al., 2024), where all of the competitors for video object

segmentation are purely DL-based. This may indicate that hybrid methods systematically under-

perform or introduce additional computational complexity, as with graph cut, which is unfeasible.

However, hybrid methods find more success in complex domains, where including prior knowl-

edge is essential for many problems, such as in medical imaging segmentation (Lepcha et al.,

2023).

1.5 Medical Imaging

Medical imaging techniques utilise various physical principles like radioactivity, electromagnetic

waves, nuclear magnetic resonance, and sound waves to non-invasively create visual represen-

tations of the internal structures of the human body (Suetens, 2017). The primary imaging tech-

niques used in clinical settings are X-ray radiography, Computed Tomography (CT), MRI, PET,

and Ultrasound (US). Overall, medical imaging contributes to approximately 90% of all healthcare

data (Zhou et al., 2021), making it one of the most important sources for medical data analysis.

1.5.1 Types

We give an overview of each of the primary medical imaging techniques below. Examples of the

respective medical scans are shown in figure 1.9.
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X-ray (Radiography). Radiography uses X-rays, a form of electromagnetic radiation, to capture

images of the internal structures of the body by directing a beam of energy at the specific body

part being examined (Suetens, 2017). When X-rays pass through the body, they are absorbed at

different rates by different tissues. This allows for the visualisation of bones, certain tumours,

and lung conditions using an X-ray detector placed on the opposite side of the body part being

examined. Radiography is widely used for diagnosing fractures, infections, and detecting foreign

objects in the body.

Computed Tomography (CT). CT scan utilises the X-ray technology to create cross-sectional

images of the body. As opposed to radiography, it generates a 3D image of internal organs

and structures, by combining multiple x-ray measurements taken from different angles. More

precisely, a CT scan involves rotating an X-ray beam around the patient while moving along the

patient’s body, producing a set of cross-sectional images, also known as slices or tomographic

images. Once the desired number of slices is acquired, they are digitally stacked together into a 3D

image of the body part in question. A CT scan can provide detailed images of various structures,

such as bones, muscles, organs, and blood vessels. CT scans are useful for detecting various

injuries and diseases, including certain types of cancers, and cardiovascular diseases.

Magnetic Resonance Imaging (MRI). In contrast to CT, MRI uses strong magnetic fields and radio

waves to produce detailed 3D images of organs and tissues. More precisely, an MRI machine uses

strong magnets to create a powerful magnetic field that aligns the protons in the body with this

field. When a radiofrequency pulse is applied, these protons become excited and move out of

their aligned state. Then, once the radiofrequency pulse is turned off, the protons return to their

original alignment, releasing energy in the process. MRI sensors detect this released energy. The

time it takes for the protons to realign and the amount of energy released vary depending on the

environment and the chemical properties of the molecules. These variations help physicians

differentiate between different tissue types. MRI scanners excel in imaging soft tissues in the

body and do not rely on the ionising radiation used in CT scans and radiography. MRI is capable

of providing clearer images of the brain, spinal cord, nerves, muscles, ligaments, tendons and

organs in general.

Positron Emission Tomography (PET). PET imaging involves injecting a small amount of

radioactive tracer into the patient’s bloodstream. This tracer emits positrons, which interact with

electrons in the body to produce gamma rays. The scanner detects these gamma rays to construct

images that show metabolic activity within tissues. PET scans are often used in oncology to detect

cancer and monitor its progression and treatment. A PET scan can often identify abnormal tracer

metabolism associated with diseases before they appear on other imaging tests like CT or MRI.

Ultrasound (US). US imaging uses high-frequency sound waves to produce images of the patient’s

internal organs and structures. During a US scan, a transducer, which is a handheld device that

both emits and receives sound waves, is placed on the skin. It emits sound waves into the body

and detects the echoes that bounce back. These sound waves reflect off boundaries between

different types of tissues, such as between fluid and soft tissue or soft tissue and bone. The
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(a) MRI
(b) CT

(c) US
(d) X-Ray

(e) PET

Figure 1.9: Examples of medical scans of the abdomen: (a) MRI, (b) CT, (c) US, (d) X-Ray, and (e) PET. Im-
ages only for illustrative purposes, each scan corresponds to a different patient. Image sources: (a) FPMRId,
(b) SURGAR (SURGAR, 2024) clinical trial data and (c, d, e) publicly available individual slices of medical
scans (Parasher and Mohan, 2021; Jones, 2024; Holdsworth et al., 2007).

transducer picks up these echoes and converts them into electrical signals, which are sent to the

US scanner. By measuring the time it takes for the echoes to return and knowing the speed of

sound in tissues, the scanner calculates the distance to the tissue boundaries. These distances are

used to create real-time images of tissues and organs on a monitor. US images can be displayed

in 2D, 3D, or 4D (i.e. 3D images in motion). US is widely used to assess soft tissues and organs,

including monitoring fetal development in obstetrics and examining the heart and blood vessels

in cardiology.

1.5.2 Clinical Usage

Medical imaging is essential in clinical practice, playing a pivotal role not only in identifying dis-

eases but also in guiding treatment and managing ongoing health conditions (Zhou et al., 2021).

The basic radiology workflow features the following steps:

1. Image Acquisition: A technologist operates imaging equipment, such as CT or MRI ma-

chines, to capture detailed medical images of the patient. These images are converted into

the Digital Imaging and Communications in Medicine (DICOM) format. This standardised

format ensures that the images can be transmitted and interpreted across different systems.

2. Image Routing: The images are sent to a DICOM router, a system that directs the images to

the appropriate destinations.
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3. Image Storage and Management: The router forwards the images to the Picture Archiving

and Communication System (PACS). PACS stores, retrieves, and manages the images, mak-

ing them accessible for further use.

4. Radiologist Access: Physicians, especially radiologists, are primarily responsible for inter-

preting medical images. They use specialised workstations to access the image data stored

in PACS. They visualise, post-process, and interpret the images to assist in diagnosis and

treatment planning.

Radiologists typically analyse the images manually or with the help of classical tools - by marking,

delineating the regions of interest and leaving notes. They then prepare a detailed report sum-

marising their observations. The referring physician then uses this report, along with the images,

to develop a diagnosis and create a treatment plan. The role of radiology in healthcare can be

categorised into several key directions: prevention, detection, diagnosis, delivery and monitoring

of therapy, prognosis, and other considerations (Brady et al., 2021):

Prevention. Radiology significantly contributes to disease prevention through screening and

predictive imaging biomarkers, facilitating early detection. It provides reassurance by confirming

the absence of disease, which can eliminate the need for further costly tests.

Detection. Early disease detection is enhanced through population-based screening programs

in radiology, allowing for the identification of diseases across large populations. By spotting

abnormalities that match clinical symptoms, radiology ensures patients receive timely diagnosis.

Diagnosis. Imaging is crucial for determining disease stages, which is essential for planning

effective treatment strategies. Accurate staging and decision-making are heavily dependent on

accurate expert interpretation.

Delivery and Monitoring of Therapy. Tracking patient progress during treatment is vital for

assessing treatment effectiveness, distinguishing between those who respond well to treatment

and those who do not.

Prognosis. Confirming disease resolution is crucial for determining when treatment can be safely

discontinued.

Medical imaging is frequently used during patient follow-ups to assess the effectiveness of treat-

ments. Furthermore, medical images are increasingly vital in invasive procedures, being used di-

rectly for surgical planning. Therefore, accurate interpretation of medical images is important

for effective patient care, as it directly influences diagnosis, treatment planning, and outcomes.

It is evident that skilled radiologists are essential for providing precise interpretations, which in-

volve analysing complex imaging data to identify abnormalities, determine disease stages, and

evaluate treatment responses. However, this process is time-consuming and is subject to human

limitations. Specifically, human interpretation is often limited by subjectivity, variability among

interpreters, and fatigue. Radiologists normally have limited time to review a rapidly increasing

volume of images, potentially resulting in errors and imprecisions, which is not feasible.
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1.5.3 Specifics & Challenges

The challenges and time-intensive nature of interpreting, annotating, and incorporating medical

images into algorithms arise primarily from the following factors (Zhou et al., 2021):

Quantity of modalities. Medical images come in various modalities, which are very different from

one another. New imaging techniques, such as spectral CT, are continuously being developed.

Each modality requires experts in a specific field.

Image heterogeneity. Images are diverse due to differences in equipment, scanning protocols,

and patient characteristics, causing data distribution shifts. Simply, even data which appears

similar to the eye, might produce very different results if input in the same algorithm. Patient

privacy and data management practices lead to images being stored in disparate locations,

making centralised data sets rare.

Diversity of pathologies. Radiology Gamuts Ontology (Budovec et al., 2014) lists 1674 differential

diagnoses, 19.017 terms, and 52.976 links between terms. Provided such a quantity, disease

incidence shows a long-tailed distribution, where common diseases have ample data, but rare

diseases lack sufficient cases for analysis.

Data noise and sparsity. Medical images may be annotated differently, depending on the task.

For example, when the task is to confirm if a tumour is present or not, a classification label in text

can be provided. However, if the task is to segment the said tumour, one has to carefully draw the

tumour’s boundary, which is more labour-intensive. These annotation types are not immediately

convertible one into another, and multiple of them may be required at the same time. This is

costly and time-consuming, leading to sparse (i.e. incomplete or missing) annotations. Further-

more, because of the human factor, different levels of experience between experts and variable

conditions, both inter- and intra-expert annotation variability is high (Lecart, 2024). Establishing

a gold standard is thus non-trivial.

Data imbalance. Medical images show significant appearance variation, creating a multi-modal

distribution of positive and negative samples. There is a pronounced imbalance between positive

and negative samples, e.g., tumour pixels may take a fraction of the overall 3D volume.

Tasks diversity. Medical imaging involves a wide range of complex tasks including reconstruction,

enhancement, restoration, classification, detection, segmentation, and registration. Combining

these tasks, multiple imaging modalities and diverse pathology types results in numerous com-

plex applications with unique challenges to be addressed.

Ethical and legal considerations. As opposed to other types of data, medical images contain

sensitive information. Therefore, regulatory and compliance requirements have to be respected to

obtain and use medical images. They include: ensuring patient privacy through data anonymiza-

tion (Olatunji et al., 2021), obtaining informed consent on data usage and addressing bias to

ensure fairness across diverse populations (Albahri et al., 2023).
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The complexities inherent in medical imaging, including the diverse modalities, image het-

erogeneity, the wide range of pathologies, and legal considerations present significant challenges

in efficiently interpreting and utilising this data for clinical purposes. These challenges highlight

the need for solutions that can assist medical experts in medical image analysis. This need might

be answered by ML and, specifically, DL.

1.6 ML for Medical Imaging

Although Computer-aided Detection (CADe) systems, Computer-aided Diagnosis (CADx) systems

and decision support systems in general have been utilised in medical imaging for the last several

decades, significant progress in clinical decision-making has been achieved more recently due

to the advent of ML and notably DL in many tasks (Najjar, 2023). This progress is attributed to

advancements in computational power and improved electronic access to clinical data. Still, no

single algorithm can universally apply to all medical imaging tasks. Therefore, each method must

be carefully tailored to the specific task modality, conditions and challenges to ensure accurate

and reliable results (Zhou et al., 2023b).

1.6.1 General applications

ML in medical imaging can be broadly categorised into four key areas, each addressing different

aspects of healthcare improvement: (1) medical image analysis and interpretation, (2) operational

efficiency, (3) predictive and personalised healthcare, and (4) clinical decision support (Khalifa

and Albadawy, 2024). The first area focuses on enhancing image analysis, where it helps in

identifying objects of interest and reducing human error. The second area targets improving

operational efficiency by speeding up the process of image interpretation and making it more

cost-effective. The third area involves predictive and personalised healthcare, utilising historical

data for early diagnosis and tailoring treatments based on individual patient characteristics.

Finally, ML supports clinical decision-making, especially in complex procedures, including

surgical interventions, and integrates with other technologies, like electronic health records.

Medical imaging has given rise to several important research domains, including:

Medical image reconstruction (Ahishakiye et al., 2021) involves converting signals captured

by devices like CT or MRI scanners into images. This process is crucial for generating high-quality

images even with lower doses of radiation or quicker scans. For example, GE HealthCare has

produced and integrated AIR Recon DL (Electric, 2022) for MRI. This DL-driven reconstruction

method has improved image clarity via denoising and sharpening by up to 60% and reduced scan

times up to 50%, and is used across a broad range of MRI systems, including older models.

Medical image enhancement (Lepcha et al., 2023) targets improving image quality, which

includes super-resolution, denoising and MR bias field correction (Tustison et al., 2010b). Recent

advances feature image generation and modality-to-modality translation (e.g. CT to MRI), which

can potentially mitigate the limited data regime typical for medical imaging (Özbey et al., 2023;
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Kazerouni et al., 2023).

Medical image object detection (Jaeger et al., 2020; Chan et al., 2020) focuses on localization

(CADe) and identification (CADx) of specific objects or regions of interest within medical images,

when pixel precision is not required. An challenging example of this is detection of endometriosis

in laparoscopic surgery videos (Leibetseder et al., 2022). Notably, object detection may serve the

purpose of finding the anatomical landmarks, which will be used as inputs to another algorithm.

Medical image segmentation (Qureshi et al., 2023) is the process of extracting the boundaries of

pathological or anatomical structures within medical images. This technique offers more precise

object localization than detection methods, making it indispensable in scenarios where high

accuracy is critical. Segmentation plays a crucial role in various aspects of medical image analysis,

including tumour localization, tissue and organ quantification, disease progression monitoring,

and, importantly, surgical planning (Conze et al., 2023).

Medical image registration (Hering et al., 2022) is the process of aligning multiple images into a

common coordinate framework, which is essential for comparison and analysis across different

multiple modalities. For instance, aligning a patient’s CT scan with their MRI allows clinicians to

combine detailed anatomical data from the CT with functional or metabolic information from

the MRI. It is widely used in areas like multimodal fusion, and in segmentation via label transfer

approaches.

Other technologies include image or view recognition (Xu et al., 2018; Chauhan et al., 2022), which

targets classifying image perspectives or views; and automatic report generation (Zhou, 2023),

which streamlines the process of creating diagnostic reports.

1.6.2 Specifics & Challenges

Application of ML in medical imaging is limited by the three key factors:

Limited data availability. Medical imaging datasets are often limited due to patient privacy con-

cerns, the high cost of acquiring annotated data, and the rarity of certain conditions (Tajbakhsh

et al., 2020). Specifically, due to the resource-intensiveness of data annotation, the quantity

of annotated data is normally just a fraction of all the non-annotated data due to the years

of patient records not yet used for any algorithm. This scarcity of annotated data makes it

challenging to train robust ML models, which typically require large, diverse datasets to achieve

high performance and generalizability. While there is no immediate solution to this problem,

many methods have been proposed to address limited data in medical imaging (Adadi, 2021).

This includes methods to create additional data such as data augmentation and generation (Chen

et al., 2021b; Murtaza et al., 2023), as well as learning from limited samples using techniques like

transfer learning (Iman et al., 2023) and few-shot learning (Song et al., 2023).

Critical nature of clinical decisions. While ML models often achieve superhuman performance

in certain tasks, they are still error-prone. However, in medical imaging an incorrect diagnosis or
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treatment recommendation can have severe consequences, including patient harm. Therefore,

it’s crucial that ML models not only achieve high levels of accuracy and reliability but also be

designed to work in tandem with healthcare professionals, allowing for user control. This means

that to integrate ML models into the decision-making process, the most adapted approach is

Human-in-the-loop (HITL) (Wu et al., 2021; Budd et al., 2019). Simply, medical experts should be

able to correct ML outputs, if required.

Explainability. ML models, particularly DL models, generally function as ‘black boxes’, which

input data and output a decision, whereas the connection between one and the other is not al-

ways clear, making their decision-making process difficult to interpret (Van der Velden et al., 2022).

However, it is crucial that medical experts understand the reasoning behind ML model decisions,

especially in complex cases. Simply, ML models should operate in a predictable, explainable man-

ner. The lack of explainability in these models presents a significant barrier to their adoption in

clinical settings, where transparent and interpretable decisions are crucial for safe patient care and

regulatory approval.

1.7 Medical Image Segmentation

Segmentation is one of the key tasks for medical image interpretation. However, delineating pre-

cise boundaries within medical images is a difficult, time-consuming task for medical experts.

Furthermore, medical imaging is a challenging domain with a number of limitations, making it a

research challenge for potential ML approaches. Nevertheless, producing clinically-adapted seg-

mentation solutions is crucial for reducing the radiologists’ workload. Automating this process

will lead to new and more efficient medical imaging workflows, allowing medical experts to focus

on other aspects of patient care.

1.7.1 Difference from Other Segmentation Tasks

Medical image segmentation is challenging due to a combination of two groups of factors, which

are: (1) data-related factors and (2) clinical practice- and environment-related factors. We discuss

each of these in turn.

Data-related factors. Medical image segmentation inherits the 3 major challenges stemming

from medical imaging data at large, which are discussed in section 1.5.3. First, unlike typical

2D segmentation, medical imaging often deals with 3D data, which introduces complexities in

handling volumetric information. Second, the variability in image quality, anatomical complexity,

and the high degree of inter-expert variability—stemming from differences in expertise and

annotation conditions—further complicate the process. Third, privacy and security concerns

limit data availability, making centralised datasets rare with particularly small amounts of training

data for rare pathologies.

Clinical practice- and environment-related factors. Medical image segmentation approaches are

conditioned by the specifics of the clinical practice and clinical environment. Specifically, there

are 2 key aspects, which have to be considered for any medical image segmentation solution and
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are discussed in section 1.6.2. First, fully-automatic segmentation algorithms generally can not be

employed in high-risk applications, such as medical imaging, due to potential errors. Second, seg-

mentation algorithms should operate in a predictable, repeatable and explainable manner. Hence,

interactive approaches are preferable in order to prevent patient harm and due to regulatory rea-

sons. Simply, medical experts should be able to correct the outputs of such a segmentation algo-

rithm when necessary.

1.7.2 Solutions

Medical image segmentation inherits its categorisation from general Image segmentation dis-

cussed in section 1.4. Thus, medical image segmentation approaches can be roughly divided into

3 categories, depending on the nature of the algorithm: (1) classical, (2) neural and (3) hybrid.

Classical. Prior to the rise of learning techniques, medical image segmentation relied heavily on

mathematical models and low-level image processing, particularly statistical shape models, which

were often enhanced using prior shape knowledge (Sharma and Aggarwal, 2010; Conze et al.,

2023). These methods include region-based, classification and clustering techniques, as well as

atlas-based and model-based techniques. In atlas-based segmentation, comprehensive anatomi-

cal, size, shape, and feature data of one or multiple objects of interest are combined into an atlas.

Registration is then employed to adapt and apply the best-fitting reference from the atlas, to a

patient scan. In contrast, model-based segmentation utilises the consistent geometric patterns

of organs, applying probabilistic models to accommodate their variations in shape and structure.

Some well-known examples of classical methods are Otsu’s thresholding (Otsu, 1979), k-nearest

neighbour (Fix, 1985), fuzzy C-means (Bezdek et al., 1984), graph cut (Boykov and Jolly, 2001) and

multi-atlas segmentation (Aljabar et al., 2009).

However, these classical methods face significant challenges when dealing with the inherent

complexities of medical images (Conze et al., 2023). The variability in anatomical shapes between

patients, indistinct boundaries, and varying tissue characteristics present significant challenges.

Moreover, the robustness of these methods is frequently compromised by common issues in

medical imaging, such as noise, inconsistent contrast levels, and a variety of artifacts. While

classical methods provide a solid foundation, their limitations in addressing these challenges led

to advancement of ML and, specifically, DL methods.

Neural. Neural approaches use ML and, specifically, DL to perform segmentation. The most

widely-used models in this domain are based on CNNs. To adapt to the volumetric nature of

medical data, 3D CNNs(Tran et al., 2015) have been developed, enabling the direct processing of

3D medical images. 3D CNNs improve performance when applied to volumetric data like CT or

MRI scans. The U-Net architecture (Ronneberger et al., 2015) has become particularly prominent

due to its ability to produce detailed segmentations, which is crucial in medical applications.

U-Net has given rise to numerous variations, including its 3D counterpart, 3D U-Net (Çiçek et al.,

2016). However, given the variability of medical imaging tasks and the difficulty of transferring

a model optimal for one task to another, there is a growing need for adaptable frameworks

that can automatically optimise for different datasets. Prominent example of such a model are

nnU-Net (Isensee et al., 2021) and NiftyNet (Gibson et al., 2018). While U-Net and its variants
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remain central due to their versatility and performance, there is a growing interest in exploring

other architectures, such as Transformer-based models (Vaswani, 2017), which is an emerging

trend (Conze et al., 2023).

Hybrid. While classical segmentation methods have been foundational in image analysis, their

application in medical imaging segmentation is often limited to simpler cases or requires exten-

sive manual correction. However, as with general image segmentation, they can be integrated into

DL frameworks to refine the ML outputs (Luo et al., 2021) or for regularisation of ML learning,

which includes providing explicit constraints (Bonfiglio et al., 2023) and embedding prior knowl-

edge (Xie et al., 2021). This latter is especially effective, since medical knowledge is the cornerstone

of medical imaging and is generally obtained on a very large number of cases, which are validated

by numerous medical experts over the years of practice. Usage of such data in various forms has

been shown to improve segmentation performance for medical imaging. For instance, shape pri-

ors are frequently used to ensure that segmentation outputs are anatomically plausible (Boutillon

et al., 2022). Beyond shape, other geometric attributes such as size, texture or topology, can be

incorporated into DL training objectives (Conze et al., 2023).

1.8 Applications

Applications of image segmentation vary significantly depending on the specific domain and the

particular problem being addressed, each with its own set of challenges and requirements. For in-

stance, certain examples and some of the respective challenges are: (1) autonomous driving - due

to numerous input modalities, varying conditions and lack of accuracy guarantees (Chen et al.,

2024), (2) agriculture for crop and soil monitoring - due to similarity of disease stages and com-

plexity of the agricultural environment (Lei et al., 2024), (3) industrial inspection - due to noise,

dust and vibrations, as well as fast computation time requirements and the integration difficul-

ties (Usamentiaga et al., 2022). This applies to all domains and, specifically, to medical imaging.

We introduce the applications relevant to this work and their specifics in the corresponding

sections below. Namely, they are: (1) enabling AR in gynaecological laparoscopy and (2) data-

efficient annotation at scale applied to segmentation.

1.8.1 Specific Segmentation Applications

Augmented Reality for Laparoscopic Surgery

Laparoscopic surgery is a minimally invasive procedure performed through small incisions using

a laparoscope with a camera and specialised thin instruments. It has significantly advanced

surgical techniques by reducing recovery times and minimising patient trauma. A key research

focus within Computer-Aided Intervention (CAI) is the development of AR systems to assist

laparoscopic surgery teams by providing enhanced visual guidance. Specifically, over the past

two decades, AR has garnered significant interest in Minimally Invasive Surgery (MIS) due to

the possibility to overlay diverse information, such as preoperative 3D models from CT or MRI

data, resection paths, and Laparoscopic Ultrasound (LUS) images, directly onto intraoperative

visuals. Integration of AR simplifies surgical procedures by eliminating the need for surgeons

to mentally associate separate data sources, such as an MRI scan, with the intraoperative scene
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Figure 1.10: An example of operating room setup during laparoscopic surgery. Image source: (Minig, 2024)

while operating. While this enhances precision and efficiency across various MIS specialities,

additional preoperative steps are typically necessary. Specifically, the CT or MRI data must first be

segmented to produce the 3D models, which are then overlaid onto the intraoperative video feed.

Figure 1.11: Patient-side schematic representation of the laparoscopic surgery of the uterus. Image source:
(Blausen.com staff, 2014)

Minimally Invasive Surgery (MIS). As opposed to open surgery, which involves a large incision in

the abdominal wall, MIS is a family of surgical techniques, which involves performing operations

through small incisions or natural body orifices. MIS encompasses a variety of techniques tailored

to different organs and regions of the body. These procedures utilise specialised thin instruments,

including an endoscope, which is equipped with a camera and light source to visually examine

the interior of a body cavity or organ. Typically, the surgeon navigates the surgical area using the

endoscope inserted through one of the incisions, with the camera feed displayed on an external

monitor (Robinson and Stiegmann, 2004, 2007). Because of this indirect approach, extensive and

24



CHAPTER 1. INTRODUCTION

specialised training, which can take years to complete, is required to achieve proficiency.

Laparoscopy, also known as keyhole surgery, is one of the first forms of MIS and targets the ab-

domen and pelvis. The procedure involves inflating the abdominal cavity with gas and inserting a

rigid telescope (laparoscope) through a small incision in the abdominal wall to view the peritoneal

cavity. Once the laparoscope is in place, additional surgical instruments are introduced through

nearby incisions to perform diagnostic or surgical tasks (Monnet and Twedt, 2003). Laparoscopy

generally goes through these steps (Smith et al., 2018):

1. A small incision is made in the peritoneal cavity, and a trocar (hollow tube) is inserted pro-

viding access inside for the instruments.

2. Carbon dioxide is introduced to inflate the abdominal cavity to enlarge the working space

and obtain better visibility.

3. A laparoscope is inserted, and the scene is explored.

4. Trocars for other instruments are placed as needed.

5. The surgery is performed by driving instruments through the trocars.

6. Instruments and trocars are removed, the carbon dioxide is released, and incisions are

closed.

Figure 1.10 depicts the operating room setup during laparoscopic surgery, where surgeons

monitor internal views on screens using a laparoscopic camera. The schematic representation of

the procedure within the gas-filled abdomen of the patient is shown in figure 1.11.

Figure 1.12: Comparison between Virtual Reality (VR) and AR: (left) a 3D digital model of a kidney; (right)
the same 3D model overlaid onto a surgical video frame. The left image displays only digital information,
while the right image combines digital content with real-world visual data.

Augmented Reality. AR is a set of technologies, which targets seamlessly blending digital

information with the physical world, either automatically or through user interaction (Arena

et al., 2022). Specifically, AR allows to combine and overlay digital content and information (e.g.

text, images, audio, video, graphics or any other digital format) onto the real-world environment
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in real time. AR allows users to interact with a digitally enriched version of their surroundings,

using various display technologies that combine or superimpose this digital content onto their

view of the physical world. AR may be realised in a software-only form or require additional

specialised hardware, like a virtual reality headset (Angelov et al., 2020), depending on the

purpose and application. Simply, VR implies only digital information, while AR combines digital

and real-world information. Figure 1.12 provides a simple illustration of the differences between

the two, based on the AR for the laparoscopic surgery of the kidney.

Augmented Reality for Laparoscopic Surgery of the Uterus. CAI is a multidisciplinary field that

focuses on the use of computational technologies to assist in planning, guiding, and executing

surgical and interventional procedures. A major research focus in CAI is enhancing laparoscopic

surgery through AR guidance. This approach integrates data from modalities like MRI with real-

time video coming from the laparoscope, allowing surgeons to visualise internal anatomical struc-

tures invisible to the naked eye during the procedure.

Figure 1.13: The operating room screens during the laparoscopic surgery of the uterus using an industrial
system U-SURGAR (SURGAR, 2024), which stems from (Collins et al., 2020). Image source: (SURGAR, 2024)

The system proposed in (Collins et al., 2020) is the first AR-guided approach for laparoscopic

surgery of the uterus, called Uteraug. It was then adopted and advanced into an industrial

system U-SURGAR (SURGAR, 2024). The system operates using preoperative MR or CT data

combined with monocular laparoscopes, eliminating the need for additional interventional

hardware such as optical trackers. As input, it requires a segmented preoperative 3D model of

the uterus, including both the surface mesh and the meshes of internal structures. These meshes

are then semi-automatically aligned with the uterus in the surgeon’s visual field and tracked,

achieving a see-through effect for the respective anatomical structures. Simply, the tumours

inside the uterus are visible on the surgeon’s screen with the laparoscope video feed, as if the

uterus was transparent. The proposed AR system operates on a dedicated hardware platform

and is compatible with standard monocular or 3D laparoscopes, as well as surgical robots. The
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main phases of the pipeline are showcased in figure 1.14. The operating room screens while using

U-SURGAR are shown in figure 1.13. To produce the 3D model of the uterus and its internal

structures for AR visualisation, a preoperative MRI scan of the patient’s pelvis is first required.

This scan then must be segmented by a radiologist, so that the model could be reconstructed

from the segmentations.The work presented in this thesis addresses segmentation both as an

integral part of U-SURGAR (see section 4) and as a standalone task. It also takes a step further and

adopts a broader view by proposing a general data-efficient annotation method applicable to a

wide range of scenarios (see section 5).

Figure 1.14: The outline of the AR pipeline for laparoscopic surgery in U-SURGAR, which builds upon the
Uteraug system described in (Collins et al., 2020). As one of the system’s applications, the uterus is first
shown in an MRI (Step 2) and then in a surgical video (Step 4). Segmented MRI series is highlighted in green
as the key area of this thesis contributions.

FPMRI. MRI is considered the gold standard imaging modality for pelvic examinations in both

adults and children (Virzì et al., 2020). MRI imaging of the female pelvis is a valuable tool for

distinguishing between non-cancerous (benign) and cancerous (malignant) masses, determining

the stage of cancer before treatment, and assessing other gynecologic and pelvic conditions. Its

ability to produce high-contrast images of soft tissues makes it especially effective for identifying

the spread of tumours and examining the entire pelvic area (Westbrook and Talbot, 2018). The key

imaging techniques involved in MRI of the female pelvis include T2-weighted imaging (T2WI),

T1-weighted imaging (T1WI), in-phase and opposed-phase imaging, as well as advanced imaging

methods such as Diffusion-weighted Imaging (DWI) and Dynamic Contrast-enhanced Imaging

(DCE) (Sakala et al., 2020). Samples of FPMRI T2WI are shown in figure 1.15.

As discussed in section 1.5.3, MRI segmentation presents inherent challenges. Segmentation

of the female pelvis in MRI is particularly difficult due to four specific inherent factors. First, the

complex anatomy involves multiple closely situated organs, such as the uterus, ovaries, and blad-

der, with soft tissues that often exhibit similar signal intensities, making it difficult to distinguish

between them. Second, there are notable variations in positioning and pelvic morphology, making

inter-patient variability especially pronounced (Lee et al., 2024). Third, organ motion, particularly

from respiration and bowel peristalsis causes shifts and distortions in the images (Maccioni et al.,

2023). Fourth, MRI images may contain a number of artefacts, which come from MRI hardware

and room shielding, MRI software, patient and physiologic motion, tissue heterogeneity, presence
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of foreign bodies and due to the specifics of signal processing and reconstruction techniques. This

includes motion artefacts due to patient movement, susceptibility artefacts due to air in the bowel,

and chemical shift artefacts, which result in blurred boundaries between tissues (Westbrook and

Talbot, 2018). These difficulties are further compounded by the fact that most segmentation soft-

ware tools predominantly focus on CT images, with MRI applications being largely limited to brain

imaging (Virzì et al., 2020).

(1) (2) (3) (4) (5)

Figure 1.15: Female pelvis MRI samples, with main difficulties indicated with green arrows, series 1 to 5: (1)
presence of an IUD, not seen in the training set; (2,5) unclear contours, blurriness of the uterine cavity; (3)
similarity of the uterine (left) and cervix cavities (right); (4) strong uterus deformation due to the tumours,
with here five tumours.

While previous research has demonstrated that FPMRI segmentation is feasible using ML and

specifically DL (Liu et al., 2021; Zhuang et al., 2024), number of proposed approaches useable in

clinical environment remains limited due to the abundance of fully-automatic solutions (Kalantar

et al., 2021; Omouri et al., 2024). The problem is worsened by severe scarcity and limited size of

publicly available annotated abdominal and pelvic MRI datasets. Specifically, one of the largest

datasets contains only 300 scans (Pan et al., 2024).

Overall, FPMRI segmentation is challenging due to the inherent complexities of the anatomy

and the current lack of sufficient public datasets (Virzì et al., 2020). These challenges are further

exacerbated by the limited availability of appropriate solutions, as most existing tools are tailored

for other imaging modalities or not clinically-adapted in practice. However, addressing these is-

sues could significantly streamline radiologists’ workflows and pave the way for innovative appli-

cations, such as enabling AR in the laparoscopic surgery of the uterus.

Data-efficient Annotation at Scale

Data hungriness is one of the key downsides of modern ML and DL algorithms. For example, Gen-

erative Pre-trained Transformer 3 (GPT-3) - a Large Language Model (LLM) was trained on 45TB

of compressed plaintext (Brown, 2020). In view of this, to train all the more effective ML models,

a large-scale annotation effort, or annotation at scale, is required. Specifically, it involves sys-

tematically annotating vast quantities of data to create extensive and diverse large training sets

for the ML models. However, annotation at this scale is not feasible in all the domains due to

the resource-intensiveness of the task and the need for domain-specific experts. For example, in

the medical field, a typical dataset contains very limited annotated data, sometimes just several

scans, and large quantities of non-annotated data, if any. The goal of the data-efficient annotation

at scale is thus enabling the large-scale annotation in domains, where it’s currently unfeasible.

More precisely, data-efficient annotation at scale should address the problem data hungriness in

two major ways: (1) by effectively utilising the limited annotated data available and (2) by anno-
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tating available non-annotated data with minimal human input. Given that increasing dataset

size is a key factor in performance improvement (Adadi, 2021; Halevy et al., 2009), leveraging both

approaches is crucial. This is especially true for medical imaging, where the majority of data re-

mains unannotated. A prime example is surgical video segmentation from laparoscopy, which can

be used for many tasks, including carcinomatosis detection. Specifically, surgeries normally last

hours, resulting in long and numerous files of video footage, containing hundreds of thousands

of frames, which cannot realistically be annotated within a reasonable timeframe by human effort

alone (Ward et al., 2021). Another example is the Cancer Imaging Archive (TCIA) (Clark et al., 2013),

which hosts a vast amount of medical imaging scans, with only fractions of its volume periodically

annotated.

1.9 Contributions

The goal of this work is twofold.

First, we enable FPMRI segmentation with a new dataset and a clinically-adapted solution,

which improves performance by incorporating the way a medical expert typically approaches seg-

mentation. Simply, existing methods do not exploit the typical sequentiality of real user interac-

tions. This is due to the interaction memory used in these systems, which discards ordering of user

interactions. In contrast, we show that the order of the user corrections should be used for train-

ing of DL models and leads to performance improvements. With this, each subsequent correction

done by a medical expert draws from the corrections provided so far and their corresponding re-

sults. This approach ensures continuity, enabling higher segmentation precision with fewer steps

and reduced human input.

Second, we aim to address the problem of data-efficient annotation at scale on the example

of segmentation, by integrating the three steps of data selection, annotation and training into a

single architecture. This approach allows rapid annotation of data in the absence of already avail-

able neural annotation tools and reduces the overall amount of data needing annotation while

maintaining performance. Specifically, this approach requires just a handful of annotated data

to enable a single interactive DL model as described above, which is both an annotation tool and

a predictor. Simply, under the respective technical and medical experts’ control, the model im-

proves by producing the annotations for itself, which addresses both the problem of the absence

of a task-specific annotation tool and the absence of the task-specific annotated data.

Concretely, in this work we make a total of four contributions split into two groups. The first

group forms the foundation of the main contributions by focusing on data and includes: (1) the

FPMRI dataset and (2) the inter-expert variability study on this dataset. The second group contains

the main contributions, which are application-focused: (3) an interactive FPMRI segmentation

framework and (4) a framework for data-efficient annotation at scale applied to segmentation.

1.9.1 Data-wise

Contribution #1. We have assembled and annotated a FPMRI segmentation dataset with assis-

tance of medical experts from the Centre Hospitalier Universitaire (CHU) de Clermont-Ferrand

(university hospital). To our knowledge, this is the first dataset of its size that contains segmen-

tations of the following anatomical structures: uterus, bladder, uterine cavity, cervix, fundus
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and anterior wall; as well as the following annotations of pathologies: tumours, endometriosis

and adenomyosis. The dataset reflects the complexity of FPMRI segmentation and features

annotations, which are multi-class, multi-label, multi-instance, and multi-component. It consists

of MRI scans manually annotated by expert radiologists, capturing significant variations in

shape, size, and texture among these structures. Our contribution involves the dataset itself and

the process of the dataset creation, which includes the data collection process, the annotation

guidelines and respective challenges. The dataset was annotated using specialised platforms, and

its development was tracked, including the evolution of the collection, annotation and the effects

of the annotation platform changes. The dataset is now in a stable state and has been used in

other contributions for training and evaluation, for a user study in contribution #3 as well as a

source for the inter-expert variability study in contribution #2. This contribution is presented in

chapter 3 of the thesis.

Contribution #2. We have performed a single-centre inter-expert variability study in collabora-

tion with a medical expert. Specifically, we have done a retrospective analysis involving 10 female

patients who underwent 1.5T pelvic MRI with 5 mm thick axial T2 Propeller sequences. The MRI

scans were segmented by 6 radiologists with varying levels of experience, producing segmenta-

tion for uterus, bladder, uterine myomas, uterine cavity and cervix. To evaluate the correlation

between the experts, based on this segmentation data, we have calculated: (1) the dice coefficient

in an expert-to-expert manner and (2) volume of each anatomical structure per expert. To aggre-

gate these data, we calculated mean and standard deviation of these metrics for each expert and

across experts for each series. Furthermore, we have used the Simultaneous Truth and Perfor-

mance Level Estimation (STAPLE) algorithm to create a reference golden standard-like segmenta-

tion from the segmentations of all the radiologists for each patient and evaluated their correlation

with this golden standard. The study found excellent inter-expert correlation for uterine volume,

very good correlation for fibroids and bladder, satisfactory correlation for the uterine cavity, and

moderate correlation for the cervix. The results suggest that segmentation of the uterus is a reliable

and reproducible process, supporting the potential development of automatic or semi-automatic

segmentation tools. This study is a part of the medical thesis in (Lecart, 2024), and the related

journal article is planned. This contribution is presented in chapter 3 of the thesis.

1.9.2 Applicative

Contribution #3. We propose a general multi-class deep learning-based interactive framework

for image segmentation, which embeds a base network in a user interaction loop with a user

feedback memory. We propose to model the memory explicitly as a sequence of consecutive

system states, from which the features can be learned, generally learning from the segmentation

refinement process. Training is a major difficulty owing to the network’s input being dependent

on the previous output. We adapt the network to this loop by introducing a virtual user in the

training process, modelled by dynamically simulating the iterative user feedback. We evaluated

our framework against existing methods on challenging multi-class segmentation tasks, including

FPMRI and liver and pancreas CT segmentation, using both in-house and public datasets. A user

evaluation with eleven medical professionals from related fields showed a significant reduction

in annotation time when using our framework compared to traditional tools. We systematically
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evaluated the influence of the number of clicks on the segmentation accuracy. A single interaction

round our framework outperforms existing automatic systems with a comparable setup. We

provide an ablation study and show that our framework outperforms existing interactive systems.

This method has been published as a workshop (Mikhailov et al., 2022) and journal (Mikhailov

et al., 2024) articles and is protected by a patent. This method is presented in chapter 4 of this

thesis.

Contribution #4. We propose a framework called SAIM, which integrates the three steps of data

selection, annotation and training into a single architecture. This is made possible by three key

properties of SAIM in contrast with existing work: (1) SAIM uses a deep interactive predictor;

hence the classical tools are not required and the annotation predictor can be pre-trained with

limited data to produce quality annotations; (2) SAIM uses a single model shared between the

three steps, hence the model is deployable and the annotation predictor improves as annotation

progresses; (3) SAIM uses active learning to maximise the impact of each annotation on the pre-

dictor performance, making the model rapidly improve. We evaluate SAIM and compare it to ex-

isting systems in emulated annotation scenarios in an automated manner with fully-annotated

segmentation datasets on five tasks: (1) on multi-class semantic MRI segmentation of the female

pelvis, (2) on multi-class semantic liver CT segmentation, (3) on multi-class semantic pancreas CT

segmentation, (4) on cardiac MRI segmentation, on which we validate SAIM against SOTA Semi-

supervised learning (SSL) approach, (5) on natural image segmentation, on which we validate

SAIM against the SOTA Self-training (ST) approach. We demonstrate SAIM in a real annotation

scenario of kidney MRI segmentation with a human user. We estimate the time gain as compared

to classical segmentation tools. SAIM outperforms both classical tools and SOTA approaches. With

it, one can jumpstart efficient interactive annotation from limited annotated data and minimise

the amount of data to annotate, while iteratively improving performance. Part of this work has

been published as a workshop article (Mikhailov et al., 2023), while an extended version is pending

to be submitted to a journal. Patent application pending. This method is presented in chapter 5

of this thesis.
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Chapter 2

Background

2.1 Machine Learning

AI, ML and DL are often used as synonyms in the discussions regarding AI. However, these terms

are not interchangeable. The three can be distinguished as follows: (1) AI is the broad field that

aims to create systems capable of mimicking human intelligence, (2) ML is a subtype of AI, which

is used to extract knowledge from data without explicit programming, traditionally done through

simple methods, such as support vector machines, linear regression or decision trees, (3) DL is a

further specialisation within ML, which uses more advanced methods, such as deep ANNs.

Three key distinctions can be identified between ML and DL (Sengupta et al., 2020). First, in

the level of automation: traditional or “shallow” ML techniques often require human intervention

to manually select features and classifiers, while DL automates this process, extracting features

automatically. Second, in the data and computational requirements: DL performance scales with

data and often requires significantly more computational power than ML. Third, in performance:

DL often surpasses “shallow” ML techniques, particularly in complex tasks, such as image and

speech recognition, natural language processing, data generation and autonomous driving. In

contrast to ML, DL enables a widely applicable and practical approach for non-parametric, model-

based learning. This allowed DL to become a dominant approach for many tasks (Buntine, 2020;

Dong et al., 2021).

Despite their rapid growth, both ML and DL are still evolving fields, whose explosive expansion

owes to the decades of prior research (Wang and Raj, 2017). As such, the number of research pa-

pers published per month was shown to grow exponentially and double every 23 months (Krenn

et al., 2022), stabilising at approximately 242 thousand papers per year in 2022 (Maslej et al., 2024).

At the moment, hundreds of AI-related papers are published every day, with 89 notable DL mod-

els released in 2023, according to (Maslej et al., 2024). However, significant further research and

innovation are necessary to fully harness the DL potential, particularly in addressing challenges

like data bias, data privacy, data efficiency, and interpretability. Given this rapid growth of the ML

domain in general, and DL in particular, it is essential to highlight key advancements to establish

a solid foundation for this thesis. As our contributions are directly and indirectly related to the DL

field, we outline key DL advancements in the next section.
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2.2 Deep Learning

DL is not a single method but a collection of solutions that can be applied to a wide range of prob-

lems. It is a naturally vast and multifaceted domain. DL is spread across a number of types, util-

ising both general and specialised network architectures, which enable learning through various

methods. Furthermore, DL relies on at least 4 essential elements. They are: (1) datasets, which

provide the data that fuels learning; (2) libraries, offering a range of tools, including the ones to

build, train, and evaluate models; (3) computational resources, such as Graphics Processing Unit

(GPU) clusters, which handle the high demands of processing; and (4) software tools, which sup-

port data annotation, model deployment and a wide array of task-specific functions. Together,

all of the above contribute to the overall success of DL models across various applications. We

first cover the main aspects of DL: types, architectures, and techniques. Afterward, we explore the

supporting aspects: datasets, libraries, computational resources, and software tools.

2.2.1 Types

Four main types of DL can be identified (Sarker, 2021a). They are: (1) supervised learning, (2)

unsupervised learning, (3) semi-supervised learning, and (4) reinforcement learning. These types

are mainly distinguished by their approach to data, characterised by presence or absence of anno-

tations (or labels), associated with each data point. Specifically, for each: (1) in supervised learn-

ing, algorithms learn a function that connects the inputs to outputs by leveraging the annotated

training data consisting of input-output pairs; (2) unsupervised learning focuses on analysing

data without annotations, allowing models to discover patterns and structures independently; (3)

semi-supervised learning utilises a combination of annotated and non-annotated data, integrat-

ing techniques from both supervised and unsupervised methods; (4) reinforcement learning does

not require annotations, but instead employs reward signals to guide learning in a trial-and-error

manner.

Figure 2.1: ResNet34 architecture schematic. Each box represents a set of multi-channel feature maps.
Image source: (Zhang et al., 2023)

2.2.2 Architectures

In DL, architecture typically refers to the structural design of a neural network, defining how

layers are organised and how data flows through the network during learning. An architecture

is normally tailored to handle specific tasks or data types, enabling models to capture patterns,

relationships, and representations within the data in particular ways. The choice of architecture

influences a number of factors, including the model’s ability to process information, the model’s
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generalisation to unseen data, and the model’s performance. Some of the most prominent

architectures are: (1) CNN, with U-Net and ResNet as examples shown in figures 2.2 and 2.1

respectively; (2) RNN, with LSTM and Gated Recurrent Unit (GRU) as examples; (3) Generative

Adversarial Network (GAN); (4) Autoencoder (AE) and (5) Transformer, including the specialised

Vision Transformer (ViT) (Suganyadevi et al., 2022; Dong et al., 2021; Sarker, 2021a). We cover

each of these in turn.

Figure 2.2: U-Net architecture schematic. Each box represents a multi-channel feature map. Image source:
(Ronneberger et al., 2015)

CNN. CNNs are widely used for tasks involving gridded data, such as images. They leverage

convolutional layers to automatically detect spatial hierarchies in the data, making them highly

effective in computer vision tasks. CNN is a feedforward network, meaning that information

flows in one direction—from the input layer to the output layer—without loops or cycles. U-Net

and ResNet are two important examples of CNN. U-Net was introduced for biomedical image

segmentation tasks (Ronneberger et al., 2015). Its encoder-decoder architecture, coupled with

skip connections, allows the model to retain high-resolution details during upsampling, making

it particularly effective for tasks requiring pixel precision, such as segmentation in medical image

analysis. In turn, ResNet, or Residual Neural Network, addresses the vanishing gradient problem

in DL, which is characterised by the gradual shrinking of gradient values as they are propagated

back through the layers during training. This issue occurs in networks with many layers, where

the gradients used to update the weights become extremely small in early layers, causing those

layers to learn very slowly or not at all. As a result, the network learns slowly or not at all. ResNet

solves this by introducing residual connections, which allow gradients to bypass certain layers (He

et al., 2016). This maintains stronger gradients and improves training efficiency as a result.

RNN. RNNs are specialised in handling sequential data, where the temporal order of information

is important. Unlike feedforward networks, such as CNNs, RNNs maintain hidden states that
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carry information from previous time steps. This makes them suitable for tasks like Natural

Language Processing (NLP) and time series analysis. Two key variants of RNNs are the GRU (Cho,

2014) and LSTM (Hochreiter, 1997), which were designed to overcome the limitations of standard

RNNs, particularly the vanishing gradient problem (Sarker, 2021a). Both GRU and LSTM operate

based on gates that regulate the flow of information, allowing these architectures to capture

long-term dependencies in sequence data. The key difference between GRU and LSTM is the

number of gates, where the former has two and the latter three. Consequently, LSTMs might be

suitable for learning more complex patterns at the price of computational complexity. A general

schematic of an LSTM building block is shown in figure 2.3.

GAN. GAN (Goodfellow et al., 2014) is a neural network architecture designed for generative

modelling, which focuses on producing new, realistic samples from a given dataset. Simply, it

captures the patterns within the input data, which makes it possible to generate new examples

that closely resemble the original data. GANs are widely used in tasks such as image generation,

creative applications, and data augmentation. GANs consist of two competing networks, a

generator and a discriminator, working in tandem (Sarker, 2021a). The generator produces

synthetic data, while the discriminator evaluates its authenticity, pushing the generator to create

increasingly realistic outputs.

Autoencoder. AE is an unsupervised learning architecture designed for dimensionality reduction,

data compression, and feature extraction (Goodfellow et al., 2016). They consist of an encoder

that compresses the input data and a decoder that reconstructs it from this compressed repre-

sentation, making them useful for tasks like noise reduction and anomaly detection. AEs are also

prominent in generative modelling, now standing alongside other methods such as GANs.

Transformer. The transformer architecture (Vaswani, 2017) utilises self-attention mechanisms,

enabling each element in an input sequence to attend to all other elements simultaneously. While

initially developed for machine translation, the transformer allows for efficient capture of long-

range dependencies on a general level, which made it fundamental to many other NLP tasks.

Specifically, its ability to model complex relationships without relying on recurrent units has made

it the foundation for large-scale models such as GPT (Liu et al., 2023) and BERT (Devlin, 2018).

ViT is a specialised application of the same principle to computer vision (Dosovitskiy, 2020). In

standard ViT, the self-attention mechanism is used to process image data by treating images as

sequences of patches, demonstrating competitive performance with traditional CNNs in many

tasks.

2.2.3 Methods

While the field of DL is extensive, we focus on a selection of prominent methods. These methods

represent key areas of ongoing investigation and highlight the diversity of approaches driving

innovation and advancement in the domain. These methods are: (1) Attention, (2) Few-shot

learning, (3) Continual learning, (4) SSL, (5) Active learning (AL), (6) Neural Architecture Search

(NAS), (7) Meta-learning, (8) Multimodal learning and (9) Federated Learning. We cover each of

these in turn.
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Figure 2.3: LSTM building block. Image source: (Shi, 2016)

Attention. Attention mechanisms allow models to assign different importance to various parts

of the input data, focusing on the most relevant elements (Guo et al., 2022). This is particularly

effective in sequence-based tasks such as NLP, where certain words or tokens carry more weight in

determining the context and meaning of a sentence. In computer vision, attention mechanisms

have also been applied to images, where they help models focus on key regions of an image,

improving performance by identifying the most relevant spatial features.

Few-shot Learning. Few-shot learning aims to train models that can generalise from only a

few examples per class (Song et al., 2023). This method is particularly useful in scenarios where

collecting a large amount of annotated data is not feasible or possible, leveraging prior knowledge

to perform well with minimal training data (Xue et al., 2024).

Continual Learning. Continual learning, also known as incremental or lifelong learning, involves

training models on dynamic data distributions where new tasks, skills, or environments are

introduced over time (Wang et al., 2024). Unlike traditional models that assume static data,

continual learning adapts to changing inputs. A key challenge is catastrophic forgetting, where

learning new information can diminish the model’s ability to retain previous knowledge. This

challenge reflects the balance between plasticity (adapting to new tasks) and stability (preserving

learned knowledge).

SSL. SSL leverages unlabelled data by creating auxiliary tasks, enabling the model to learn useful

representations without requiring explicit labels (Gui et al., 2024). In an auxiliary or pretext
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task, the pseudo-labels are automatically generated based on inherent data properties. Simply,

the data itself is used to supervise learning with the loss function designed depending on the

configuration of the pretext task. The pretext loss function might be also used for the final task -

for example, as in depth estimation (Garg et al., 2016). The model is trained on these tasks during

a pre-training phase and then fine-tuned for downstream applications. A key advantage of SSL is

its ability to leverage large-scale unlabelled data, reducing reliance on costly human annotations.

AL. AL seeks to reduce the amount of annotated data required for training by selectively iden-

tifying the most informative data points for annotation (Tharwat and Schenck, 2023). The

underlying assumption is that training on intelligently chosen, representative examples could

achieve similar performance to using indiscriminately annotated datasets, while significantly

lowering annotation costs. This method is especially useful when annotation is expensive or

time-consuming, as typically only the most uncertain or ambiguous samples are actively queried

for annotation. A schematic of a general deep AL method is shown in Figure 2.4.

NAS. NAS automates the design of neural network architectures by searching over a space of

possible architectures to find the one that optimises performance on a given task (Salehin et al.,

2024). This process reduces the need for human expertise in crafting neural networks, potentially

leading to architectures that outperform manually designed models.

Figure 2.4: A general schematic of the deep AL pipeline, where the oracle, typically a human annotator,
provides labels for the selected samples. Image source: (Ren et al., 2020)

Meta-Learning. Meta-learning, often described as ‘learning to learn’, enables models to adapt

quickly to new tasks by learning how to optimise the learning process itself (Vettoruzzo et al.,

2024). Meta-learning enables models to optimise their own learning processes, mimicking the

way humans generalise from prior experience to acquire new skills. Specifically, instead of

learning task-specific representations, meta-learning focuses on learning transferable strategies

that facilitate efficient adaptation. Meta-learning is valuable given the large amounts of data

typically required to train models from scratch.

Multimodal Learning. Multimodal learning integrates information from multiple data modali-

ties, such as text, images, audio and potentially others into a single model (Jabeen et al., 2023).

Simply, by combining data from multiple modalities, multimodal learning uncovers features that

might remain hidden in single-modality approaches. Specifically, complementary information
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from another modality was shown to improve overall model performance. Multimodal learning

enables numerous applications, including audio-visual speech recognition, multimedia indexing

and retrieval and healthcare analysis (Jabeen et al., 2023).

Federated Learning. Federated learning decentralises model training by distributing the learn-

ing process across multiple devices, where each device computes updates locally without sharing

raw data (Wen et al., 2023). This method is crucial for preserving user privacy and complying

with data protection regulations, particularly in sensitive fields like healthcare and finance. Ad-

ditionally, federated learning reduces the server’s computational and storage load by performing

training on local devices. By aggregating updates from these distributed devices, federated learn-

ing can produce a global model that outperforms models trained on individual devices, all without

centralising sensitive information.

2.2.4 Datasets

Having large, well-curated datasets is essential for many DL tasks. These datasets can be either

publicly available or privately held, depending on factors such as domain, legal regulations, and

data sensitivity. General-purpose datasets, such as ImageNet (Deng et al., 2009), which consist

of non-sensitive and widely available natural data, are typically easier to collect and access. In

contrast, datasets from more specialised domains, like medical datasets, are more challenging to

obtain, as discussed in section 1.5.3. Overall, large dataset creation poses significant challenges

in such aspects as data annotation, data curation, and data privacy. This is exacerbated for espe-

cially large datasets, crucial for training foundation models, which require vast amounts of data

to support a wide range of applications and often achieve higher accuracy than smaller models.

Furthermore, as shown in figure 2.5, year on year improvement of DL performance on classical

datasets, such as Cityscapes (Cordts et al., 2016), COCO (Lin et al., 2014a) and ImageNet, has re-

duced during the recent years. This could suggest either a plateau in AI capabilities – despite the

increasing success of larger models across many domains – or the need for larger, more diverse,

and realistic datasets that accurately represent their domains for both learning and benchmarking.

However, creating such datasets remains a significant challenge.

Considering the size of the DL domain, and the large number of datasets being released, we

cover some of the most recent and impactful publicly available datasets generally relevant to this

work. Specifically, 4 datasets in the general computer vision category: (1) Open Images, (2) Large

Vocabulary Instance Segmentation (LVIS), (3) SA-V and (4) Objects365. These are followed by 5

datasets in medical imaging category: (5) TotalSegmentator dataset, (6) National Lung Screening

Trial (NLST), (7) AbdomenAtlas, (8) MedShapeNet, (9) Uterine Myoma MRI dataset (UMD).

We present the four general computer vision datasets in turn.

Open Images V7. Open Images is a large-scale dataset of 9 million natural images. It contains

16 million bounding boxes across 600 object classes, 2.8 million instance segmentations on 350

classes, and 61.4 million image-level labels for 20,638 classes. This dataset also includes visual

relationship and localised narrative annotations, making it suitable for a wide range of computer

vision applications (Benenson and Ferrari, 2022).
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Figure 2.5: Year-over-year improvement of DL performance on classical datasets. Source: (Maslej et al.,
2024)

LVIS. LVIS (Gupta et al., 2019) includes 164,000 natural images with approximately 2 million

crowdsourced instance segmentation annotations for over 1,200 categories, focusing on long-tail

object distributions. The dataset emphasizes rare objects, making it valuable for tasks requiring

detailed segmentation across a wide range of categories. It is complementary to COCO, another

large natural image dataset where the segmentations are generally coarse, by providing precise

instance-level annotations for the 164,000 images in COCO 2017.

SA-V. SA-V is a large-scale natural video dataset designed for training and evaluating general-

purpose object segmentation models. It comprises 51.000 diverse, high-resolution videos with

643.000 spatio-temporal segmentation masks. The videos cover a wide range of subjects, includ-

ing locations, objects, and scenes, with class-agnostic masks ranging from large structures like

buildings to fine details such as interior decorations. Annotations are done both manually and

with assistance of SAM 2.

Objects365. Dataset Objects365 is a large-scale object detection dataset comprising 2 million

images annotated with more than 30 million bounding boxes across 365 object categories. These

categories are derived from 11 supercategories that represent common objects in daily life. The

dataset includes categories from PASCAL VOC (Everingham et al., 2015) and COCO (Lin et al.,

2014a) benchmarks for compatibility, providing diverse and densely annotated images to facilitate

training and evaluation of object detection models.

We present the five medical imaging datasets in turn.

TotalSegmentator dataset. TotalSegmentator is an open-source tool developed for automatic

segmentation of medical imaging data. It was trained on 1,228 CT volumes to segment 104

anatomical structures and 298 MRI volumes to segment 59 structures. The training data is made

available as a dataset (Wasserthal et al., 2023; D’Antonoli et al., 2024).
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NLST. NLST is a segmentation dataset focused on lung anatomy. The data is sourced from the

NLST and automatically annotated using the TotalSegmentator tool (Thiriveedhi et al., 2024). It

comprises 126,088 CT volumes with 9,565,554 anatomical structures annotated in total. While

this means that annotations are essentially weak, the sheer size of this dataset makes it very useful

in the data-starved medical image analysis domain.

AbdomenAtlas. AbdomenAtlas 1.1 contains 9,262 CT volumes with voxel-wise annotations

for 25 organs and pseudo-annotations for seven types of tumours produced manually and

semi-automatically by a team of 10 radiologists (Li et al., 2024). Such dataset size enables creation

of the large pre-trained models in the medical imaging domain, while providing a comprehensive

benchmark for evaluating other methods.

MedShapeNet. MedShapeNet (Li et al., 2023) is a large-scale collection of over 100,000 3D medical

shapes derived from imaging data of real patients, including healthy and pathological subjects.

It encompasses a wide range of anatomical structures —including bones, organs, and vessels—

as well as 3D models of surgical instruments. The dataset is compiled from 23 different datasets,

with each shape paired with ground truth annotations.

UMD. UMD is the largest publicly available uterine MRI segmentation dataset to date, consisting

of 300 cases of uterine myoma T2-weighted sagittal images (Pan et al., 2024). It encompasses 9

types of uterine myomas classified by the International Federation of Gynaecology and Obstet-

rics (FIGO), with annotations reviewed by 11 experienced doctors. UMD is a valuable resource

for clinical research, since annotated segmentations of female abdominal MRIs are very scarcely

available in public.

Figure 2.6: Improvement of image generation results in Midjourney in the span of 2 years between February,
2022 and December, 2023 with a query ‘a hyper-realistic image of Harry Potter’. Source: (Maslej et al., 2024)

2.2.5 Recent Milestones & Tendencies

In recent years, DL has rapidly advanced due to increased computational power, availability of

large datasets, and new model architectures. Certain advances exemplify this trend. AI systems

have surpassed human performance in several tasks, including image classification since 2015,

basic reading comprehension since 2017, visual reasoning since 2020, and natural language infer-

ence since 2021 (Maslej et al., 2024), as shown in figure 2.7. In mathematical problem-solving, per-
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formance on the MATH dataset, comprising 12,500 competition-level problems, improved from

6.9% in 2021 to 84.3% in 2023 using Generative Pre-trained Transformer 4 (GPT-4)-based mod-

els (Liu et al., 2023). Generative models like Midjourney (Midjourney, 2022) have shown remark-

able progress in creating hyper-realistic images over two years, as shown in figure 2.6. In code

generation, AI systems have significantly advanced on the HumanEval benchmark (Chen et al.,

2021a), with GPT-4 variants achieving a 96.3% success rate with an increase of 64.1 percentage

points since 2021. Advances in audio generation were marked by the release of models like Mu-

sicGen (Copet et al., 2024), and MusicLM (Copet et al., 2024), improving the synthesis of human

speech and music.

Key trends driving these advancements include the development of foundation and pre-

trained models, demonstrating high performance and generalisation capabilities. Furthermore,

multi-modality has enabled models to process and generate data across different domains,

leading to breakthroughs in generative models such as Stable Diffusion (Podell et al., 2023),

Midjourney and ChatGPT (Liu et al., 2023). Specifically, LLMs have demonstrated significant

capabilities in natural language understanding and generation, often adopting attention mecha-

nisms. However, AI still lags in complex cognitive areas like visual commonsense reasoning and

competition-level mathematical problem-solving, and there is a growing emphasis on explainable

AI to enhance the interpretability and trustworthiness of DL models in critical applications. We

cover these trends in turn: (1) Pre-trained & Foundation Models, (2) Multi-modality, (3) Generative

Models, (4) Transformers, and (5) Explainable AI (XAI).

Figure 2.7: Select AI performance benchmarks vs. human performance. Source: (Maslej et al., 2024)

Pre-trained & Foundation Models. A pre-trained model is one that has already been trained on a

dataset and can be shared, used, and modified if necessary. With the rise of DL, these models have

42



CHAPTER 2. BACKGROUND

become widely distributed and utilised, even by non-experts, especially due to the growing public

interest in open-source image generation tools such as Stable Diffusion. The availability of these

models provides a starting point for various tasks, allowing them to be directly used or employed

for creating new models.

Foundation models, such as Stable Diffusion, SAM, and TotalSegmentor, are a subset of pre-

trained models trained on especially large datasets and often designed to generalize across multi-

ple tasks. Trained on vast and diverse datasets, these models can be adapted to new applications

through methods such as fine-tuning or model distillation, without requiring complete retrain-

ing. Recently, they have been produced for numerous tasks, including image, video, and audio

generation, NLP, object detection, image segmentation and classification. The quantity of pro-

duced foundation models has doubled from 72 to 149 in years 2023 and 2024 respectively (Maslej

et al., 2024) as shown in figure 2.8. However, producing such models is often highly expensive and

resource-intensive. For instance, Gemini Ultra (Team et al., 2023), a foundation model developed

by Google, costs $191.4 million to train (Maslej et al., 2024). The high cost and large data require-

ments make it impractical or impossible to develop such models in certain domains. Specifically,

in the context of foundation models for medical imaging, the large data volumes required to train

typical non-medical foundation models were not yet reached (Zhou et al., 2023a).

Figure 2.8: Foundation models by access type. Source: (Maslej et al., 2024)

Multimodality. Multimodality refers to models that integrate and process multiple types of data

inputs—such as text, images, audio, and video—allowing them to handle various data formats

simultaneously. Recent advancements have led to powerful multimodal models like Contrastive

Language-Image Pre-training (CLIP) (Radford et al., 2021), DALL-E (Ramesh et al., 2021), Gemini,

and GPT-4, which can generate images from text descriptions or generate text from speech. In

the medical field, multimodal approaches combine data types like medical images, biosignals,

clinical records, and other relevant sources to achieve a more comprehensive understanding of

patient conditions (Yin et al., 2023). For example, in Alzheimer’s disease diagnosis, models using

only structural MRI scans or speech analysis achieve approximately 80% detection accuracy. By

incorporating additional modalities such as audio features, speech transcripts, genomic data, and

clinical assessments, multimodal models have improved diagnostic accuracy to over 90% (Salvi

et al., 2023).
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Generative Models. Generative models can produce synthetic data closely resembling real-world

data. Recent advancements with such models, including OpenAI’s GPT, Stable Diffusion, and

MidJourney, have led to the creation of text, images, and even music, which become increasingly

difficult to distinguish from real data (Bandi et al., 2023). This ability has significant implications

across multiple industries by enabling applications in domains where data is scarce or difficult

to obtain. For example, for rare conditions in healthcare. However, reliance on synthetic data

presents challenges: models trained predominantly on synthetic data can experience model

collapse. This is a condition, when the model loses the ability to represent true data distributions

and produces less diverse outputs. Furthermore, statistical evaluations show that synthetic data

often has higher dissimilarity to real data and reduced quality and diversity. While incorporating

real data through techniques like synthetic augmentation loops can mitigate some issues, both

fully synthetic and augmented methods exhibit diminishing returns with continued training (Shu-

mailov et al., 2023).

Transformers. Transformer architectures are increasingly instead or in combination with CNNs

in many domains, especially for tasks involving sequences and long-range dependencies. Unlike

CNNs, which utilise local receptive fields and stationary convolutional filters, transformers

can adaptively focus on different parts of the input data. In vision tasks, ViTs are now on par

or outperforming CNNs in various benchmarks (Shamshad et al., 2023), including semantic

segmentation (Zheng et al., 2021). While Transformers are more computationally demanding,

they mitigate the inductive biases typical of CNNs, which leads to their growing usage in tasks

that benefit from the model learning complex spatial relationships and global features, such as

medical imaging.

Explainable AI. XAI seeks to improve the explainability of AI, by making the inner workings of

complex ML systems, particularly DL models, understandable. This is done by providing in-

sights into how the predictions are produced. XAI has become essential in ensuring transparency

and trust in DL models, particularly in sensitive fields like healthcare, finance, and legal sys-

tems (Dwivedi et al., 2023). Specifically, In healthcare clinical decisions depend on both accu-

racy and interpretability, and high performance model’s metrics alone are insufficient (Chaddad

et al., 2023). This is addressed by notable XAI methods, including Shapley Additive Explanations

(SHAP) (Lundberg, 2017), Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al.,

2016), Class Activation Mapping (CAM) (Zhou et al., 2016), Grad-CAM (Selvaraju et al., 2017) and

their variations. Despite these advancements, XAI still cannot sufficiently enhance the interaction

between users and AI models due to its inability to provide clear, interpretable explanations and

strong evidence. This limitation poses challenges in meeting the expectations of medical experts,

who tend to disregard these explanations as a result (Chaddad et al., 2023).

2.2.6 Libraries

In any programming language, a library is a collection of prewritten code that developers can use

to perform common tasks, thereby avoiding the need to write code from scratch. Libraries provide

standardised solutions and functions, which expedite development. This concept is especially sig-
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nificant in DL for two reasons: (1) DL involves computationally complex operations that require

extensive optimization to run efficiently, and (2) DL is a rapidly evolving field with numerous algo-

rithmic components originating from different domains. Therefore, using libraries allows devel-

opers to streamline employing complex optimizations and integrating diverse algorithms without

reinventing the wheel (Raschka et al., 2020; Tufail et al., 2023).

Building on this, Python (Srinath, 2017) has emerged as one of the leading programming lan-

guages in DL due to its readability, simplicity and ecosystem. Its high-level syntax and extensive

ecosystem of scientific computing libraries allow for rapid prototyping and development (Raschka

et al., 2020). To balance ease of use with computational efficiency, many Python libraries are built

on lower-level languages like C++ or CUDA (Luebke, 2008). This approach leverages Python’s user-

friendly interface while harnessing the performance benefits of statically typed languages.

Python’s libraries in DL can be broadly categorised into two types: (1) end-to-end ML libraries,

and (2) specialised libraries that provide specific functionalities. End-to-end libraries, such as Py-

Torch (Paszke et al., 2019), TensorFlow (Abadi et al., 2015), and Keras (Chollet et al., 2015), offer

comprehensive frameworks for building, training, and deploying neural networks. They enable

developers to manage all aspects of the DL pipeline within a unified environment. In contrast, spe-

cialised libraries like NumPy (Harris et al., 2020) for numerical computations, Matplotlib (Hunter,

2007) for data visualisation, and NiBabel (Brett et al., 2024) for working neuroimaging data for-

mats offer specific functionalities that often support DL tasks, but do not encompass the entire

ML workflow.

While the DL ecosystem is extensive and the choice of an end-to-end library is largely

task-dependent, we focus on several prominent specialised libraries that are instrumental in DL

generally, and in computer vision and medical imaging specifically. These libraries are: (1) MRQy,

(2) Pytorch Image Models (timm) & Segmentation Models, (3) Medical Open Network for AI

(MONAI) and (4) MLflow & aim as examples of Machine Learning Operations (MLOps) libraries.

We cover each of these in turn.

MRQy. MRQy (Sadri et al., 2020) is an open-source quality control tool designed to quantitatively

assess and compare MRI and CT series within and between large imaging cohorts. Its purpose

is to identify differences arising from factors like site-specific or scanner-specific variations (e.g.,

image resolution, field-of-view, contrast settings) and imaging artefacts such as noise or motion.

By extracting quality measures and metadata from the underlying data, MRQy helps detect

these variations before further use. This is especially valuable, since in medical imaging data

variability arises from numerous factors and can negatively affect resulting models: for example,

by introducing bias or limiting accuracy and generalizability.

timm & Segmentation Models. timm (Wightman, 2019) and Segmentation Models (Iakubovskii,

2019) libraries provide access to numerous pre-trained deep learning models for computer vision.

timm offers over 700 state-of-the-art models, primarily trained on ImageNet, while Segmentation

Models focuses on pre-trained weights for image segmentation with 124 models included.

Other key sources of pre-trained models include Hugging Face, TensorFlow Hub, PyTorch Hub

and OpenAI’s Model Zoo. These resources expedite deep learning prototyping, research, and

deployment by enabling the use of advanced models in a plug-and-play fashion without the need

for training from scratch, which is resource-intensive.
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MONAI. MONAI (Diaz-Pinto et al., 2022) is an open-source framework built on PyTorch,

specifically designed for DL applications in healthcare imaging. It offers a suite of tools and

functionalities that address the unique requirements of medical image analysis, such as handling

multi-dimensional data and incorporating domain-specific transformations. Specifically, MONAI

provides an end-to-end pipeline for developing medical imaging models. It covers stages from

data input and preprocessing to model training, evaluation, and deployment. Medical imaging

algorithms are often under-represented in general DL libraries. MONAI fills this gap by offering

specialised components tailored to the specifics of medical data.

MLOps: MLflow & aim. MLOps refers to the set of practices and tools that streamline the devel-

opment, deployment, monitoring, and maintenance of ML models in production environments.

Its importance lies in enabling a collaborative and efficient transition from model development

to deployment and ongoing maintenance, while ensuring consistent model performance and re-

producibility. MLflow (Zaharia et al., 2018) and aim (Arakelyan et al., 2024) are two notable open-

source MLOps libraries that facilitate different aspects of the ML lifecycle. While both tools sup-

port experiment tracking, MLflow excels in model versioning and deployment capabilities, mak-

ing it suitable for projects that require robust model management. Aim is preferred for its deeper

experiments tracking, visualisation and analysis instruments. Alternative MLOps tools include

Neptune.ai, Weights & Biases, TensorBoard, Metaflow and Vertex AI, and often focus on different

MLOps aspects.

2.2.7 Computational Resources

On hardware level, the calculations in DL are typically performed by one or multiple GPUs. A GPU

is a specialised hardware component designed to perform rapid mathematical computations in

parallel. Specifically, GPUs enable efficient training of neural networks by handling multiple cal-

culations simultaneously. Advancements in DL architectures, such as transformers like GPT or

iterative improvement of generative models like Stable Diffusion, have shown that model perfor-

mance often correlates with model size. For instance, between 2014 and 2017, the size of win-

ning models in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky

et al., 2014) grew significantly, from approximately 4 million parameters in 2014 to 146 million

in 2017. In contrast, GPU memory capacity only tripled during the same period (Raschka et al.,

2020), which resulted in a bottleneck. Simply, to achieve better performance one needs a deeper

model with more layers, which might not be loaded on a single GPU. To address this challenge,

various strategies might be employed. While making DL models smaller and faster is an active

research domain, model parallelisation permits fitting a model across multiple GPUs. This allows

training larger models that exceed the memory capacity of a single GPU, provided a GPU cluster

is available.

A GPU cluster is a networked group of interconnected computers (nodes), where each node is

equipped with one or more GPUs. Cluster sizes can vary significantly, ranging from just a few GPUs

to tens of thousands (Meta, 2024). To efficiently manage and optimise the use of GPU clusters in

training large-scale DL models, workload managers or job schedulers such as the Simple Linux

Utility for Resource Management (Slurm) (Jette and Wickberg, 2023) are commonly employed.

46



CHAPTER 2. BACKGROUND

Slurm, in particular, is an open-source workload manager used in high-performance computing,

responsible for job scheduling and resource allocation by distributing computational tasks across

cluster nodes. The deployment of such clusters can be facilitated by tools like DeepOps (Majee,

2024), which streamlines rollout of the cluster management software. In this work, we utilised

two clusters: (1) the Mésocentre Clermont-Auvergne cluster at Université Clermont Auvergne,

equipped with up to 8 GPUs of various models, and (2) an in-house cluster with 2 GPUs, which

was set up by us using DeepOps. Unless otherwise stated, all reported results were obtained on

the latter.

(a) 3D Slicer (b) Supervisely

Figure 2.9: Annotation workspace GUI: 3D Slicer and Supervisely.

2.2.8 Software

As DL models and datasets increase in size and complexity, specialised software becomes all the

more essential. DL research, development, deployment, and maintenance are supported by a wide

array of software specialised software tools, that are often task-specific. These tools can be open-

source or proprietary. Here, we focus on tools relevant to computer vision and, more specifically,

to medical imaging and segmentation. Among the most frequently used software types in these

domains are data annotation and data analysis tools. The notable tools include: (1) 3D Slicer, (2)

Medical Imaging Interaction Toolkit (MITK), (3) Supervisely, (4) Synapse 3D, and (5) MeshLab. We

discuss each of these tools in turn.

3D Slicer (Kikinis et al., 2013), MITK (Goch et al., 2017), Supervisely (Supervisely OU, 2024),

and Synapse 3D (Fujifilm, 2024) are advanced tools for medical image analysis, including seg-

mentation. They share a common focus, but differ in the range of functionalities offered. 3D

Slicer is one of the most feature-complete tools and offers modules for visualisation, processing,

segmentation, registration, and analysis of medical and biomedical images, supported by a col-

laborative community. In turn, MITK provides a simpler, less exhaustive framework for viewing,

processing, and segmenting medical images. In contrast to both 3D Slicer and MITK, Supervisely

is an integrated ecosystem, which emphasises collaborative data annotation, data management

and model training. For reference, the GUIs of both 3D Slicer and Supervisely are shown in fig-

ure 2.9. Synapse 3D, developed by Fujifilm, automates three-dimensional image segmentation

using proprietary image intelligence technology, enhancing accuracy in radiological and surgical

workflows. MeshLab (Cignoni et al., 2008) stands apart from these tools as it specialises in the

processing and editing of 3D triangular meshes. While MeshLab is not exclusively designed for

medical imaging, it might be used for preparing and refining 3D models derived from medical

scans. With the exception of Supervisely and Synapse 3D, all tools are open-source.
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2.3 Machine Learning in Clinical Practice

The contributions of this work lie within the intersection of ML and clinical practice. To provide

context, we review the specifics of ML in clinical practice, which is actively researched and increas-

ingly applied for assistance in a variety of tasks. This includes several key areas: (1) diagnostics,

(2) treatment, (3) population health management and (4) patient care (Alowais et al., 2023; Bahl,

2022; Nwanosike et al., 2022). In diagnostics, researchers are exploring how ML can enhance di-

agnostic accuracy and integrate genomic medicine. For treatment, ML is being investigated to

support precision medicine and optimise dosing and therapeutic drug monitoring. In popula-

tion health management, applications are studied for predictive analytics, risk assessment, and

providing drug information and consultation. Additionally, AI-powered patient care is a promis-

ing area, including virtual healthcare assistance and mental health support (Alowais et al., 2023).

Despite the potential of these advancements, several challenges impede the adoption of ML in

clinical decision-making. These challenges can be generally split into two groups, depending on

their source, making a total of eight challenges. First, there are five challenges stemming from in-

herent specifics of ML: (1) evaluation, (2) reproducibility and generalizability, (3) explainability, (4)

usability and (5) security. Second, there are three challenges stemming from unique demands of

clinical practice: (6) limited data availability, (7) data quality, variability, and (8) ethical and legal

considerations (Hofer et al., 2020; Daye et al., 2022). We cover each of these two groups in turn.

Figure 2.10: Percentage of respondents reporting risks associated with generative AI that negatively im-
pacted organizations. Based on responses from organizations using generative AI in at least 1 function.
Total number of respondents is n = 876. Responders, who chose ‘don’t know/not applicable’ (17%), are not
shown. Source: (Singla et al., 2024)

2.3.1 ML Challenges

ML is celebrated for its ability to reduce costs, enhance efficiency, and improve accuracy and

precision in a number of tasks. However, inherent challenges related to reliability, explainability

and security hinder its widespread adoption. Figure 2.10 illustrates the risks that caused negative

consequences organisations faced in early 2024 when implementing generative models. The top

three risks are inaccuracies (23%), security vulnerabilities (16%), and explainability shortcomings

(12%). Although generative models represent only a subset of ML, the concerns about the

reliability of ML models in general are well-documented in the literature (Nwanosike et al., 2022;

Alowais et al., 2023; Bahl, 2022). We cover each of the five key ML challenges in turn.
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Evaluation. Evaluating ML models in clinical practice presents significant challenges due to the

high stakes involved in patient care. Therefore, the robustness and technical readiness of an ML

model must be thoroughly assessed before it can be safely integrated into clinical workflows.

However, standard metrics and evaluation practices are not exhaustive, and may not adequately

capture the model’s performance in real-world clinical settings. While there is no standardised

evaluation protocol, several guidelines were proposed (Daye et al., 2022). They include the

Standards for Reporting Diagnostic Accuracy Studies (STARD-AI) (Sounderajah et al., 2020), the

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD-AI) (Collins and Moons, 2019), and the Consolidated Standards of Reporting Trials

(CONSORT-AI) (Liu et al., 2020).

Reproducibility and generalizability. To integrate ML models into clinical practice, their outputs

should satisfy two key criteria: reproducibility and generalizability. Simply, ML models must

maintain their predictive performance not only on the training data, but also across diverse

patient populations and clinical settings. This requires that the datasets used for model develop-

ment accurately reflect the environments where they will be applied. Furthermore, the ML model

and its training process must be able to capture this information. Careful assessment of what is

included or excluded from the dataset, and evaluation of its effects are essential to identify and

mitigate bias (Daye et al., 2022).

Explainability. Many ML models, especially DL models, operate as ‘black boxes’ that provide

outputs without a transparent comprehensible reasoning process behind (Challen et al., 2019).

This lack of interpretability makes it difficult for medical experts to understand or verify how

decisions are made, which hinders ML application in clinical practice. Furthermore, if clinicians

cannot explain how a diagnosis, treatment plan, or prognosis was determined, it can undermine

patient trust, as patients expect clear justifications for medical decisions (Sim et al., 2023).

Usability. Given the high stakes of clinical decisions, along with legal and regulatory concerns,

it is essential that ML applications are designed for interactive use. This ensures that human

experts remain in control, allowing them to validate or adjust model outputs based on their

expertise. Usability, defined as the ease with which users can interact with a system to achieve

their goals, is critical in this context. In medical environments, where decisions are high-stakes,

complex or non-intuitive interfaces, as well as difficult-to-interpret results, can lead to errors, hin-

der the adoption of ML applications, and discourage clinicians from using them (Daye et al., 2022).

Security. Security poses a significant challenge in the application of ML models in clinical prac-

tice, largely due to their vulnerability to input perturbations. Adversarial attacks (Puttagunta et al.,

2023) exploit this weakness by intentionally manipulating inputs to induce errors in model out-

puts. These alterations might often be minor and imperceptible to human observers. However,

they might lead these models to produce incorrect or misleading predictions, which may have se-

vere consequences in healthcare settings, such as misdiagnosis or inappropriate treatment recom-

mendations. Therefore, security in the context of ML models involves not only protecting access

to sensitive patient data, but also safeguarding the integrity of the models and their outputs (Daye

et al., 2022).
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2.3.2 Clinical Practice Challenges

While the establishment of AI infrastructure in clinical practice has been extensively discussed

in the literature (Willemink et al., 2020b; Jha and Topol, 2016; Karalis, 2024), these discussions

are often written from the engineering or data science perspective. In particular, they often

emphasise technical components such as data access, security, cross-platform integration, and

algorithm development, overlooking the unique challenges inherent in the clinical environment.

As a result, critical issues related to limited data availability, data quality and variability, and

ethical and legal considerations specific to clinical practice are often not fully addressed (Daye

et al., 2022). We cover each of the 3 key clinical practice challenges in turn.

Limited data availability. Each year, an estimated 50 petabytes of medical data are generated,

which includes clinical notes, laboratory results, and medical images. Despite the vastness of

these data, 97% of it remains unanalyzed and underutilised (Dutta et al., 2019). Several factors

contribute to this underutilization, including stringent data privacy regulations, lack of standard-

isation and the fragmentation of data across different departments, devices, and institutions. For

these reasons, publicly available medical data is severely limited and impedes progress in this

field (Adlung et al., 2021). These issues are especially pronounced in specific domains, such as

in FPMRI segmentation, that mostly rely on private small datasets and have not been extensively

researched. Rare diseases face an even more critical challenge due to the inherent scarcity of

documented cases.

Data quality and variability. Data quality and variability pose significant challenges to the

application of ML in clinical practice. Medical data are inherently heterogeneous and complex

both across the medical domain as a whole, due to diverse data sources, and within specific

domains, reflecting variability between patients and technologies employed. This leads to

inconsistencies and ambiguities, especially given the evolving nature of medicine in general, its

terminology and technologies employed. Poor-quality and skewed data can introduce biases

and errors into ML models, resulting in unreliable or erroneous conclusions. Issues can arise at

various stages, including data collection, coding, and standardisation, influenced by technical

and organisational factors. Evaluating and controlling the quality and variability of clinical data is

essential for developing trustworthy models, which is an active research domain (Bernardi et al.,

2023).

Ethical and legal considerations. Ethical and legal considerations pose significant challenges to

integrating ML into clinical practice. The reliance of ML algorithms on large datasets raises con-

cerns about patient privacy and data security. For example, inadequate data safeguarding can lead

to serious consequences, as seen in the case where the Royal Free London Trust transferred patient

information to DeepMind without consent, resulting in legal repercussions (Sim et al., 2023). The

dynamic nature of ML algorithms also complicates regulatory compliance and certification pro-

cesses across different regions. To address these issues, there is a growing need for comprehensive

regulations. The Artificial Intelligence Act (The European Parliament and the Council of the Euro-

pean Union, 2024b) is an example of efforts to establish a regulatory framework that ensures trans-

parency, accountability, and ethical use of AI technologies in healthcare. Despite ongoing efforts,
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the fast-evolving nature of the AI domain makes it complicated to produce clear and straightfor-

ward regulations, which results in regulatory hurdles during adoption of ML models in clinical

practice (Adlung et al., 2021; Daye et al., 2022).
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Data

3.1 Female Pelvis MRI Dataset

MRI plays a crucial role in the screening and diagnosis of the female pelvis due to its superior

soft tissue contrast, high resolution, and absence of ionising radiation. Compared to ultrasound

and CT, MRI offers more detailed visualisation of smaller anatomical structures, such as uterine

lesions, by accurately depicting their size, location, and morphology. For instance, MRI can detect

myomas as small as 0.3 cm in diameter. In the context of uterine myomas, MRI is particularly use-

ful for guiding surgery and determining the nature of the myoma, as some may be suspicious or

represent sarcoma (malignant tumour), which can alter surgical planning. For example, identify-

ing a benign myoma allows for less invasive surgical techniques like laparoscopic removal using a

morcellator, avoiding large scars or the need for laparotomy, which can be functionally and aes-

thetically problematic. This is done via various sequences, which emphasise distinct tissue char-

acteristics. In particular, the T2WI sequence is one of the key instruments in identifying pelvic

pathologies, providing a clear view of uterine anatomy (Proscia et al., 2010; Sakala et al., 2020; Pan

et al., 2024).

Despite these advantages, MRI is not as widely utilised as CT or US in routine clinical set-

tings, primarily due to practical considerations, limited accessibility, and higher costs. Typically,

gynaecologists perform a US or CT examination before surgery and request an MRI when my-

omas are not well visualised or appear suspicious. Although this trend is shifting, there remains a

scarcity of publicly available datasets and a lack of extensive research in this area. To bridge this

gap and enable learning-based FPMRI segmentation, we have been collecting and annotating a

female pelvis MRI segmentation dataset since March 2021. We call this dataset the FPMRId. FPM-

RId is annotated with the help of both junior and expert radiologists, resulting in 374 segmented

medical scans in total, where 201 are already validated and 171 require minor corrections. The

information on FPMRId reported in this work corresponds to the period from the beginning of the

data collection in March 2021 to October 2024. The process is still ongoing as of October 2024.

We first provide an overview of the dataset’s properties, followed by a detailed description of the

data collection process, including the annotation platforms used, the annotation pipeline, and the

annotation guidelines.
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Figure 3.1: Evolution of data collection in series from March 2021 to October 2024. ‘In-progress’ refers to
segmented series currently undergoing validation or correction based on feedback.

3.1.1 Overview

Classes. FPMRId includes segmentations of nine classes inside the female pelvis, where six rep-

resent anatomical structures: (1) bladder, (2) uterus, (3) uterine cavity, (4) cervix, (5) fundus, and

(6) anterior wall. In turn, three remaining classes represent pathologies: (7) uterine myomas, (8)

endometriosis, and (9) adenomyosis. The dataset has four key characteristics: (1) it is multi-class,

meaning it includes multiple distinct anatomical structures and pathologies, (2) it is multi-label,

allowing for overlapping labels where multiple structures or conditions can coexist in the same

region (e.g., uterine myomas are located within the uterus), (3) it is multi-instance, meaning

several instances of the same class can appear in a single image (e.g., multiple myomas), and

(4) it is multi-component, where a single anatomical structure may be represented by multiple

disconnected components due to its complex shape and the chosen MRI slice (e.g., multiple

non-connected contours of the bladder in a single slice due to to the bladder’s shape and slicing).

Annotators. The annotation was performed by a team of three radiologists from CHU de

Clermont-Ferrand (university hospital), consisting of two junior radiologists and one senior

radiologist. Each annotator worked individually in sequence, with one taking over after the other.

The junior radiologists contributed approximately 8.55% and 4.84% of the total annotations,

respectively, while the senior radiologist completed the majority with approximately 86.61% of

the annotations.

Participants. The dataset consists of anonymized MRI scans collected from patients at CHU de

Clermont-Ferrand between August 2001 and March 2024, under an agreement with the latter for

anonymized data sharing. All the data is anonymized, so specific patient-related information is

not available. Most of the participants included in the dataset presented with one or more pelvic

pathologies under study—namely uterine myomas, endometriosis, or adenomyosis.

Image acquisition. Images were acquired using MRI scanners from multiple manufacturers.

Specifically, GE Healthcare (GE), Siemens, Philips, and Canon. The most frequently used mod-

els were the GE Optima MR450w and Siemens MAGNETOM Avanto, which are followed by the GE

Discovery MR750, Siemens MAGNETOM Sonata, and GE SIGNA Artist, which were utilised to a
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Raw MRI All Classes Raw MRI All Classes

Figure 3.2: 12 MRI slices, with and without segmentations, randomly sampled from FPMRId. Each slice comes from different series.
The legend is as follows: (1) bladder - yellow, (2) uterus - light green, (3) uterine cavity - cyan, (4) cervix - pink, (5) fundus - dark green,
(6) anterior wall - blue, (7) uterine myomas - red, (8) endometriosis - purple, and (9) adenomyosis - magenta.

55



CHAPTER 3. DATA

Table 3.1: List of MRI machine manufacturers and models included in the FPMRId dataset.

Manufacturer Model

GE Medical Systems Optima MR450w
Discovery MR750
SIGNA Artist
SIGNA HDxt
SIGNA Explorer
Optima MR360
SIGNA Voyager

Siemens MAGNETOM Avanto
MAGNETOM Sonata
MAGNETOM Amira
MAGNETOM Aera
MAGNETOM Altea
MAGNETOM Sola
MAGNETOM Sempra

Philips Ingenia
Ingenia Elition X

Canon (Toshiba) Orian

lesser extent. The complete list of models is shown in table 3.1. Scanners operated at magnetic

field strengths of either 1.5 Tesla or 3 Tesla. The MRIs were initially taken for clinical indications

such as excessive bleeding, infertility, pelvic pain, and cases of endometriosis with myoma for

the purpose of myomectomy planning. Myomectomy is a surgical procedure to remove uterine

fibroids (non-cancerous growths) while preserving the uterus.

All scans were T2-weighted images, incorporating various specific sequences to optimise im-

age quality and reduce artefacts. The scans were taken in any of the three orientations: sagittal,

coronal, or axial. However, axial orientation is dominant in the dataset. Furthermore, some series

were acquired in 3D, instead of slice-by-slice 2D acquisition. When done, a three-dimensional

imaging sequence, known as CUBE (GE), was employed. Imaging protocols included Turbo

Spin Echo (TSE) and Fast Spin Echo (FSE) sequences for rapid acquisition, as well as motion-

compensation techniques like BLADE (Siemens) and PROPELLER (GE). Furthermore, Integrated

Parallel Acquisition Techniques (IPAT) were employed to accelerate imaging, as well as presatura-

tion techniques were applied in certain cases to suppress unwanted signals.

Imaging parameters are varied across the dataset: slice thickness ranges from 1.2 mm to 6 mm;

pixel spacing ranges from 0.2148×0.2148 mm to 1×1 mm; Repetition Time (TR) values range from

1302 ms to 12396 ms, and Echo Time (ET) values range from 75 ms to 143 ms. Image resolution is

predominantly 512×512 pixels, followed by 1024×1024 pixels, with a number of scans between

256×256 and 480×480 pixels.

3.1.2 Data Collection

The efficiency of dataset annotation heavily relies on the established annotation pipeline and the

annotation platform utilised. An annotation pipeline refers to the sequence of processes involved

in annotating the dataset, from patient consent acquisition to the storage of final annotations.

The key element of the annotation pipeline is an annotation platform, which is typically a

software used to perform the annotation. Simply, the choice of the annotation pipeline setup

and specifically of the annotation platform affects annotation throughput and accuracy of the

annotations.
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Uterus only All classes Raw MRI

Figure 3.3: An example of Uterus annotation in FPMRId. The same MRI slice is shown three times with only
uterus segmentation, all segmentations, and no segmentations respectively. Shown segmentations were
done in 3D Slicer.

Annotation Platforms. Annotation platforms can be broadly categorised into local, cloud, and

hybrid solutions. The choice among these is task-dependent and affects the roles of the actors

involved. Local platforms are software suites installed on individual computers, where data is

normally stored and processed locally. Cloud platforms are web-based services that store data

and annotations on remote servers, enabling remote access and collaboration. Hybrid platforms

integrate features from both local and cloud solutions, enabling data processing to occur either

locally or in the cloud, depending on the specific functionality being used. For FPMRId, we

utilised two local open-source platforms—MITK and 3D Slicer, and one hybrid proprietary plat-

form—Supervisely, throughout the annotation process. Specifically, they respectively account for

13.39%, 71.51% and 15.10% of annotations produced. We cover each of these platforms in turn.

Cavity only All classes Raw MRI

Figure 3.4: An example of cavity annotation in FPMRId. The same MRI slice is shown three times with only
cavity segmentation, all segmentations, and no segmentations respectively. Shown segmentations were
done in 3D Slicer.

In the initial stages of our project, MITK was employed due to its straightforward GUI and ac-

cessibility. However, MITK presented several limitations that affect the annotation workflow. First,

it is less actively developed compared to other platforms, leading to technical instability such as

frequent crashes and slow performance during the annotation of large series. This instability not

only reduces annotation efficiency, but also risks data loss with annotation progress periodically

not being saved. Second, MITK lacks collaborative tools. As a result, data management, reviewing

the annotations, and providing feedback must be handled through separate solutions, which is

inefficient and further increases the risk of errors.

3D Slicer is a more advanced open-source platform. Due to its stability, robust feature set,

modular architecture and active development community, 3D Slicer was our primary annotation

tool for a significant portion of the project. While 3D Slicer offers significant improvements over
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MITK, it still complicates data management and lacks collaborative features. Specifically, both 3D

Slicer and MITK operate entirely locally, which means that all data has to be repeatedly manu-

ally imported and exported at multiple stages of the annotation pipeline. This process is time-

consuming and prone to errors, especially when dealing with large volumes of data. Moreover, 3D

Slicer lacks tools for collaborative annotation and version control, making the review, feedback,

and correction process particularly cumbersome. Specifically, multiple review rounds require re-

peated data transfer and external communication, extending the time needed to reach a consen-

sus on the annotations.

Bladder only All classes Raw MRI

Figure 3.5: An example of bladder annotation in FPMRId. The same MRI slice is shown three times with
only bladder segmentation, all segmentations, and no segmentations respectively. Shown segmentations
were done in 3D Slicer.

To overcome the limitations of local platforms, we transitioned to Supervisely, a hybrid

annotation platform that combines local and online collaborative features. Supervisely allows

data to be stored on-premise or in the cloud, while providing an online interface for annotation

and team collaboration. This setup enables remote access to the source data and annotation

history, from older to the most recent, for both radiologists and research engineers at all times.

This eliminates the need to manually import, export, and share data after every change, allowing

the annotation process to proceed uninterrupted until completion. Supervisely further enhances

the workflow with standardised dataset importing and exporting, data insights, and tools for

reviewing and providing feedback, making collaboration much easier. Additionally, the platform’s

active development team regularly implements user feedback. Specifically, we have provided over

25 feature requests, at least 18 of which were successfully integrated.

Annotation Pipeline. Our annotation pipeline comprises eight steps, where steps from 3 to 7 are

platform-dependent. We first present the complete annotation pipeline and then discuss the an-

notation platform specifics for the steps, where it’s applicable. The complete annotation pipeline

is as follows:

1. Medical scan data retrieval and anonymisation: The radiologist retrieves and anonymises

the MRI scans from PACS McKesson (McKesson Corporation, 2024) in DICOM format.

2. Source data upload to storage: The radiologist uploads the anonymized MRI scans to a

cloud storage platform that holds Health Data Hosting Certification (HDS).

3. Source data transfer to annotation platform: The MRI scans are transferred from the stor-

age to the annotation platform. In MITK and 3D Slicer this is done by the radiologist locally,

whereas in Supervisely by the research engineer in the cloud.
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Cervix only All classes Cervix hidden

Figure 3.6: Two examples of cervix annotation in FPMRId to showcase how cervix is segmented based on
the established guidelines. The same MRI slice is shown three times for each example with only cervix
segmentation, all segmentations, and cervix segmentation hidden. Shown segmentations were done in 3D
Slicer.

4. Annotation: The radiologist segments the MRI scans using the annotation platform.

5. Annotation transfer to storage (skipped in Supervisely): In MITK and 3D Slicer the radiolo-

gist manually uploads the segmentations produced in step 4 to the storage in step 2. This is

skipped in Supervisely, since the segmentations are automatically stored in association with

the scans as soon as produced. Simply, in Supervisely the current annotation state is always

up to date.

6. Review, feedback and validation: The research engineer reviews the segmentations. If the

segmentations are done in accordance with the guidelines and meet the required quality,

the engineer validates them. The pipeline then proceeds to step 7. However, if further im-

provements are needed, the engineer provides feedback, and steps 4 to 6 are repeated in an

iterative cycle until the consensus on the segmentation is reached. Unlike tools like MITK

and 3D Slicer, which do not have built-in support for review, feedback, and validation, Su-

pervisely offers integrated systems specifically designed for these functions.

7. Complete annotation transfer to storage (skipped in Supervisely): In MITK and 3D Slicer,

the research engineer manually uploads complete annotations to the storage. As with step 5,

this is skipped in Supervisely, since the annotations are automatically stored in association

with the scans at all times.

The annotation pipeline differs based on whether MITK/3D Slicer or Supervisely is used. In

MITK and 3D Slicer, the process follows all steps sequentially. Supervisely, however, optimises the

workflow in two key ways. First, data management is streamlined, increasing the efficiency of step

3 and eliminating the need for steps 5 and 7. Second, the review and feedback processes are cen-

tralised within the platform, significantly improving the efficiency of step 6. These optimisations

are discussed in detail below.
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Axial Sagittal Coronal

Figure 3.7: An example of anterior wall annotation in FPMRId. Two rows are shown with three views (axial,
sagittal, and coronal) each for the same MRI slice. Top row shows all segmentations, while the bottom only
the uterus and the anterior wall annotations for clarity. The anterior wall segmentation is highlighted by a
magenta arrow in all images. Shown segmentations were done in 3D Slicer.

In contrast to local platforms, with Supervisely step 3 is entirely handled by the research en-

gineer, who uploads the source data and creates an annotation job (i.e. a task) for the radiologist

using a simple drag-and-drop operation. The source data, resulting annotations, as well as an-

notation jobs remain in place and consistent at all times. Thus, no further data manipulation is

necessary, and steps 5 and 7 are skipped. Compared with MITK and 3D Slicer, this is more effi-

cient for two main reasons: (1) the radiologist does not need to spend time importing, exporting,

or sharing data, allowing them to focus more on segmentation, and (2) the job automatically in-

herits platform settings from the associated annotation project, standardising the process. In our

case, this saved approximately 15% of the radiologist’s total working time.

Figure 3.8: A schematic showing the anatomical region annotated as cavity class in FPMRId (in cyan).

For step 6, in the case of MITK and 3D Slicer, the absence of built-in mechanisms necessitates

the creation of extensive reports containing screenshots and detailed descriptions of each

segmentation issue encountered. The radiologist has to manually correlate these reports with

the actual medical scans, identify the problematic areas, and apply the necessary corrections in

the annotation platform. This process is extremely time-consuming and introduces potential

for errors and omissions due to the manual cross-referencing required. In contrast, Supervisely
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significantly enhances the efficiency of reviewing segmentations and providing the feedback by

centralising these functions within the platform. Specifically, Supervisely enables the research

engineer to mark specific regions of concern directly on the annotations and attach comments.

This interactive feedback is immediately accessible to the radiologist, who can navigate to each

marked location automatically through the platform’s GUI and address the issues one by one

without the need to consult external documents. This has resulted in the reduction of the review

stage time by 87% on average, depending on the complexity of the medical scan. Overall, switch-

ing to Supervisely yielded substantial benefits compared to using MITK and 3D Slicer. Specifically,

according to Supervisely’s built-in statistics, the total time required to complete the annotation

pipeline for a single average medical scan decreased from approximately 80 minutes with MITK

and 3D Slicer to about 29.6 minutes with Supervisely, representing a two-thirds reduction in time.

Figure 3.9: A schematic showing the anatomical region annotated as cervix class in FPMRId (in red).

Guidelines. We have established detailed guidelines for the annotation of the nine classes within

FPMRId to ensure high precision and consistency across all annotations. We cover these guide-

lines starting from general guidelines applicable to all classes, followed by specific instruction

for each individual class: bladder, uterus, uterine cavity, cervix, fundus, anterior wall, uterine

myomas, endometriosis, and adenomyosis.

General. We have established five general rules. First, the radiologist may choose the plane of

annotation based on their preference, regardless of whether the MRI scan was acquired in a single

plane or through a 3D acquisition. Second, all classes must be fully segmented as precisely as the

quality of the data permits across every slice or plane in which they appear. Third, each segmented

component must be hole-free, unless anatomically conditioned. Fourth, the radiologist may

utilise any tools or methods of their choice within the chosen annotation platform, provided that

the second and third rules are respected. Fifth, the segmented regions representing classes inside

the uterus must remain entirely within the boundaries of the uterus’ segmentation and should not

extend beyond them. These classes are: uterine cavity, cervix, fundus, anterior wall, and uterine

myomas.

Bladder. For the bladder, we have established two rules. First, the contour of the bladder must be

consistently defined across all slices. The bladder typically appears as a lighter, whiter region in

T2WI. However, the bladder wall and the surrounding region are often less homogeneous, leading

to potential variability in segmentation. Therefore, the choice of the segmentation boundary with

respect to the bladder wall should not be inconsistent between slices. Second, the bladder must
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Axial Sagittal Coronal

Figure 3.10: An example of fundus annotation in FPMRId. Two rows are shown with three views (axial,
sagittal, and coronal) each for the same MRI slice. The top row shows all segmentations, while the bottom
row shows only the uterus and the fundus segmentations for clarity. The fundus segmentation is highlighted
by a magenta arrow in all images. Shown segmentations were done in 3D Slicer.

not overlap with any other anatomical structures, except in cases where endometriosis invades

the bladder. Although endometriosis may extend into the bladder, this has not been observed in

our dataset. An example of bladder segmentation is shown in figure 3.5.

Uterus. For the uterus we have established two rules. First, the radiologist must ensure that all

internal structures (uterine cavity, cervix, fundus, and anterior wall) are contained within its

boundaries. The uterine myomas, endometriosis, and adenomyosis, which may cross the borders

of the uterus, must be segmented in accordance with their spread beyond the uterine structure,

as these conditions naturally extend beyond the confines of the uterus. Structures like the bladder

must not be included within the uterus segmentation. An example of uterus segmentation is

shown in figure 3.3.

Uterine cavity. For the uterine cavity, we have established two rules. First, only the cavity of the

body of the uterus (corpus) is to be annotated under this label, extending from the fundus down

to the internal os, which is the opening between the cervix and the uterine corpus. The cervical

canal should not be included into this segmentation, as depicted in figure 3.8. Second, the uterine

cavity must not overlap with any other anatomical structures, except for the fundus, anterior wall

and adenomyosis. An example of Uterine cavity segmentation is shown in figure 3.4.

Cervix. For the cervix, two rules are established. First, the cervix must be fully segmented within

the boundaries of the uterus segmentation, covering the entire region between the internal os

and the external os. This region is shown in figure 3.9. Second, the cervix might overlap with other

structures, except for the uterine cavity, as outlined in the uterine cavity segmentation guidelines.

An example of cervix segmentation is shown in figure 3.6.
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Myomas only All classes Raw MRI

Figure 3.11: An example of myoma annotation in FPMRId. The same MRI slice is shown three times with
only myomas segmentation, all segmentations, and no segmentations respectively. Shown segmentations
were done in 3D Slicer.

Fundus and Anterior Wall. The fundus and anterior wall are grouped together due to the similarity

in their segmentation methodologies, both serving as landmarks rather than exact anatomical

representations. Two key rules guide their segmentation. First, both structures are defined by

their medial portions, focusing on the central, inner regions within the overall boundaries of the

uterus segmentation. Second, the fundus and anterior wall may overlap with other classes within

the uterus, as these structures are frequently influenced by pathological changes, such as uterine

deformation due to myomas. For instance, in cases with the extensive presence of myomas, the

segmentation may overlap with myomas that distort the uterine shape, yet the segmented regions

still reflect the appropriate anatomical landmarks, as illustrated in figure 3.10 for fundus and

figure 3.7 for anterior wall.

Uterine myomas. For uterine myomas two rules are established. First, all tumours that are

anatomically connected to the uterus are segmented as part of the overall uterus segmentation.

Second, each tumour must be segmented individually, ensuring there is no overlap with other

classes within the uterus, except for the fundus and anterior wall. If multiple tumours are in close

proximity and come into contact, they are to be considered as a single tumour and segmented

accordingly. An example of uterine myomas segmentation is shown in figure 3.11.

Endometriosis only All classes Raw MRI

Figure 3.12: An example of endometriosis annotation in FPMRId. The same MRI slice is shown three times
with only endometriosis segmentation, all segmentations, and no segmentations respectively. Shown seg-
mentations were done in Supervisely, the colouring scheme slightly differs from that of 3D Slicer.

Endometriosis and Adenomyosis. The endometriosis and adenomyosis are grouped together due
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to the similarity in their segmentation methodologies. We have established one rule in regard to

their segmentation: both endometriosis and adenomyosis may cross the uterus segmentation

boundary in both directions and overlap with other classes due to their distinct pathological

behaviours. For endometriosis, this is attributed to the condition’s ability to invade nearby

structures - for example, the ovaries, the fallopian tubes, the bladder and the tissue lining the

pelvis. Furthermore, it might spread beyond the pelvic region as well. Adenomyosis, on the other

hand, might affect the uterine cavity, the myometrium (middle layer of the uterine wall) and

extend beyond the uterus. The examples of segmentation of endometriosis and adenomyosis are

shown in figures 3.12 and 3.13 respectively.

Adenomyosis only All classes Raw MRI

Figure 3.13: An example of adenomyosis annotation in FPMRId. The same MRI slice is shown three times
with only adenomyosis segmentation, all segmentations, and no segmentations respectively. Shown seg-
mentations were done in Supervisely, the colouring scheme slightly differs from that of 3D Slicer.

3.1.3 Results

We report the results of data collection for FPMRId in three ways: (1) data collection statistics, (2)

analysis of the data using metadata and 15 metrics, and (3) visualisation of select samples.

Data Collection Statistics. We quantified the progression of data collection attributing the scans

to one of the two categories: complete and in-progress. Specifically, complete scans are those that

passed all the steps in the annotation pipeline, while in-progress scans are those that have passed

at least step 4, but require further corrections. Data collection evolution is shown in figure 3.1,

which shows the cumulative number of scans over time. The number of scans annotated per

annotation platform is shown in figure 3.15.

Data Analysis. To assess the quality and variability of the dataset, we utilised the MRQy (Sadri

et al., 2020) - an open-source tool for MRI quality control. Using MRQy, for each scan we extracted

10 key tags from the series metadata and calculated 15 metrics. The list of tags and the list of

metrics with descriptions are provided in figure 3.14, courtesy of the original authors. The parallel

coordinate chart for each of the 25 values for all FPMRId series is shown in figure 3.17. In turn, the

minimum, the maximum, the mean and the standard deviation for applicable tags are reported

in table 3.2 and for the metrics in table 3.3. Further, we have embedded all the 25 parameters

into a two-dimensional space using UMAP (McInnes et al., 2018), preserving both pairwise and
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Figure 3.14: Definitions of the 25 parameters used in MRQy, comprising 10 tags extracted from series meta-
data and 15 metrics calculated for MRI analysis. Source: (Sadri et al., 2020)

Figure 3.15: The number of scans annotated using each of the three annotation platforms: MITK, 3D Slicer
and Supervisely.

Figure 3.16: A scatter plot visualizing the 25 parameters reported for each series, embedded into a two-
dimensional space using Uniform Manifold Approximation and Projection (UMAP). Each dot represents a
series from FPMRId.

Figure 3.17: The parallel coordinate chart for the 25 MRQy parameters for the entirety of the FPMRId.
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global distances between scans. The resulting scatter plot is shown in figure 3.16. We observe

several well-separated clusters, indicating the presence of distinct patterns within the data. These

patterns are likely influenced by variations in manufacturer, scanner model, and acquisition

parameters, resulting in a heterogeneous and diverse dataset.

Table 3.2: The mean, standard deviation, minimum and maximum for the 8 numerical tags extracted from
the metadata across all series in FPMRId.

TR TE VRZ VRX VRY ROW COL NUM

MEAN 4651.16 115.92 3.52 0.49 0.49 572.60 575.64 49.48
STDDEV 1930.83 16.56 1.01 0.14 0.14 197.11 195.56 52.14
MIN 1302.00 75.00 1.20 0.2148 0.2148 256.00 256.00 23.00
MAX 12396.78 143.81 6.00 1.00 1.00 1024.00 1024.00 336.00

Table 3.3: The mean, standard deviation, minimum and maximum for the 25 metrics calculated across all
series in FPMRId.

MEAN RNG VAR CV CPP PSNR SNR1 SNR2 SNR3 SNR4 SNR6 SNR7 SNR8 CNR CVP CJV EFC FBER

MEAN 860.20 2931.75 5.66×105 66.00 0.35 10.41 11.10 33.39 10.38 9.00×1011 1.40 1.85 2.35 9.00×108 0.33 0.77 2.74 8.87×1010

STDDEV 896.30 3193.04 1.33×106 11.40 0.49 1.62 5.36 15.73 6.14 1.02×1012 0.34 0.31 0.34 1.02×109 0.14 0.13 0.37 7.29×1011

MIN 75.84 298.23 3.27×103 47.69 0.00 6.60 3.22 8.99 2.51 3.11×1010 1.03 1.10 1.47 3.11×107 0.07 0.56 2.07 2.90×101

MAX 4564.47 14924.10 7.83×106 111.96 2.43 14.83 35.29 90.30 36.94 5.54×1012 2.99 2.42 3.22 5.54×109 1.48 1.27 3.74 9.38×1012

Select Sample Visualisation. We randomly sample one segmented image from each of twelve

scans. These images are displayed in figure 3.2 in pairs: with and without their corresponding

segmentations. In this work FPMRId is utilised in three ways: (1) a large number of experiments

involving model training and evaluation, (2) user evaluation study, and (3) inter-expert variability

study. First, the dataset served as the foundation for training and validating segmentation mod-

els developed for interactive neural segmentation and concurrent data-efficient annotation and

model training, which constitute the two key contributions of this thesis in sections 4 and 5 re-

spectively. Second, we conducted a user evaluation involving eight medical experts who inter-

actively used the segmentation model trained on the FPMRId dataset, as reported in section 4.

Third, we performed an inter-expert variability study to assess the segmentation consistency be-

tween medical professionals with different expertise levels. This study is presented in detail in the

next section.

3.2 Inter-Expert Variability Study

Medical image annotation is challenging due to the inherent complexities of medical images, as

well as human factors. Specifically, while medical scans may exhibit anatomical ambiguities, noise

and artefacts, the differences of experience, attentiveness and fatigue of the medical expert play

a big role in the final quality of the annotations. Consequently, annotations performed by differ-

ent medical experts may vary significantly for the same scan. This variability among experts is

referred to as inter-expert or inter-observer variability in the literature. Available studies mostly

investigate inter-expert variability for more common targets and imaging modalities, particularly

in CT scans. For instance, inter-observer variability has been studied in the segmentation of brain

tumours (Jungo et al., 2018), prostate (Montagne et al., 2021), bladder cancer (Foroudi et al., 2009),
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and other structures in CT imaging (Woo et al., 2020; Joskowicz et al., 2019). CT remains the dom-

inant modality in such studies, with MRI less frequently addressed. Moreover, there is a paucity

of studies focusing on inter-observer variability in the segmentation of the female pelvis in MRI,

which is a complex domain due to MRIs exhibiting a high level of variation. Some work has been

done on the segmentation of pelvic bones in CT (Juergensen et al., 2024) and defining uterine po-

sition using ultrasound imaging (Baker et al., 2013). However, we have not found inter-observer

variability studies specifically targeting MRI segmentation of the uterus and its internal anatomi-

cal structures. This is significant because MRI, particularly T2WI, is one of the key imaging tech-

niques for diagnostics of female pelvis pathologies.

In view of the above, we conducted a retrospective, single-centre inter-expert variability study

for the segmentation of female pelvis MRI using the data from FPMRId. The primary objective of

this study is to analyse the segmentation correlation among radiologists with varying levels of ex-

perience to determine the reliability and reproducibility of this process for 5 segmentation classes

of female pelvis MRI. Secondary objectives include assessing experts’ diagnostic performance and

investigating potential links between segmentation precision and the expert’s experience. One of

the strengths of this study is the number of participating experts, which is six, as opposed to three,

which is common in the literature (Dissaux et al., 2020; Lim et al., 2011; Rosa et al., 2020). We

present the methodology and the obtained results in the following sections.

MEAN

STDDEV

CV

Figure 3.18: Pairwise dice values for uterus across all 10 series: MEAN, standard deviation as STDDEV, and
Coefficient of Variation (CV). Grey zone contains mirrored values.

3.2.1 Methodology

Data Collection. We use a subset of 10 MRI series, randomly sampled from the FPMRId dataset.

These 10 series were collected from adult female patients, who underwent pelvic MRI as part of a

pre-surgical evaluation prior to myomectomy. The MRI scanner used is GE SIGNA ARTIST with

the magnetic field strength of 1.5 Tesla. The imaging protocol is T2WI PROPELLER with a slice

thickness of 5 mm and an image resolution of 512×512 pixels.
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Data Annotation. Each of the 10 MRI series is segmented independently by six radiologists with

varying levels of experience. Based on their expertise, the radiologists are divided into three

groups: (1) two radiology interns, (2) two assistant radiologists specialising in women’s imaging,

and (3) two senior hospital practitioners with three and seven years of experience, respectively,

who specialise in the female pelvis. For clarity, each expert is referred to as Junior Radiologist

(RJ), Radiology Resident (RR), or Senior Radiologist (RS) based on their group respectively. The

experts are thus labelled as RR1 and RR2, RJ1 and RJ2 and RS1 and RS2. All the radiologists

were tasked with segmenting five classes of the female pelvis: (1) uterus, (2) bladder, (3) cervix,

(4) uterine cavity and (5) uterine myomas. All segmentation tasks were performed manually or

semi-automatically using 3D Slicer with no limitations on the tools used. Notably, no DL models

were employed. To avoid the influence of prior experience with 3D Slicer on final segmentation

results, all radiologists underwent standardised training on the use of 3D Slicer. To ensure

proficiency, the very first MRI segmentation for each expert was supervised by an expert already

proficient with 3D Slicer.

Data Analysis. Since this study features six experts, including two senior radiologists, each ex-

pert’s unique experience and interpretation may result in differing, but plausible, segmentations.

Simply, no single segmentation can be considered the golden standard in this study by definition.

However, to effectively assess the performance of each expert, a consensus-based reference

segmentation is crucial. Therefore, for the analysis we adopt a dual approach: (1) we perform

pairwise comparisons between expert segmentations to directly assess inter-expert agreement

and capture relative variability and consistency, and (2) we generate a reference segmentation that

synthesises the contributions of all experts to serve as a benchmark for evaluation. Specifically,

this study is divided into three key steps: (1) calculation of segmentation metrics, (2) generation

of a reference segmentation, and (3) statistical analysis of the metrics from step 1 in relation to

the reference segmentation from step 2. We review each of these steps in turn.

Segmentation Metrics. Two primary metrics are calculated: the Dice Similarity Coefficient (Dice)

and the volume (in cm3). The metrics are chosen to be complementary. Specifically, the dice

estimates the degree of similarity between two segmentations directly, but does not account for

the actual size of the anatomical structures. In contrast, volume provides an indication of the

anatomical structure’s size. These metrics are calculated to assess the agreement between experts

for each class and series, as well as across all classes and series using the mean, standard deviation

and CV. For these calculations, all classes, with the exception of uterine myomas, were treated

uniformly. This distinction is necessary because an expert can identify an arbitrary number of

myomas in a single series, which may not match the number of myomas identified by another

expert. To address this, in addition to the standard dice calculation, we propose and calculate

the Found Myoma Agreement (FMA) metric for each series to estimate the degree of agreement

on the number of myomas present in a series among the experts. Both dice and volume metrics

were calculated using the “Segment Comparison” module of 3D Slicer as a part of the SlicerRT

toolkit (Pinter et al., 2012). In turn, the FMA, the mean, the standard deviation and the CV, were

calculated using Google Sheets. Overall, the study resulted in 46 sheets, containing over 400 tables.

The methodology for calculating dice, volume and FMA is discussed below.
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MEAN

STDDEV

CV

Figure 3.19: Pairwise absolute volume differences for uterus across all 10 series: MEAN, standard deviation
as STDDEV, and CV. Grey zone contains mirrored values.

The dice measures the overlap between two sets of data, ranging from 0 (no overlap) to 1 (per-

fect overlap). It is calculated according to the equation 3.1.

Dice(A,B) = 2 · |A∩B |
|A|+ |B | (3.1)

We calculate the dice for each class using the following two-step procedure: (1) for each se-

ries, 15 pairwise dice values are calculated, since 15 unique pairs can be formed from 6 experts,

calculated as 6×5
2 = 15), (2) the mean, the standard deviation and the CV are calculated across all

series, yielding 15 mean, standard deviation and CV values respectively. For uterine myomas, this

procedure is applied only to myomas that were segmented by at least two experts (referred to as

“agreed-upon myomas”). A table displaying the uterus dice values for all 10 series, along with their

respective means, standard deviations and coefficients of variation, is presented in figure 3.18.

To compare the volumes of segmentations, we use the following three-step procedure: (1) for

each series, six volume values are calculated, corresponding to the number of experts, (2) 15 pair-

wise absolute volume differences are calculated, which means a single value for each expert pair,

(3) the mean, the standard deviation and the CV are calculated across all series, yielding 15 mean,

standard deviation and CV values respectively. A table with the uterus volume values for all 10

series can be seen in figure 3.20. In turn, means, standard deviations and coefficients of variation

for absolute volume differences for these 10 series can be seen in figure 3.19.

Due to the variability in the number of myomas identified by each expert, directly calculating

dice and volume may not accurately reflect expert performance. For instance, the discrepancy

between two experts could increase if one expert identified more myomas than the other, which

is frequently observed as shown in figure 3.21. Therefore, for uterine myomas the metrics are cal-

culated as follows: (1) a medical expert visually examines and matches the myomas segmented

by each expert, assigning the same identifier to each distinct myoma across all experts, (2) the

dice and volume metrics are calculated only for agreed-on myomas and indicate the segmenta-
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Figure 3.20: Uterus volumes for all 10 series, as obtained by each of the 6 experts. Also shown: MEAN,
standard deviation as STDDEV, and CV. CV is a fraction.

tion consistency level between the experts, while (3) the FMA metric is calculated to estimate the

expert’s consensus on myoma number. When used jointly, these metrics allow a more complete

view on the expert’s performance. For example, a high dice score, but low FMA score may indicate

that agreed-upon myomas were segmented very similarly by the experts, but the experts strongly

disagree on the number of myomas in the series. FMA is calculated for each series using the fol-

lowing three-step process: (1) the number of myomas jointly found by all the experts is considered

to be the maximum number of myomas in a series, (2) each time an expert identifies a myoma or

misses a myoma, the respective count is increased, resulting in two values per series, and (3) using

the values from step 2, the FMA is calculated according to the formula 3.2. Specifically:

FMA = F

M +F
, (3.2)

where F and M are the numbers of experts who found or missed a myoma respectively. This

results in a single FMA score per series, which represents the agreement rate between the experts.

An FMA table for a single series with 10 myomas can be seen in figure 3.22.

Figure 3.21: The number of myomas identified by each expert in each of the 10 series.

Reference Segmentation. We use STAPLE (Warfield et al., 2004), an iterative weighted voting algo-

rithm, to generate a reference golden standard-like segmentation by merging the segmentations

of all the experts for each series. Specifically, STAPLE addresses the challenge of variability among

individual segmentations by iteratively estimating both the consensus segmentation and the

performance level of each expert. STAPLE operates in four general steps: (1) all segmentations are

merged by majority vote to create a preliminary estimate of the consensus segmentation (2) the

accuracy of each expert’s segmentation is evaluated against this estimate, assigning weights based

on expert’s performance, (3) the consensus segmentation is updated by weighting each expert’s

input accordingly and (4) steps 2-3 are repeated until convergence. While STAPLE provides a

stable way to merge variable input from multiple medical expects, it has three main drawbacks:

(1) it may dismiss the input of an objectively correct expert if their segmentation differs from the
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Figure 3.22: FMA scores for series 2, based on whether each expert identified or missed specific myomas.
Found and missed myomas, as well as their quantities are indicated.

majority, potentially overlooking accurate results simply because they are in the minority, (2) it

tends to underestimate organ boundaries because the edges often have lower consensus among

raters, leading the algorithm to exclude precise contours provided by some of the experts, and

(3) the algorithm operates solely based on consensus without considering image properties or

anatomical continuity, which can result in segmentations that have discontinuities or holes in

structures that should be continuous. Figure 3.23 presents examples of consensus segmentations

generated with STAPLE for 8 slices from different series, along with a reference segmentation by

RS2 and a heatmap overlay of all experts’ segmentations.

Statistical Analysis. Three methods are used to infer the relationship between the experts’ seg-

mentations and STAPLE consensus segmentations. These methods are Spearman correlation

(Spearman, 1904), Kruskal-Wallis test (Kruskal and Wallis, 1952) and post-hoc Dunn-Bonferroni

test (Dunn, 1961), which is applied depending on the Kruskal-Wallis test result. Each of these tests

were conducted using the open-source software JASP (JASP Team, 2024). We describe each in turn.

First, we begin by measuring Spearman correlation. This test aims to determine whether a

correlation exists, for each class, between the expert’s segmentation similarity to the STAPLE con-

sensus segmentation and the expert’s level of experience. In this context, the Spearman test has

two inputs: (1) the set of 10 Dice scores (1 per series) for each expert, representing the similarity

between the expert’s segmentation and the STAPLE consensus as shown in figure 3.26, and (2) the

experience level score of each expert. For the latter, each of the experts is assigned an experience

level score from 1 to 6 as follows: RR1 = 1, RR2 = 2, RJ1 = 3, RJ2 = 4, RS1 = 5 and RS2 = 6. Spearman

test outputs two scores: rs - the correlation coefficient, and the p-value. rs measures the strength

and direction of a relationship between two variables. It ranges from -1 to 1, where values close to

1 or -1 indicate strong positive or negative correlations, respectively, while values near zero sug-

gest little to no correlation. In turn, p-value assesses the statistical significance of the observed

correlation. Specifically, p-value below a predetermined significance threshold, indicates that the

observed correlation is unlikely to be due to random chance, suggesting a statistically significant

relationship. Conversely, a high p-value implies that the correlation is not statistically significant.

We set the significance threshold to 0.05, following standard practice.

Second, we perform the Kruskal-Wallis test (Kruskal and Wallis, 1952). This test aims to de-

termine whether statistically significant differences exist among the six experts with respect to the
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Reference Expert
(RS2)

STAPLE All Experts
(uterus only)

All Experts
(other classes)

Figure 3.23: Consensus segmentations generated with STAPLE for 8 slices from different series, with sup-
porting information. The columns are: (1) reference segmentation by RS2, (2) STAPLE consensus segmen-
tation, (3) heatmap of experts’ segmentations for the uterus only, and (4) heatmap of experts’ segmentations
for other classes.
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Figure 3.24: Pairwise dice values for uterus for 5 series. Grey zones contain mirrored values.

STAPLE consensus segmentation. In this context, this test inputs and the output of the Kruskal-

Wallis test repeat in part those of Spearman correlation. Specifically, this test inputs 15 dice or

volume difference scores, as shown in figure 3.24 for dice and figure 3.25 for volume. Each score

represents the mean across all series between a pair of experts. The Kruskal-Wallis test outputs a p-

value, indicating whether there are significant differences between experts. If the p-value is below

the significance threshold (0.05), it suggests that at least two experts differ significantly. However,

identifying which specific experts differ requires a post-hoc test. Third, if the Kruskal-Wallis test re-

veals significant differences between experts, we perform a post-hoc Dunn-Bonferroni test (Dunn,

1961) to identify which specific pairs of experts differ. The Dunn-Bonferroni test takes as input the

same set of dice or volume difference scores used in the Kruskal-Wallis test and outputs p-values

for each pair of experts, indicating which pairs show statistically significant differences. The same

significance threshold (0.05) is used. While this test pinpoints the expert pairs with differing seg-

mentations for the same class, it does not explain the reasons for these differences, which are up

to interpretation.

3.2.2 Results

We present and discuss the results of the inter-expert variability study for each class in the

following order: (1) uterus, (2) bladder, (3) cervix, (4) uterine cavity, and (5) uterine myomas. For

each class, we provide segmentation metrics and statistical analysis results. The segmentation

metrics are reported in five formats: (1) a table showing the mean dice scores for each expert

in comparison with other experts, (2) a scatter plot displaying dice scores for each expert/series

compared to the STAPLE consensus segmentation, (3) a table with mean dice scores based on the

scatter plot in (2), (4) a bar chart illustrating volume measurements for each expert/series, and (5)

a table showing the mean volumes for each series across experts, derived from the bar chart in (4).

For uterine myomas, we provide two additional bar charts: (1) the number of myomas identified

for each expert/series, and (2) an FMA score for each series. In turn, the statistical results are

compiled into a single table for all classes, which includes the outcomes of Spearman correlation,

Kruskal-Wallis test, and Dunn-Bonferroni post-hoc test, where applicable.
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Figure 3.25: Pairwise absolute volume differences for uterus for 5 series. Grey zones contain mirrored val-
ues.

Figure 3.26: Expert’s segmentation vs. the STAPLE consensus for uterus segmentation for each of the 10
series: 10 Dice scores (1 per series) for each expert. The red line represents the simple linear regression
model.

Uterus

Segmentation Metrics. The assessment of segmentation consistency of the uterus revealed an ex-

cellent inter-expert correlation, irrespective of the expert involved. The mean dice score across

all expert comparisons is 0.919±0.029 as reported in table 3.4. The low standard deviations and

coefficients of variation further confirm the minimal variation in segmentation performance be-

tween experts. When comparing expert segmentations against the STAPLE consensus segmenta-

tion, the mean dice score is observed to be lower at 0.801±0.101 as reported in table 3.5. Despite

this reduction, the results still indicate a strong alignment with the consensus, supported by the

detailed scatter plot of dice scores for each expert/series presented in figure 3.26. We note that

the lowest consistency with the consensus is observed for RS2 with a mean of 0.758±0.148, who

is rated as the most experienced for female pelvis MRI segmentation, and is the radiologist who

produced 86.61% of the annotations for the FPMRId. This difference can be thus explained by

RS2’s approach to segmentation. The consistency of the uterus annotations is confirmed by the

reported volumes, as shown in figure 3.27. Table 3.6 further supports this with low variation in

74



CHAPTER 3. DATA

Table 3.4: Dice values for the uterus across all 10 series, where each expert is compared to the rest (i.e. (1-
vs-rest): MEAN, standard deviation as STDDEV, and CV. The last column presents the overall mean. CV is a
fraction.

RJ1 vs all RJ2 vs all RR1 vs all RR2 vs all RS1 vs all RS2 vs all MEAN
MEAN 0.923 0.910 0.925 0.917 0.921 0.919 0.919
STDDEV 0.025 0.036 0.030 0.032 0.025 0.026 0.029
CV 0.027 0.040 0.033 0.034 0.028 0.028 0.032

the mean, standard deviation, and CV across all experts, indicating strong agreement in volume

measurements. Specifically, the CV is below 10%, except for series 7, which stands at 14%. This

higher variation may be due to the relatively small uterine volume in series 7 compared to the

other series.

Table 3.5: Mean dice value for each expert across 10 series, when comparing expert’s segmentation to the
STAPLE consensus segmentation for uterus. The dice values for individual series are plotted in figure 3.26.
CV is a fraction.

RJ1 RJ2 RR1 RR2 RS1 RS2 MEAN
MEAN 0.832 0.818 0.794 0.783 0.820 0.758 0.801
STDDEV 0.084 0.067 0.108 0.104 0.085 0.148 0.101
CV 0.101 0.081 0.137 0.132 0.103 0.195 0.126

Table 3.6: Mean, standard deviation, and CV for uterus volumes in cm3 obtained by experts for each series
(s1, s2, ..., s10). CV is a fraction.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
MEAN 84.63 335.00 129.87 793.09 832.34 276.23 163.27 505.69 939.29 160.53
STDDEV 7.66 15.43 6.65 43.16 47.89 11.09 23.21 18.80 26.87 3.27
CV 0.09 0.05 0.05 0.05 0.06 0.04 0.14 0.04 0.03 0.02

Statistical Analysis. As shown in table 3.20, for the uterus there is no observed correlation between

the experts’ level of experience and the similarity of their segmentations to the STAPLE consensus

segmentation. Further, the p-values for dice and volume scores are 0.754 and 0.993 respectively.

They are above the significance threshold of 0.05, which suggests that there are no statistically

significant differences between the experts’ segmentations and the STAPLE consensus. Dunn-

Bonferroni post-hoc test is thus not required.

Bladder

Segmentation Metrics. The evaluation of segmentation consistency for the bladder demonstrates

a strong inter-expert correlation across all participating experts. As shown in table 3.7, the mean

dice score across all expert comparisons is 0.880±0.097, which is slightly lower than the consis-

tency observed for the uterus (0.919±0.029). This might be found surprising, given that the blad-

der is generally considered easier to segment than the uterus due to the better visibility. However,

this lower consistency can be attributed to specific characteristics of the bladder. The bladder’s

contour is often not consistently defined among experts: some include the complete outer sur-

face of the bladder in their segmentation, while others may exclude certain peripheral areas. Fur-

thermore, because the bladder is typically homogeneous and lacks intricate internal structures,

experts might devote less attention to its segmentation compared to more complex organs like the

75



CHAPTER 3. DATA

Figure 3.27: Uterus segmentation volumes for each expert and each of the 10 series.

uterus. This can lead to less precise contours and increased variability in the segmentation results.

The scatter plot of bladder dice scores for each expert/series is presented in figure 3.28.

Figure 3.28: Expert’s segmentation vs. the STAPLE consensus for bladder segmentation in each of the 10
series: 10 Dice scores (1 per series) for each expert. The red line represents the simple linear regression
model.

When expert segmentations are compared to the STAPLE consensus segmentation, the mean

dice score is slightly higher with reduced variation: 0.891±0.085 (see table 3.9). Interestingly, this

pattern contrasts with the results for the uterus, where experts show greater agreement with each

other than with the STAPLE consensus segmentation. This difference is illustrated in figure 3.23,

where the variability among experts is more evident for the bladder than for the uterus. Specifi-

cally, experts show distinct approaches to delineating the outer bladder contour, which results in

inter-expert correlation being lower. Notably, expert RR2 demonstrates the lowest correlation with

the STAPLE segmentation, which may be linked to their level of experience. However, when com-

pared to the fixed STAPLE reference, these individual differences are minimised, leading to higher

agreement scores.

The consistency in bladder annotations is further evaluated through the volume measure-

ments presented in figure 3.29. Table 3.10 provides detailed statistics, showing that while most
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Figure 3.29: Bladder segmentation volumes for each expert and each of the 10 series.

series exhibit coefficients of variation below equal to or below 10%, indicating strong agreement,

there is higher variability in certain cases. Notably, series 6 and series 10 have coefficients of

variation of 55% and 19%, respectively. These elevated values may be due to the smaller bladder

volumes in these series with series 6 featuring the smallest mean volume of 12.39 cm3.

Table 3.7: Dice values for the bladder across all 10 series, where each expert is compared to the rest (i.e.
(1-vs-rest): MEAN, standard deviation as STDDEV, and CV. The last column presents the overall mean. CV
is a fraction.

RJ1 vs all RJ2 vs all RR1 vs all RR2 vs all RS1 vs all RS2 vs all MEAN
MEAN 0.870 0.880 0.888 0.864 0.890 0.886 0.880
STDDEV 0.120 0.094 0.077 0.104 0.076 0.105 0.097
CV 0.138 0.107 0.087 0.121 0.085 0.119 0.110

Table 3.8: Mean dice value for each expert across 10 series, when comparing expert’s segmentation to the
STAPLE consensus segmentation for bladder. The dice values for individual series are plotted in figure 3.28.
CV is a fraction.

RJ1 RJ2 RR1 RR2 RS1 RS2 MEAN
MEAN 0.911 0.904 0.928 0.833 0.902 0.870 0.891
STDDEV 0.066 0.029 0.056 0.105 0.062 0.132 0.085
CV 0.073 0.032 0.060 0.126 0.069 0.152 0.095

Table 3.9: Comparison of expert bladder segmentations with STAPLE consensus segmentation using the
dice metric.

Statistical Analysis. As shown in table 3.20, for the bladder a positive correlation between the

experts’ level of experience and the similarity of their segmentations to the STAPLE consensus

segmentation is observed. Simply, more experienced annotators show higher similarity rate.

Furthermore, the Kruskal-Wallis test yielded a p-value of 0.015 for the dice scores, indicating

that there are significant statistical differences in segmentation performance among the experts.

Post-hoc Dunn-Bonferroni tests identified a significant difference between experts RR1 and RR2

(adjusted p-value = 0.007), which aligns with the observations for expert RR2 based on segmen-
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Table 3.10: Mean, standard deviation, and CV for bladder volumes in cm3 obtained by experts for each
series (s1, s2, ..., s10). CV is a fraction.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
MEAN 168.09 121.12 91.77 35.82 84.62 12.39 63.84 167.72 92.31 45.86
STDDEV 8.31 8.13 6.72 6.21 8.56 6.84 2.94 14.41 9.24 8.70
CV 0.05 0.07 0.07 0.17 0.10 0.55 0.05 0.09 0.10 0.19

tation metrics. Conversely, no significant differences were observed for volume measurements

(p-value = 0.901), suggesting that while segmentation overlap varies between certain experts, the

overall volume estimations remain consistent.

Figure 3.30: Expert’s segmentation vs. the STAPLE consensus for cervix segmentation in each of the 10
series: 10 Dice scores (1 per series) for each expert. The red line represents the simple linear regression
model.

Cervix

Segmentation Metrics. The assessment of segmentation consistency for the cervix revealed a mod-

erate inter-expert agreement with notable variation among experts. The mean dice score across all

expert comparisons is 0.681±0.154, as reported in table 3.11. This lower correlation among experts

is expected, as small-volume structures like the cervix are generally more challenging to segment

accurately and tend to exhibit higher inter-expert variability. Specifically, the cervix presents two

challenges in MRI segmentation, both of which make precise contour delineation difficult. Firstly,

there is low MRI contrast between the cervix and the surrounding tissues. Secondly, the cervix

and the uterine body display similar MRI signals, so their boundaries are primarily distinguished

through morphological analysis rather than signal differences, which is more challenging. The

scatter plot of cervix dice scores for each expert/series is presented in figure 3.30.

When comparing expert segmentations against the STAPLE consensus segmentation, the

mean dice score is observed to be higher at 0.810±0.123, as reported in Table 3.12. As with other

classes, this is expected due to the nature of the comparison. We observe that expert RR2 exhibits

the lowest consistency with both the other experts and the consensus segmentation, with mean

dice scores of 0.631±0.168 and 0.670±0.156, respectively. The variability in cervix annotations is

further highlighted by the reported volumes, as shown in figure 3.31. Specifically, table 3.13 shows

that the coefficients of variation for cervix volumes are relatively high, ranging from 15% to 78%.

As expected, the series with smaller cervix volumes, such as series 3 and 7, exhibit the highest
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Figure 3.31: Cervix segmentation volumes for each expert and each of the 10 series.

variation.

Table 3.11: Dice values for the cervix across all 10 series, where each expert is compared to the rest (i.e.
(1-vs-rest): MEAN, standard deviation as STDDEV, and CV. The last column presents the overall mean. CV
is a fraction.

RJ1 vs all RJ2 vs all RR1 vs all RR2 vs all RS1 vs all RS2 vs all MEAN
MEAN 0.723 0.669 0.694 0.631 0.668 0.699 0.681
STDDEV 0.130 0.164 0.142 0.168 0.169 0.141 0.154
CV 0.179 0.245 0.204 0.266 0.252 0.202 0.227

Table 3.12: Mean dice value for each expert across 10 series, when comparing expert’s segmentation to
the STAPLE consensus segmentation for the cervix. The dice values for individual series are plotted in fig-
ure 3.30. CV is a fraction.

RJ1 RJ2 RR1 RR2 RS1 RS2 MEAN
MEAN 0.839 0.829 0.807 0.670 0.847 0.870 0.810
STDDEV 0.102 0.096 0.114 0.156 0.087 0.073 0.123
CV 0.122 0.116 0.142 0.233 0.103 0.084 0.151

Statistical Analysis. As reported in table 3.20 for the cervix we identified a positive correlation

between the experts’ level of experience and the similarity of their segmentations to the STAPLE

consensus segmentation. Furthermore, the p-values of 0.034 for dice scores and 0.001 for volume

measurements indicate presence of statistically significant discrepancies between experts’

segmentations. Specifically, the Dunn-Bonferroni post-hoc test identified one expert pair for the

dice scores: (1) RR2 and RS2. For volume measurements two expert pairs were identified: (1)

RR2 and RJ2 and (2) RR2 and RS1. These findings support the segmentation metrics differences

observed for the expert RR2 exhibiting lower performance as compared to other experts, which

can be attributed to lower annotator’s experience and the complexity of clearly delineating the

cervix.
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Table 3.13: Mean, standard deviation, and CV for cervix volumes in cm3 obtained by experts across all series
(s1, s2, ..., s10). CV is a fraction.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
MEAN 13.09 19.73 7.64 29.74 20.23 14.82 11.26 15.96 16.04 21.09
STDDEV 6.66 8.90 4.85 4.45 10.93 4.93 8.74 3.00 7.60 5.82
CV 0.51 0.45 0.64 0.15 0.54 0.33 0.78 0.19 0.47 0.28

Figure 3.32: Expert’s segmentation vs. the STAPLE consensus for uterine cavity segmentation for each of the
10 series: 10 Dice scores (1 per series) for each expert. The red line represents the simple linear regression
model.

Figure 3.33: Uterine cavity segmentation volumes for each expert and each of the 10 series.
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Uterine Cavity

Segmentation Metrics. The assessment of segmentation consistency for the uterine cavity shows

satisfactory agreement among experts with notable variability, depending on the experts and se-

ries. The mean dice score across all expert comparisons is 0.715±0.124, as reported in table 3.14.

When comparing expert segmentations against the STAPLE consensus segmentation, the mean

dice score is observed to be higher at 0.812± 0.074, which is expected. The latter is reported in

table 3.15. The scatter plot of uterine cavity dice scores for each expert/series is presented in fig-

ure 3.32.

Despite the overall satisfactory mean, individual expert performances varied. RS2 shows

the lowest correlation with both other experts and the STAPLE consensus segmentation, with

values of 0.672± 0.124 and 0.725± 0.070, respectively. This variability is further reflected in the

reported volumes, as illustrated in figure 3.33. Specifically, the coefficients of variation presented

in table 3.16 are consistently high, with values ranging up to 41%, which aligns with the variability

observed for the dice scores.

Table 3.14: Dice values for the uterine cavity across all 10 series, where each expert is compared to the rest
(i.e. 1-vs-rest): MEAN, standard deviation as STDDEV, and CV. The last column presents the overall mean.
CV is a fraction.

RJ1 vs all RJ2 vs all RR1 vs all RR2 vs all RS1 vs all RS2 vs all MEAN
MEAN 0.730 0.731 0.706 0.730 0.718 0.672 0.715
STDDEV 0.124 0.119 0.122 0.136 0.117 0.124 0.124
CV 0.170 0.162 0.173 0.186 0.163 0.185 0.174

Statistical Analysis. As shown in table 3.20, a negative correlation was observed between the

experts’ level of experience and the similarity of their segmentations to the STAPLE consensus

segmentation for the uterine cavity. Specifically, Spearman’s rank correlation coefficient of -0.300

and a p-value of 0.021 were obtained. Simply, this suggests that experts with higher experience

level performed worse than those with lower experience level. The Kruskal-Wallis test yielded a

significant p-value of 0.006 for the dice coefficient, indicating statistically significant differences

in segmentation performance among experts. Consequently, the pair RR1-RS2 was identified

as a result of the Dunn-Bonferroni test, confirming RS2’s lower performance as compared to

other experts. This discrepancy can be attributed to three factors: (1) RS2’s extensive experience

contributing to FPMRId, (2) the flattened morphology of the uterine cavity, which is the smallest

class in this study, and (3) the use of 5 mm slice thickness in the MRI scans, which introduces

partial volume effects. Together, these factors contributed to RS2’s lower performance and greater

variability among segmentations between experts.

Table 3.15: Mean dice value for each expert across 10 series, when comparing expert’s segmentation to
the STAPLE consensus segmentation for uterine cavity. The dice values for individual series are plotted in
figure 3.32. CV is a fraction.

RJ1 RJ2 RR1 RR2 RS1 RS2 MEAN
MEAN 0.793 0.847 0.844 0.829 0.835 0.725 0.812
STDDEV 0.086 0.053 0.058 0.039 0.061 0.070 0.074
CV 0.109 0.062 0.068 0.047 0.073 0.096 0.091
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Table 3.16: Mean, standard deviation, and CV for uterine cavity volume in cm3 obtained by experts across
all 10 series (s1, s2, ..., s10). CV is a fraction.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
MEAN 4.13 2.22 3.24 4.15 10.29 14.43 2.62 0.94 4.61 6.70
STDDEV 1.36 0.44 0.93 0.92 3.18 1.64 0.89 0.38 0.85 1.73
CV 0.33 0.20 0.29 0.22 0.31 0.11 0.34 0.41 0.19 0.26

Uterine Myomas

A total of 51 myomas were identified by the six experts involved in this study. However, only the

myomas segmented by all participating experts were considered. Specifically, only 31 out of these

51 myomas were included in the dice and volume calculation for the following three reasons: (1) 1

myoma was noticed but forgotten to be included by one of the experts, (2) 10 myomas presented

recognition challenges, and (3) 9 myomas were lobulated, leading some experts to view them as

a single myoma while others saw them as multiple myomas. The number of myomas identified

by each expert in each series can be seen in figure 3.21. It should be noted that the experts did

not reach a consensus on the myomas present in series 1. As a result, scores for series 1 are not

reported.

Figure 3.34: Agreed-on uterine myomas segmentation volumes for each expert and each of the 10 series.

Segmentation Metrics. The inter-expert correlation analysis for the segmentation of agreed-upon

uterine myomas shows a strong level of agreement among experts. The mean dice coefficient

across all expert comparisons is 0.844± 0.063, as shown in table 3.17.The scatter plot with dice

scores for each expert/series is presented in figure 3.30. When comparing expert segmentations

with the STAPLE consensus segmentation, the mean dice score is 0.836± 0.262, as shown in ta-

ble 3.18. The standard deviation is observed to be higher compared to that of the inter-expert

correlation, which can be largely attributed to recognition challenges. In particular, the presence

of both small and extremely large myomas in certain series poses difficulties. Small myomas are

often hard to detect, while large myomas can complicate determining the contour precisely.

To demonstrate the level of expert agreement in assessing myoma quantity, the FMA is

presented in figure 3.36, showing a mean FMA of 80% among experts. However, FMA varies

82



CHAPTER 3. DATA

Figure 3.35: Expert’s segmentation vs. the STAPLE consensus for agreed-on uterine myomas segmentations
in each of the 10 series: 10 Dice scores (1 per series) for each expert. The red line represents the simple
linear regression model.

significantly depending on the series. For instance, the lowest FMA is obtained for series 1

with 39%. This is due to the following two reasons: (1) small volume of the myomas described,

where six are very small myomas with five estimated at less than 3 cm3 and one around 10 cm3,

rendering them of limited clinical significance, and (2) four of the myomas being types 6 and 7

according to the FIGO, which are closely associated with intestinal loops. The reported volumes

are shown in table 3.19. The low coefficients of variation, generally below 10%, confirm the strong

agreement among the experts.

Figure 3.36: FMA for each of the 10 series.

Statistical Analysis. As presented in table 3.20, for uterine myomas there is no observed correlation

between the experts’ level of experience and the similarity of their segmentations to the STAPLE

consensus segmentation. The Kruskal-Wallis test yielded p-values of 0.851 for the dice coefficient

and 0.994 for the segmentation volume, suggesting that there are no statistically significant differ-

ences between the experts’ segmentations and the STAPLE consensus. These results suggest that,

despite challenges in agreeing on identified myomas in each series, the segmentation of agreed-

upon myomas was consistent among experts, regardless of their experience level.
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Table 3.17: Dice values for the agreed-on uterine myomas across all 10 series, where each expert is com-
pared to the rest (i.e. (1-vs-rest): MEAN, standard deviation as STDDEV, and CV. The last column presents
the overall mean. CV is a fraction.

RJ1 vs all RJ2 vs all RR1 vs all RR2 vs all RS1 vs all RS2 vs all MEAN
MEAN 0.849 0.840 0.840 0.851 0.843 0.844 0.844
STDDEV 0.059 0.071 0.063 0.062 0.067 0.060 0.063
CV 0.070 0.085 0.075 0.073 0.079 0.071 0.075

3.2.3 Conclusion

In this inter-expert variability study we evaluated the consistency of manual segmentations among

experts for five pelvic structures in MRI scans: (1) uterus, (2) bladder, (3) cervix, (4) uterine cav-

ity, and (5) uterine myomas. Overall, this study demonstrates that manual segmentations among

experts for pelvic MRI structures are largely consistent, suggesting that annotations can be reli-

ably performed by different annotators. However, specific series and cases may exhibit significant

discrepancies due to their unique characteristics especially common in female pelvis MRI. This

means that each series should be evaluated and validated on an individual basis during the anno-

tation process. In the following, we detail the main observations.

Table 3.18: Mean dice value for each expert across 10 series, when comparing expert’s segmentation to the
STAPLE consensus segmentation for agreed-on uterine myomas. The dice values for individual series are
plotted in figure 3.35. CV is a fraction.

RJ1 RJ2 RR1 RR2 RS1 RS2 MEAN
MEAN 0.805 0.931 0.817 0.816 0.826 0.823 0.836
STDDEV 0.297 0.051 0.296 0.295 0.293 0.292 0.262
CV 0.369 0.054 0.363 0.362 0.354 0.354 0.313

High inter-expert agreement was achieved for larger and more distinct structures like the

uterus and bladder, with excellent correlations for uterine volume and very satisfactory corre-

lations for bladder volume and myomas. These classes exhibited high mean dice scores (above

0.840), indicating strong consistency among experts regardless of individual approaches or levels

of experience. This suggests that large objects of interest, well-defined anatomical boundaries and

higher MRI contrast facilitate more uniform segmentations.

Table 3.19: Mean, standard deviation, and CV for agreed-on uterine myomas’ volumes in cm3 obtained by
experts across all series (s1, s2, ..., s10). Series 1 is marked as NA due to the absence of agreement between
the experts.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
MEAN NA 58.97 28.05 501.79 413.00 101.22 40.59 333.37 702.15 4.27
STDDEV NA 7.07 2.54 36.64 35.23 9.69 2.98 11.24 30.85 0.40
CV NA 0.12 0.09 0.07 0.09 0.10 0.07 0.03 0.04 0.09

In contrast, smaller and more complex structures such as the cervix and uterine cavity showed

moderate agreement, with satisfactory correlations for the uterine cavity and moderate for the

cervix. Challenges in segmenting these areas stem from factors like low contrast with surrounding

tissues, intricate morphology, and the impact of partial volume effects due to the use of thick-slice

MRI sequences (5 mm in this study). These complexities contribute to greater discrepancies in

expert annotations, highlighting that the cervix and uterine cavity segmentation would benefit
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from special attention and higher scan quality. At the same time, the segmentation of uterine my-

omas, despite initial challenges in consensus on myoma identification, resulted in high agreement

for the agreed-upon myomas. This indicates that while certain myomas are missed by experts,

agreed-on myomas are consistently delineated.

Table 3.20: Results of the statistical analysis for all classes. Values indicating significant statistical differences
are highlighted in bold. The last column lists the identified pairs exhibiting these differences, separately for
dice and volume metrics.

Class/Result
Spearman Kruskal-Wallis Dunn-Bonferroni

rs p p (dice) p (volume) Dice Volume

Uterus 0.010 0.949 0.754 0.993 NA NA
Bladder 0.320 0.014 0.015 0.901 RR1 - RR2 NA
Cervix 0.320 0.013 0.034 0.001 RR2 - RS2 RR2 - RJ2, RR2 - RS1
Uterine Cavity -0.300 0.021 0.006 0.487 RR1 - RS2 NA
Uterine Myomas -0.050 0.713 0.851 0.994 NA NA

The statistical analysis highlighted that the influence of expert experience on segmentation

performance is not uniform across all classes. For certain structures, a positive correlation be-

tween experience level and segmentation agreement was observed, while for others, no significant

correlation or even a negative correlation was found. This can be explained in certain situations.

For example, extensive prior experience of RS2 in FPMRId or lower experience levels of RR1 and

RR2 result in expected lower correlation with other experts. Additionally, the use of the STAPLE

algorithm to define the consensus among experts proved effective. This led to its adoption in

other contexts requiring consensus on varied annotations, such as in endometriosis laparoscopic

surgery (The European Parliament and the Council of the European Union, 2024a). Specifically,

this type of surgery lacks profound standardisation, with significant variability in surgeons’ anno-

tations due to individual approaches. However, the algorithm remains limited due to its tendency

to potentially disregard accurate but minority segmentations and reliance solely on consensus

without accounting for anatomical continuity. This suggests that it should be used along other

approaches.
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Chapter 4

Interactive Neural Segmentation

4.1 Introduction

Image segmentation is an essential component of many visual processing systems, which involves

classifying each pixel or, equivalently, delineating the regions containing pixels of the same class.

In medical image analysis, the images are often patient scans from modalities such as MRI or

CT. MRI segmentation is a tremendously difficult task, owing to it being 3D, low contrast, noisy,

low resolution and artefacted. Existing segmentation approaches can be divided into three set-

tings based on user involvement: manual, automatic and interactive. The manual approach is the

most time-consuming, as each pixel has to be attributed a label independently, which may require

hours for a single MRI. It is error-prone and infeasible in the clinical environment. At the other ex-

treme lies the automatic approach, which works without user involvement. This strongly limits

its applicability, as a clinician operator shall validate and possibly edit the result before its use in

a therapeutic act. The interactive approach trades-off manual and automatic features: it typically

involves an automatic part with an extent of user control. Both aspects are crucial for systems de-

signed for the clinical environment, where there generally are three main constraints: (1) decision-

making should be human-controlled, (2) time is limited, and (3) high accuracy is desired. Creating

interactive systems addressing these three concerns is therefore essential to simplify, speed up and

secure segmentation in the clinical environment.

The automatic approach is largely dominated by DL, which overturned classical methods over

the last decade in many segmentation tasks (Cardenas et al., 2019; O’Mahony et al., 2020). In

contrast, interactive DL methods present specific difficulties and have yet received relatively lim-

ited attention (Ramadan et al., 2020). Concretely, DL interactive segmentation requires embed-

ding a network in an interactive-loop system allowing the user to interact. Indeed, the network

inputs must include the user feedback, which depends on the network outputs. This creates a

dependency between the inputs and outputs of the network, which is poorly resolved by a regu-

lar training process from static data. Specifically, the input configuration and training process of

interactive existing DL methods do not reflect how the user interactions are provided at test time.

They consequently do not take full advantage of having user interactions as input, missing two

key aspects: (a) realistic interaction simulation - real interactions are positioned rationally, but

often scarcely and randomly distributed, an aspect which is not modelled in existing simulation

approaches for training; (b) temporal interaction information - inherently present at all times in

the real world, but overlooked by the existing interactive segmentation methods.
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Dynamics or temporal information are additional cues typically used in video segmentation

and tracking methods, which take advantage of the order and similarity of adjacent video frames.

In interactive segmentation, a user interacts depending on the current segmentation result they

observe, which is conditioned by both their interactions and the system’s result so far. Hence, the

ordering of interactions is highly important and should not be altered, as they otherwise become

less informative. Intuitively, capturing the interaction order should be beneficial in any interactive

framework, including interactive segmentation.

We propose a general DL interactive segmentation framework and training methods for multi-

class semantic instance segmentation. Our system consists of an embedded network, a user in-

teraction loop and an interaction memory. First, the user reviews the current segmentation result

and, if satisfied, accepts. Otherwise, the user may quickly make simple corrections by placing

points or strokes to refine the segmentation, which is achieved by a special input configuration of

the embedded network. Indeed, this network inputs the image, user correction masks, and pos-

sibly other memorised parameters, and outputs the segmentation probability maps. The system

then loops back to the user review step, whilst updating the interaction memory to keep track of

the user corrections throughout the interactions.

In practice, the additional temporal information is represented by a neural network input

structured differently than existing work. Existing works store all the interactions in the same

mask, discarding the order of the interactions and hence the temporal information. We call such

input structures Cumulative Interaction Memory (CIM). In contrast, we propose Sequential Inter-

action Memory (SIM), which stores a sequence of states instead, where each state is a pair of user

input and corresponding segmentation output. Simply put, SIM is a sequence of ordered user

actions and their results in time and carries temporal information by definition. The proposed ar-

chitecture takes an image and a SIM as inputs and produces a segmentation as output. The system

then adds this segmentation along with the latest user interaction mask to the SIM and proceeds to

the next interaction round. In practice, SIM is represented by a tensor of a certain size, depending

on the memory size, and is used as an input to the network at all times.

Our contributions are threefold. First, we propose a general DL-based interactive multi-class

semantic image segmentation framework with a user interaction loop. Second, we propose a se-

quential interaction memory, which keeps track of the segmentation results and user corrections,

maintaining sequentiality within the system. Third, we propose a general dynamic data training

process, which simulates the correction-focused and sequential nature of human user feedback

by learning from interaction sequences of a virtual user and minimises interaction-dependence,

improving performance.

We demonstrate our framework in three tasks. The first task is multi-class semantic MRI seg-

mentation of the female pelvis, for which we created a new dataset collected in our hospital. We

validate the results against automatic and existing interactive systems with the standard metrics

and perform an ablation study of our system’s components. We report results of a user study with

8 experts conducted with both senior and junior medical users in terms of both standard metrics

and elapsed time, using a specifically developed graphical user interface connected to our sys-

tem. We also study the influence of the number of provided user interactions on the framework’s

performance, including when using the framework in the automatic mode with 0 clicks provided.

The second and third tasks are respectively the multi-class semantic liver and pancreas CT seg-

mentation, using the ‘Liver Tumours’ and ‘Pancreas Tumour’ medical segmentation decathlon
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datasets (Simpson et al., 2019). We validate the results against automatic approaches participat-

ing in the ongoing medical segmentation decathlon challenge (Antonelli et al., 2022). For these

tasks, we instantiate our system with an existing encoder-decoder architecture optionally featur-

ing RNN (Rumelhart et al., 1986) modules.

4.2 Related Work

We review classical and DL approaches to medical image segmentation, distinguishing automatic

and interactive approaches for each.

Classical automatic segmentation encompasses a wide variety of methods (Zhu et al., 2016).

Their performance is usually insufficient to achieve clinically-acceptable accuracy and they have

been largely taken over by DL in many tasks (Cardenas et al., 2019). In contrast, classical interactive

methods are still widely used. The most well known ones are probably the Graph Cuts (Boykov

and Jolly, 2001), Random Walker (Grady, 2006b) and GEOS (Criminisi et al., 2008). They achieve

acceptable performance for simple cases. However, medical data often feature structures with

complex shapes and poorly defined contours, noise and artefacts. This results in a substantial

increase of user time required to perform segmentation and limited achievable accuracy.

DL-based automatic segmentation includes a multitude of methods. A review and evaluation

of over 100 methods (Minaee et al., 2021) was conducted with ResNet (He et al., 2016) extensively

used as a backbone, represented by EMANet (Li et al., 2019). It achieved top scores on the PASCAL

VOC dataset together with (Zoph et al., 2020), which adopts NAS-FPN (Ghiasi et al., 2019) with

EfficientNet-L2 (Xie et al., 2020). Most of the models use an encoder-decoder architecture (Minaee

et al., 2021). This includes the U-Net (Ronneberger et al., 2015), with a wide spectrum of applica-

tions (Siddique et al., 2021), and recent variants (Futrega et al., 2021; Siddiquee and Myronenko,

2021) reaching top positions in the BraTS challenge 2021. Automatic MRI segmentation was at-

tempted for various targets, including the kidney (Kline et al., 2017), the prostate (Guo et al., 2016)

and brain tumours (Havaei et al., 2017). These methods demonstrate state-of-the-art performance

in their respective tasks. However, they are automatic and do not allow the user to interact. Auto-

matic segmentation is highly appropriate in applications which cannot involve user interactions

in essence, such as real-time organ tracking. In contrast, many applications require validation and

corrections from a certified user. For such applications, the direct use of automatic DL methods is

inappropriate.

The integration of DL within interactive segmentation systems is a major challenge. A simple

approach is to use a classical interactive method to post-process the result from an automatic DL

method (Wang et al., 2018) or correct it manually (Shan et al., 2020). Such systems inherit the in-

trinsic limitations of the chosen classical method. A more advanced approach is to use a neural

network to process user feedback in an interactive-loop system (Vrooman et al., 2006; Wang et al.,

2019a; Zhou et al., 2019, 2022; Liao et al., 2020; Sakinis et al., 2019; Jahanifar et al., 2021). These

methods use a network which takes the image and user interaction masks as inputs. Training is

challenging owing to the loop. Existing approaches generate user interaction masks from labelled

data, either statically before training or dynamically during training, or attempt to avoid training

altogether. Static data training methods (Wang et al., 2019a; Zhou et al., 2019, 2022) limit the sys-

tem’s generalisation and interaction effectiveness. Intuitively, a real user interacts based on the

current segmentation they observe. In other words, the goal of the user is to improve upon what
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is already there. Hence, it is sound that mimicking this mechanism of acting sequentially is more

faithful and true-to-practice than the previous mechanism, namely Static Data Generation (SDG),

not taking past segmentations into account.

Dynamic data training methods (Vrooman et al., 2006; Liao et al., 2020; Sofiiuk et al., 2021; Ja-

hanifar et al., 2021; Koohbanani et al., 2020) mimic this mechanism and simulate user interactions

by sampling missegmented regions. This is done once from a single prediction (Vrooman et al.,

2006) or from the latest segmentation result (Liao et al., 2020; Sofiiuk et al., 2021). Usually, such

methods rely on a virtual user, which generates user input artificially at training time, since the

involvement of real users is not feasible. These methods diversify the training data and improve

performance. However, previous works using dynamic data training have two shortcomings: first,

they consider only individual classes for click placement, which is not well-adapted to the med-

ical scan data naturally containing multi-instance or multi-component structures, and second,

they do not handle multi-class multi-label multi-instance problems with multiple components

per class. These problems make medical scan segmentation challenging, as they incur the frag-

mentation of classes into multiple components, all compounded by the inherent noise, variability

and complexity of medical image scenes. In order to exemplify their terms, consider for instance,

the female pelvis MRI dataset we assembled. It has multiple properties typical for medical scan

datasets, namely (1) multi-class - the dataset contains multiple classes (that is, uterus, bladder,

tumour and cavity); (2) multi-label - certain classes overlap (e.g. uterus contains tumour and

cavity); (3) multi-instance - certain classes contain multiple instances (there can be multiple tu-

mours per image); (4) multi-component - an instance of each class in the image might be split into

multiple closed contours due to medical scan slicing and the shape of the object in question.

Alternatively, training-less methods were proposed to bypass the training challenges (Jang and

Kim, 2019; Sofiiuk et al., 2020). Specifically, they use an automatic segmentation network interac-

tively via inference-time optimisation and improve performance. However, these methods have

certain drawbacks. First, they require backward passes using gradients, leading to a computa-

tional overhead. Second, their applicability is limited because widely used frameworks often lack

support for the backward passes on mobile devices. These two factors make it difficult to apply

them in practice, provided the limited availability of the high-performance GPUs in clinical work-

stations and laptops. An open-source interactive segmentation platform (Diaz-Pinto et al., 2022)

was recently made available, which offers both DL-based (Wang et al., 2018; Sakinis et al., 2019)

and classical methods (Boykov and Jolly, 2001), inheriting their limitations.

The existing methods do not reproduce the typical sequentiality of real user interactions. The

lack of sequentiality is a consequence of the interaction memory used in these systems, which

simply accumulates the user corrections, discarding ordering. In contrast, we argue that the order

of the user corrections can be directly used for training and lead to performance improvements. In

short, the rationale is that the order in which the user corrects the segmentation in an interactive

system depends on the current segmentation estimate. The order of interactions can thus not be

changed and forms an important piece of information to the system. A sequential memory was

used in (Zhou et al., 2022) to ‘transfer’ the user interaction recorded on one slice to the other slices,

but was not used to exploit sequentiality during slice segmentation.

In contrast to existing work, our framework uses a sequential interaction memory which cap-

tures the sequentiality of user interactions at training and inference times. Furthermore, the pro-

posed framework does not require specific modifications for inference and preserves low inference
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Figure 4.1: Proposed interactive system, featuring a network embedded in a user interaction loop and an
interaction memory.

time. Additionally, the proposed dynamic data training specifically targets higher automatisation

and generalisation at testing time by introducing a set of rules allowing for extreme variability of

simulated inputs.

4.3 Applicative Scope

While our framework may be applied to numerous segmentation problems, we focus on the in-

teractive slice-by-slice female pelvis MRI segmentation, involving five classes: uterus, bladder,

uterine cavity, tumour and background. The intended use is surgical planning and surgical

augmented reality (Collins et al., 2020). We created a female pelvis MRI dataset, consisting of

97 MRI series with 3066 slices in total, manually annotated in 3D Slicer (Kikinis et al., 2013) and

in MITK (Goch et al., 2017) by expert radiologists. This took from 10’ to 50’ per series with 25’ on

average with certain series (for instance with strong uterus deformation as in (4) in figure 1.15)

taking more than 1 hour, which is clearly infeasible in the clinical setting. The segmentation of

anatomical structures of the female pelvis is particularly challenging due to a large variance in

their representation, including shape, size, position, orientation and texture among the patients,

with and without pathologies. Moreover, it is typical for MRI data to suffer from non-uniformities

of the low frequency intensity areas, which is detrimental to the network learning capabilities. Dif-

ficult samples can be seen in figure 1.15. On top of that, the target anatomical structures form a

naturally imbalanced dataset, where background takes 96.15%, uterus 2.11%, bladder 1.02%,

tumour 0.67% and uterine cavity 0.05%. The strongest imbalance is observed for uterine cav-

ity and background, whose average ratio of volumes is 0.057%. The classes are also unevenly

distributed throughout the dataset due to the number of the tumours varying among the series

between 0 and 27. These factors further complicate learning and generally result in much lower

performance on smaller classes if no mitigation against class imbalance is introduced. Our ob-

jective is to develop a segmentation system which minimises the time required to complete the

segmentation with acceptable accuracy, while allowing an expert reviewer to have control and

guide the segmentation, as and when necessary.
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Figure 4.2: Interaction memory differences: (1) three individual interactions provided one-by-one with re-
spective intermediate segmentation results obtained; (2) the CIM and SIM are shown, which memorise the
interactions from (1).

4.4 Methodology

We describe the system and then the training process.

4.4.1 System

We give the system’s general structure and then the internal memory’s structure.

Structure. We build the proposed system shown in figure 4.1 starting with a basic interactive

segmentation system named base, featuring an interaction loop. This system does not have

a memory of user corrections or previous segmentation results and processes each set of user

corrections in isolation. The interaction loop allows iterative refinement by forming new inputs

through a combination of network outputs and user corrections. The system is generic as it does

not depend on a specific network architecture, as long as the network takes both the image and

the user corrections as inputs. The user corrections are represented by N binary masks, where

N is the number of classes. The network inputs are concatenated into a single tensor of size

H ×W ×C , where H ×W is the image size and C is the number of channels, varying depending on

the system. For the base system Cbase = 1+N . Indeed, as there is no memory in this system, the

network takes the image as the first channel and the binary masks of the user corrections for the

N classes as the next N channels. This strongly harms user experience as the past user corrections

are forgotten by the system at the next interaction (Wang et al., 2019a, 2018).

Cumulative and Sequential Interaction Memory. We introduce an interaction memory, whose

role is to keep track of user corrections. For that, we define a system state as a combination of user

corrections and the corresponding network outputs. For the task of multi-class segmentation, a

single state consists of a probability map for the network outputs and a binary mask for the user

corrections, for each of the N classes. It is important to make a distinction between the interaction

memory and the internal memory found in the RNN. The interaction memory tracks and stores

system states, represented by inputs and outputs of the network. Indeed, the interaction mem-

ory is external to the network and does not depend on a specific network architecture. The RNN

memory, however, is internal and specific to the network architecture, enabled by passing hidden
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states from step to step and represented by weights.

Existing works use an interaction memory, which aggregates the system states by merging the

successive interaction masks (Amrehn et al., 2017; Zhou et al., 2019; Liao et al., 2020). We call this

a CIM. The network takes the image and the merged user correction masks, and its input tensor

thus has Ccim =Cbase = 1+N channels. This type of memory discards the ordering of interactions

- the sequentiality, typical of user corrections. We introduce a second type of interaction mem-

ory which, in contrast to CIM, preserves the past D system states, hence the user’s sequential be-

haviour. We call this a SIM, and the number of states D the SIM’s size or depth. The network takes

an image and the SIM as inputs, which are combined to form the input tensor with Csim = 1+2DN

channels. The factor 2 comes from each state containing both N interaction masks and N prob-

ability maps of intermediate segmentation results. Simply put, SIM is a container for naturally

ordered input-output pairs both at training and at testing times. In other words, it is a represen-

tation of the temporal information associated with user inputs. The general differences between

CIM and SIM are schematically shown in figure 4.2.

We note that the SIM does not change the system’s applicability, which remains generic with

respect to the data type and embedded network architecture. In our ablation study we show that

RNN’s suitability for sequential data may further reinforce the proposed framework.

4.4.2 Training with Dynamic Data Generation

In an interactive-loop system with an embedded network, the inputs depend on the outputs. This

means that a regular training process from static data will poorly reproduce the real system us-

age at test time, limiting the achievable accuracy and user interaction efficiency. To resolve this,

we propose a dynamic training approach, where the training data is generated from the labelled

dataset during training by a virtual user. The basic idea of the virtual user is to generate a set

of corrections similarly to a real user, whose involvement in training is not feasible. These cor-

rections are represented by one binary mask per class, populated by foreground clicks for each

class, including the background class. The click is handled by an interaction-control process,

which exploits the difference image between the latest network output and the ground truth. This

difference image gives a set of mislabelled regions, containing both under- and over-segmented

regions. The position of the click is chosen randomly in the largest region, following a probability

map whose maximum is at the region centre, decreasing towards the region boundary and vanish-

ing outside the region. A general schematic of the Dynamic Data Generation (DDG) process can

be seen in figure 4.3. It shows an example of interaction generation for a single image containing

4 tumour instances with a single click generated per interaction round. In practice, the process

seen in figure 4.3 is applied online during training for each image in the batch before passing on

to the next batch. The standard training routine where batches are processed one-by-one is not

changed, neither is any preprocessing done before the training process. Simply, compared to stan-

dard training, there is only an additional interaction generation routine for each image, similar to

how online data augmentation is done.

In a typical segmentation task, each class may be represented by multiple individual compo-

nents. Recall that a component is a set of spatially connected pixels pertaining to the same class in

the image. When applied to our task of FPMRI segmentation, this frequently occurs for all classes

due to the presence of multiple instances of the same class (for the tumours) and due to the nature
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of the 3D MRI volume slicing (for the bladder, the uterus and the uterine cavity). For example, in

certain cases the uterus’ cross section may be represented in the image by multiple components

due to its shape. We address this by changing how the clicks for each image are simulated and

split the click simulation process in two steps. In step (a), the virtual user exceptionally considers

each component of each class for a potential location. In step (b), the virtual user considers the

mislabelled regions with larger size having higher probability of a click to be added.

Figure 4.3: An example of DDG for a single input image. The schematic is read from left to right and top
to bottom i.e. row by row. DDG is applied to each image each time it is encountered in the dataset. Pre-
cisely, DDG simulates a virtual user to generate the maximum of n interactions for a component of a single
class. The class is represented here by 4 tumour instances (in red). At each interaction round, inference is
performed to obtain an intermediate segmentation result, which is then compared with the ground truth
to generate a new interaction based on their discrepancy. Clicks at previous interaction rounds are stored
in SIM and carried over to the next round. Backpropagation is performed when all n interactions were sim-
ulated. The actions of the virtual user are marked in green. DDG is applied to all classes simultaneously
following the rules in section 4.4.2.

In addition to interaction placement, our system implements an interaction-independence

scheme, designed to ensure robustness against imperfect user behaviour at test time, with the

following four main rules:

1. The maximum number of simulated interactions per component of each class is limited,

typically to 3. The minimum is 0.

2. The probability of adding a subsequent interaction starts at p ← 1 and linearly decreases as

p ← p− 1
t after each interaction round, where t is the maximum number of training interac-

tions.
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3. At each image, a random class is selected for which the user interactions are not generated.

4. A percentage of all generated interactions is held out. We typically use 80%.

These rules, along with the interaction placement control, allow the system to generate suffi-

ciently varied interaction data throughout the training process and decrease the system’s reliance

on interaction supply. Specifically, step (a), as well as rules 3 and 4 do not exist in previous work.

They ensure a high level of variety in the generated data and significantly reduce interaction de-

pendence, as evidenced by the experiments in section 4.5.2. The rationale for rules 3 and 4 is

threefold: 1) the framework should produce annotations for the classes not explicitly clicked on,

2) the network should consider image features instead of relying solely on user interactions and 3)

the framework should be capable of automatic segmentation with no interactions provided.

(a) (b) (c)

Figure 4.4: Segmentation results, where uterus - green, bladder - yellow, tumour - red, cavity - pink and
user clicks - cyan: (a) ground truth; (b) Auto; (c) human user-controlled DDG-SIM.

Training with the proposed SIM means filling its D states with realistic data produced by the

virtual user. Specifically, DDG is the method used to form a virtual user, which generates user in-

put artificially at training time, since the involvement of real users is not feasible. Therefore, DDG

is used to fill in the sequential interaction memory during training. We thus run the system for

D iterations with fixed weights to populate the SIM with simulated user input data prior to back-
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propagation. This is done anew each time the image is encountered in the dataset, similarly to

classical data augmentation. We choose D experimentally with the goal of maximising the perfor-

mance with the minimum number of interactions. At the same time, any or all of the D states may

remain empty both at training and testing time to obtain a fully automatic segmentation result to

be validated or subsequently refined. The DDG routine is given below as pseudo-code applicable

to one specific sample image:

1. Input click probability p, maximum number of training interactions t

2. If p = 1, simulate an initial click for each component

3. If p < 1, simulate a corrective click for each class for the largest mislabelled region with

probability p

4. Update p as p ← p − 1
t

5. (rule 3) Randomly choose a class and ignore its simulated clicks

6. (rule 4) Ignore 80% of all simulated clicks

7. Form the interaction mask M from the simulated clicks

8. Output click probability p, interaction mask M

The click probability p is managed for each image independently. It is initially set to 1 and then

updated by the DDG routine.

4.5 Experimental Results

We describe the experiments and report the obtained results, which are then discussed in sec-

tion 4.6.

4.5.1 Experimental Setup

We give implementation details and describe data augmentation and training.

Implementation. The proposed framework and methods are not tied to a specific network archi-

tecture. We instantiate our system with an existing encoder-decoder architecture featuring RNN

modules, also called AlbuNet (Shvets et al., 2018), optionally modified with LSTM layers in the

decoder. Specifically, we use a ResNet34 (He et al., 2016) encoder and a decoder equipped with

a standard convolutional layer and a matching convolutional Long Short-Term Memory (LSTM)

layer at every step of the upsampling path as shown in figure 4.5. The reason for which we chose

this U-Net is its known efficiency in the field of medical image analysis, as shown in (Chaisang-

mongkon et al., 2021; Kusakunniran et al., 2023). The choice of the encoder follows the same prin-

ciple. However, our framework is flexible as it allows for the use of various base architectures that

can accommodate an additional temporal dimension in the input image, such as a different UNet

or, for example, DeepLab v3 (Chen et al., 2017). This adaptability is a strength of our framework.

LSTMs are generally effective at processing sequences of data due to cells containing input,

output and forget gates. A typical input for an LSTM network is sequential data where the order
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Figure 4.5: A general schematic of the network architecture used in the complete proposed system (DDG-
SIM): the ResNet34 encoder pre-trained on ImageNet and a decoder with a convolutional LSTM layer at
every step of the upsampling path.

and timing of individual elements are significant. This type of data is characterized by its temporal

or sequential nature, meaning that the relationship between elements depends on their position

in the sequence. These properties make LSTMs beneficial for our framework, where LSTM layers

reinforce sequentiality by retaining and reusing useful information about previous interactions,

and improve performance, as shown by the ablation study in section 4.5.2.

As compared to CIM, for which the network’s input tensor has Ccim = 1+N channels, where

N is the number of classes, with SIM, we have Csim = 1+2DN channels, where D is the SIM’s size

or ‘depth’. The first channel is the image. The factor 2 comes from each of the D states containing

both N interaction masks and N probability maps of intermediate segmentation results. For an

LSTM, the input data shape could be represented as a triplet ‘samples, time steps, features’, which

aligns well with SIM as the samples are taken as the 2N masks, the time steps as the D states

and the features as the image. Intuitively, each time step contains a series of user interactions.

The network then processes this data, learning from the sequence of features across time steps

for each sample. For practical reasons, to not lose the possibility to use pre-trained encoders, we

introduced LSTM layers only in the decoder, which limits the effect on performance. However, the

proposed framework does not prohibit other configurations.

Figure 4.6: Performance on the validation set. The model at the 73rd epoch was chosen for the evaluation.

The encoder was pre-trained on ImageNet (Deng et al., 2009) as a source dataset and sub-

sequently fine-tuned on the proposed FPMRId without frozen layers. While the domain gap is

present, transfer learning from ImageNet still proved beneficial for the stability of the training
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process and the final model’s performance. To counter the dataset imbalance, we use the focal

loss (Lin et al., 2017) and dataset-wide precalculated per-class weights.

Data Augmentation and Split. At the time of conducting these experiments, the FPMRId dataset

comprised fewer than 113 annotated and validated MRI series (see figure 3.1), specifically 97

series in total. Consequently, all 97 series were utilised for these experiments. Specifically, to

avoid inter-slice and inter-patient bias, we denote a single MRI series as the smallest, indivisible

element of the dataset and split the dataset as follows: the training set with 77 series containing

2449 slices, the validation set with 10 series containing 308 slices and the test set with 10 series

containing 309 slices. Each series originates from a unique patient. Lower-resolution images

were padded to 512 by 512, the maximum resolution of a single image in FPMRId at the time

these experiments were conducted. We preprocessed all data via normalisation, standardisation

and N4BFC (Tustison et al., 2010b), and performed random data augmentation: vertical and

horizontal flipping, intensity shifting for brightness, gamma correction for contrast, as well as

blurring and unsharp masking for sharpness adjustment.

Training. We trained the network on a single Nvidia P40 GPU with 24 gigabytes of video memory.

The chosen batch size was 4. We employed Adam optimizer with standard parameters and a static

learning rate of 0.00005. The shape of a single input tensor is the shape of the SIM, which is Csim =
1+2DN , where D is the memory’s depth and N is the number of classes, including background.

The network was trained for 75 epochs with the best performance on the validation set achieved

at the 73rd epoch. The performance on the validation set given as IoU is shown in figure 4.6. It is

shown that the training remains stable with the SIM as an input and the DDG training scheme.

4.5.2 Automated Evaluation

We report an evaluation performed automatically using the virtual user.

Ablation Study. We compared one automatic method and four interactive methods on the created

FPMRId, where SDG is Static Data Generation and DDG is Dynamic Data Generation:

1. Auto: U-Net with ResNet34 encoder (Le’Clerc Arrastia et al., 2021);

2. SDG-base: memory-less system trained with SDG, as described in (Amrehn et al., 2017);

3. SDG-CIM: network from SDG-base used with a CIM overlay;

4. DDG-CIM: system with CIM trained with DDG;

5. DDG-SIM: complete proposed system with SIM trained with DDG.

The evaluation setup uses the same network architecture, preprocessing and data augmentation

across all systems with a minor network architecture change for DDG-SIM. DDG-SIM features a

ResNet34 encoder with (1-4) a generic decoder or (5) an LSTM-decoder as described in sec-

tion 4.5.1 and shown in figure 4.5. At test time, clicks are generated via the virtual user.

Comparison with State-of-the-Art. We compared our framework with two classical interactive

methods and eight interactive DL methods on the created FPMRId:
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Table 4.1: Experimental evaluation results where bold means best and underlined second best. Rows (1-9):
existing methods, rows (10-14): ablation study for the proposed framework. GrabCut, VMN, NuClick and
BRS versions are used per-class, hence background metrics are not provided.

Method ↓ Background Uterus Bladder Tumours Cavity
IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

GrabCut - - 17.6 25.1 14.8 21.0 21.7 29.8 8.0 12.4
VMN - - 57.6 72.0 78.3 86.1 42.6 55.7 19.8 27.4

NuClick - - 23.6 33.1 41.3 54.9 47.0 55.5 52.2 67.7
NoBRS - - 36.7 49.7 20.7 30.7 32.4 44.1 7.4 12.1

BRS - - 37.4 50.5 21.5 31.6 33.1 44.8 7.8 12.6
RGB-BRS - - 37.5 50.6 21.6 31.7 33.1 44.9 7.8 12.6
f-BRS-A - - 37.3 50.5 23.9 32.0 33.3 45.1 7.7 12.4
f-BRS-B - - 38.3 51.6 23.1 33.3 33.8 45.4 9.6 14.6
f-BRS-C - - 37.5 50.7 21.7 31.8 33.0 44.8 7.9 12.7

Auto 99.2 99.6 64.7 78.6 71.9 83.6 60.4 75.3 40.4 57.6
SDG-base 99.1 99.6 61.7 76.3 70.1 82.4 62.5 76.9 21.1 34.9
SDG-CIM 99.3 99.7 66.5 79.9 83.9 91.2 72.8 84.3 29.0 44.9
DDG-CIM 99.6 99.8 77.4 87.3 87.4 93.3 77.7 87.4 39.6 56.7
DDG-SIM 99.6 99.8 79.8 88.7 87.0 93.0 79.0 88.3 57.8 73.3

1. VMN: volumetric memory network trained with SDG, as described in (Zhou et al., 2022) and

inputting extreme clicks;

2. NuClick: a segmentation network introduced for microscopy images and trained dynami-

cally in (Koohbanani et al., 2020);

3. BRS: a Backpropagating Refinement Scheme (BRS) for mislabeled locations correction,

training-less by definition, in (Jang and Kim, 2019);

4. RGB-BRS: BRS minimised with respect to the RGB image instead of distance maps in (Sofiiuk

et al., 2020);

5. f-BRS variants: improved BRS, f-BRS solves an optimization problem with respect to

auxiliary variables instead of the network inputs as in BRS

(a) f-BRS-A: introduces scale and bias after the backbone

(b) f-BRS-B: introduces scale and bias before the first separable convolutions block in

DeepLabV3+ (Chen et al., 2018)

(c) f-BRS-C: introduces scale and bias before the second separable convolutions block in

DeepLabV3+ (Chen et al., 2018)

(d) NoBRS: using network architecture from (Jang and Kim, 2019) without BRS.

For VMN (Zhou et al., 2022), BRS variants (Jang and Kim, 2019; Sofiiuk et al., 2020) and

NuClick (Koohbanani et al., 2020) we use the code and the models made publicly available by

the authors and recommended parameters. The models are resnet34_dh128_sbd and NuClick_-

Nuclick_40xAll respectively. We trained VMN (Zhou et al., 2022) on our dataset, reducing the batch

size to 4 to keep the computation overhead feasible. The metrics are reported in table 4.1.
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Figure 4.7: DDG-SIM: Influence of the number of clicks simulated at test time on the IoU score, compared
with Auto (0 clicks). The strongest improvement presents itself at the first click. Bold means best.

Click Number Influence. An interactive segmentation system refines the segmentation result via

user interactions. In essence, this is inputting clicks into the system to provide additional infor-

mation. Hence, the number of clicks is a key influencing factor in the framework’s performance.

We perform a systematic evaluation of the influence of the number of clicks at train and test

time on the segmentation accuracy. For this, human user involvement is not feasible due to the

number of series and the need to re-segment them for each evaluation setting. Therefore, we

perform this evaluation as in section 4.5.2 via the virtual user generating simulated interactions at

test time. DDG-SIM is used for the evaluation, where we control only two parameters: the number

of clicks simulated at train and at test time. Three setups are provided, each changing click number

at training and at testing respectively. They are: (1) training - fixed maximum click number, testing

- varying click number; (2) training, testing - equal click number; (3) training - Auto, default DDG-

SIM, modified DDG-SIM with rules 2-4 from section 4.4.2 disabled, testing - 0 clicks. The purpose

of these setups is as follows: (1) evaluate the influence of the number of clicks at testing on the

performance; (2) evaluate the influence of the number of clicks at training on the performance;

(3) evaluate the performance of DDG-SIM when no clicks are provided with and without rules 2-4

from section 4.4.2, presence of which should improve the system’s ability to automatically segment

regions.

For setup (1), the maximum number of clicks simulated at train time is fixed to 3 which is the

default value for DDG-SIM, while the number of clicks at test time varies. We then report IoU for all

classes when simulating 0 (Auto), 1, 2, 3 and 6 clicks at testing in figure 4.7.

For setup (2) we fix the number of clicks simulated both at train and test time so that they

are equal (such as a maximum of 3 clicks at training and exactly 3 clicks at testing) and change

them jointly. We then report the IoU for all classes when simulating 0 (Auto), 1, 2, 3 and 6 clicks in

figure 4.8.

For setup (3), we evaluate DDG-SIM performance when providing no clicks at testing. We com-

pare Auto, default DDG-SIM and modified DDG-SIM with rules 2-4 from section 4.4.2 disabled. We

report IoU for all classes in figure 4.9.

Generalisation Study. We further evaluate the complete proposed system DDG-SIM on two other
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Figure 4.8: DDG-SIM: Influence of the number of clicks simulated at train time on the IoU score, compared
with Auto (0 clicks). The number of clicks simulated at training and at testing are equal and change jointly.
The overall performance improvement is less noticeable after 3 clicks. Simulating 3 clicks at training is our
choice for DDG-SIM with the current data. Bold means best.

Figure 4.9: DDG-SIM: Performance with 0 clicks provided at testing. Auto, default DDG-SIM and modified
DDG-SIM (with rules 2-4 from section 4.4.2 disabled) are compared. Disabling the rules makes automatic
segmentation fail. This illustrates the automatic segmentation capability of DDG-SIM as brought by the DDG
training process and hence the importance of having varied interaction data when simulating clicks.

tasks with different modality and objects of interest - namely, on liver and pancreas CT seg-

mentation. We use the ‘Liver Tumours’ and ‘Pancreas Tumour’ medical segmentation decathlon

datasets (Simpson et al., 2019) and compare our framework’s performance on these data to the

methods participating in the corresponding challenge (Antonelli et al., 2022) as well as VMN (Zhou

et al., 2022). Each of the datasets was initially assembled for the task of multi-class segmenta-

tion with liver CT targets being liver and cancer, and pancreas CT targets being pancreas and

mass (cyst or tumour). While this challenge is aimed at automatic segmentation approaches, a

comparison with interactive methods may further prove their feasibility for the tasks usually re-

quiring expert’s validation and potential refinement. For VMN (Zhou et al., 2022) we use the code

made publicly available by the authors and recommended parameters on these new datasets. We
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reduce the batch size to 4 due to the limited GPU availability.

The ground truth labels for the test set were not made available for this challenge. We thus

randomly split the publicly available training sets for both liver and pancreas, using approxi-

mately 70%/15%/15% for training, validation and test respectively. As a result, the split is 91/20/20

series for the liver and 198/42/42 series for the pancreas datasets. Effectively, this means that the

training is performed on much lower-size datasets than those of the competing methods, which

makes it more challenging. To add to this, the key difficulty of these datasets is label imbalance

with both large (liver, pancreas) and small (mass or cancer) targets. The metrics are reported

in figure 4.11 for both liver and pancreas.

4.5.3 User Evaluation

We performed a user study with DDG-SIM involving eleven medical experts, using a specifically

developed GUI. All experts have a background in gynaecology, with an exception of two surgeons

with specialisation in urology, junior experience level and some experience in gynaecology. For

clarity, we assign a letter and a number to each expert as follows: SGS - senior gynaecology sur-

geon; SR1-2 - senior radiologists; JGS1-3 - junior gynaecology surgeons; JR1-3 - junior radiologists;

JUS1-2 - junior urologic surgeons with experience in gynaecology.

We randomly selected 6 test series containing 144 slices in total, where 1 series is used to fa-

miliarise the users with the GUI and 5 series are used in a random order for user evaluation. MRI

image samples from each of the series can be seen in figure 1.15. We evaluate the user perfor-

mance in figure 4.10 using mIoU per series for each expert in comparison to the Auto method as

in section 4.5.2. In the same manner, the elapsed time is compared in figure 4.12. The segmenta-

tion results are compared with the Auto method in figure 4.4. Figure 4.13 shows mIoU over each

class per series.

Figure 4.10: User Evaluation: mIoU over all classes per medical expert per series.

4.5.4 Inference Time Analysis

We report the average inference time for a single image and compare it with those of the existing

interactive segmentation approaches in table 4.2.

4.6 Discussion

We discuss the results obtained in the previous section.

102



CHAPTER 4. INTERACTIVE NEURAL SEGMENTATION

4.6.1 Automated Evaluation

We discuss results obtained with the virtual user.

Figure 4.11: DDG-SIM experimental evaluation results given as Dice on the medical segmentation decathlon
‘Liver Tumours’ (liver - blue, cancer - red) and ‘Pancreas Tumour’ (pancreas - purple, mass - orange)
datasets in comparison to the automatic segmentation approaches participating in the challenge, where
bold means best. VMN is a state of the art interactive segmentation approach. The number of simulated
clicks is provided for both training and testing in the bottom-right hand corner.

Ablation Study. The metrics are reported in table 4.1, where we observe that the IoU and Dice are

in agreement. They show that DDG-SIM outperforms, with a substantial margin for cavity, a sig-

nificant margin for uterus and tumour, a similar result for background, and a slight disadvantage

for bladder, for which DDG-CIM slightly outperforms at 87.4% against 87.0% IoU. This demon-

strates the robustness of the proposed framework. The ablation study shows a steady increase

in performance, starting with SDG-base and adding the proposed components towards DDG-SIM.

Auto outperforms both SDG-base on uterus, bladder and cavity, and SDG-CIM on cavity.

This can be attributed to SDG, which does not perform well for smaller numbers of interactions.

In our experience, the higher the number of interactions at training, the lower the effectiveness of

individual interactions at test time. While the opposite is also true, it can be observed from the re-
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sults that certain systems may not be able to learn efficiently from a small number of interactions

at training. We observe a comparatively lower accuracy for cavity, whose IoU lies between 21.1%

and 57.8%. We explain this with its low volume, which accounts for only 0.054% of the dataset.

Examining other existing methods, this is also true for VMN, which achieves a good perfor-

mance on bladder, but struggles with the more difficult classes. We find that this might be ad-

ditionally due to the low number of slices in a standard FPMRI scan, where the classes such as

tumour or cavity may be found only on a single slice out of the whole volume in addition to

occupying just a few pixels, which may interfere with the approach. Still, VMN shows a notable per-

formance on bladder, with an IoU of 78.3%, which is competitive but still falls short of DDG-CIM’s

87.4%. However, it struggles significantly across the other categories, particularly with cavity,

where it is greatly outperformed by DDG-SIM’s superior IoU of 57.8%.

Interestingly, NuClick demonstrates a notably high performance in segmenting the cavity

class with an IoU of 52.2%. However, it still falls short when compared to DDG-SIM, which achieves

an IoU of 57.3% for the same class. The relatively high performance of NuClick in cavity seg-

mentation may be associated with its design and optimization for microscopy image segmenta-

tion tasks. The visual characteristics of cavity regions in such images may be similar to those that

NuClick was specifically intended to segment, possibly contributing to its success in this particu-

lar class.

The BRS and f-BRS variants display a range of results, with none matching the DDG-SIM

scores. Specifically, the f-BRS-A, f-BRS-B, and f-BRS-C methods fall short, with the highest

IoU among them for cavity being only 9.6%, indicating a substantial gap when compared to

DDG-SIM. Overall, the superiority of DDG-SIM proves it to be a solid segmentation framework in

view of the state of the art.

Figure 4.12: User Evaluation: Segmentation time per medical expert per series in minutes.

Click Number Influence. Three setups are provided: (1) training - fixed maximum click number,

testing - varying click number; (2) training, testing - equal click number; (3) training - Auto, default

DDG-SIM, modified DDG-SIM with rules 2-4 from section 4.4.2 disabled, testing - 0 clicks.

Setup (1). We report IoU for all classes when simulating 0 (Auto), 1, 2, 3 and 6 clicks at testing

in figure 4.7. The metrics show a substantial improvement of the segmentation accuracy against

Auto when at least 1 click is provided. Furthermore, a notable growth of accuracy is also observed

for all classes when transitioning to 2 clicks. At the same time, while there is a further regular im-

provement for cavity and bladder beyond 2 clicks, the other classes improve only slightly. This
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can be explained by two factors. First, a single provided click produces an IoU score close to the

upper performance boundary achieved by the proposed framework, as seen in the ablation study.

This does not leave much room for improvement with a given training set size (77 series, 2449

slices). Second, during training, clicks are currently simulated with a maximum of 3 for all sys-

tems. This is done to minimise the amount of interaction required from a human user at test time.

The proposed DDG scheme brings the average number of simulated clicks at training even lower,

which contributes to the performance stabilising below the maximum click threshold. While still

limited by the current performance ceiling, increasing the maximum number of simulated clicks

to 6 per class during training may allow to achieve a more stable performance growth with each

added click at testing time. At the same time, with 6 clicks a human user evaluation experience

would be negatively affected. Indeed, each individual click would bring less improvement, gener-

ally requiring more clicks for the same task, which is undesirable in a clinical setting.

Figure 4.13: User Evaluation: mIoU over all medical experts per class per series.

Setup (2). We report the IoU for all classes when simulating 0 (Auto), 1, 2, 3 and 6 clicks in fig-

ure 4.8. The metrics show a substantial improvement of the segmentation accuracy against Auto,

demonstrating robustness of DDG-SIM for any number of clicks at training. The strongest perfor-

mance improvements are observed between Auto and training DDG-SIM with 1 click, as well as

between training DDG-SIM with 1 click and with 3 clicks. Performance with 2 clicks shows an over-

all improvement over that with 1 click, but cavity and tumour classes show notable and slight

performance decrease respectively. This can be explained by the DDG rules we use described in

section 4.4.2, which target the increase of individual click efficiency. Specifically, rules 2-4 are such

that with the chosen maximum of 1 click at training, it is often the case that no clicks will be simu-

lated at all for many of the labels. This makes the system more reliant on the underlying image fea-

tures, which places it closer to Auto, but still provides a significant performance improvement due

the interactivity. In contrast, the chosen maximum of 3 clicks at training allows for more consistent

click simulation, which significantly improves performance. At the same time, the maximum of 2

clicks at training is an in-between case, where the actual simulated click number does not seem to

be sufficient for the cavity and tumour labels, which are represented by multiple components or

instances of varying size and clarity. In this case, clicks are simulated only for a small number of

these components or instances (such as for 1 out of the 7 tumours in a single slice, or only for a part

of cavity), which does not allow for consistent learning from clicks and reduces the performance

on these classes.

Setup (3). We report IoU for all classes in figure 4.9. The metrics show that when providing
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no interactions, default DDG-SIM significantly outperforms modified DDG-SIM, where the chosen

maximum number of clicks was consistently simulated for each class during training. Specifically,

default DDG-SIM and modified DDG-SIM are respectively 50% against 9% in terms of the mIoU

score (background class excluded). Simply put, this figure shows that the use of DDG allows

our framework, when used without user interactions, to obtain performance comparable with

state-of-the-art fully-automatic segmentation. It also shows that, should the proposed rules

2-4 of DDG were disabled, the framework would fail to perform any meaningful segmentation

without user interactions, indicating strong dependence on the number and exhaustiveness of

interactions provided at training time. Clearly, the more interactions are provided at training time,

the lesser is the network’s capability for automatic segmentation in general and for segmentation

of un-clicked components in particular. Intuitively, if interactions are scarce, the network focuses

more on image features, resulting in higher automation at testing time. While Auto with 59%

mIoU outperforms both default and modified DDG-SIM when no clicks are provided, the interac-

tive approaches accuracy can be improved further with additional clicks as shown in figure 4.8,

which is not the case for Auto.

Table 4.2: Reported average inference time and standard deviation for DDG-SIM in comparison to existing
interactive segmentation approaches, where bold means best and underlined second best.

Method Inference Time (ms)

BRS (Jang and Kim, 2019) 810
Interactive 3D nnU-Net (Isensee et al., 2018) 500
IteR-MRL (Liao et al., 2020) 470
f-BRS-B (Sofiiuk et al., 2020) 226
FocusCut (Lin et al., 2022) 118
FocalClick B0-S1 (on CPU) (Chen et al., 2022) 100
VMN (Zhou et al., 2022) 53
DDG-SIM (ours) 47.2±6.2
(Sakinis et al., 2019) 40

Generalisation Study. The metrics are reported in figure 4.11 for both liver and pancreas. They

show that the proposed interactive framework outperforms the best automatic methods on all

classes, with a substantial margin for liver cancer and pancreas mass - 90% against 74% and 85%

against 52% respectively and a slight advantage for liver and pancreas classes - 96% against

95% and 84% against 79% respectively. This shows that the proposed framework is generically

applicable to other segmentation tasks and medical data types.

4.6.2 User Evaluation

The elapsed annotation time per series is compared in figure 4.12. We note that the segmentation

time is low enough to be clinically feasible, even if the users are barely acquainted with the system.

Indeed, the average elapsed time for all series is 6’07”, which is largely below the reported average

of 25’ for existing systems. Series 4 was a complex case with 11 tumours and a heavy deformation

of the uterus shape, taking 12’55” on average for our system and more than 40’ for existing systems.

Furthermore, as seen in figure 1.15, each of the series used for user evaluation is challenging in its

own manner. While the proposed framework facilitates the segmentation process, interpretation
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of the MRI images by the human user remains a task in itself. This explains the elapsed time

and the mIoU score discrepancies between senior and junior experts, especially noticeable for

series 4 with the peak of 20’28” for junior experts, 8’47” for senior experts in gynaecology and

21’05” for JUS1, the junior expert in urology. Figure 4.10 shows that our framework substantially

outperforms automatic segmentation on all data with a lesser improvement for series 5. This is

especially noticeable for the difficult series 4, which achieved a score of 46,0% for Auto against the

average of 66,8% over all interactive human-guided segmentations. Since JUS1 and JUS2 primarily

specialize in urology, JUS1 tends to have longer segmentation times, while JUS2 demonstrates

reduced accuracy, particularly for series 2. This is attributed to an increased difficulty in image

interpretation. Still, the segmentation accuracy of expert JUS1 is on par with the other experts.

(1) (2) (3)

(4) (5) (6)

(7) (8)

Figure 4.14: Segmentation failure cases, where uterus - green, bladder - yellow, tumour - red, cavity
- pink, user clicks - orange and ground truth - cyan: (1,7) most widespread case with contours having a
slight divergence with the ground truth; (2-5,7-8) under-segmentation; (2,4-5,6-8) over-segmentation. The
maximum number of clicks is fixed to three. Additional clicks allow to notably reduce under- and over-
segmentation, resulting in segmentations comparable to (1,7). The metrics for cavity, present in (1-3,5-
7), are affected most strongly in all cases due to its size.

Figure 4.13 shows mIoU over each class per series. We observe a comparatively low accuracy of

cavity segmentation during user evaluation, similarly to the automated tests. This is because of

the small size of the cavity and its lack of clear outer contours. In addition, the slices may split the

cavity in a manner that makes it appear in several isolated small components, in which case some
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components may be ignored by the users. This creates a variability in the dataset and a potentially

large discrepancy between the ground truth and the user segmentation. While this is typical for

other FPMRI objects of interest, the cavity’s small size strongly amplifies any slight segmentation

discrepancy.

4.6.3 Inference Time Analysis

As seen in table 4.2, our framework is on par or significantly faster than existing methods with

47.2±6.2ms per image. This amounts to approximately 21 FPS, which is well adapted for an in-

teractive clinical application. Hence, usage of SIM with here up to 5 classes does not introduce

significant overhead and leaves sufficient room for additional computational complexity (e.g. ad-

ditional classes or a deeper network).

4.6.4 Implications and Limitations

On the most general level, we find that temporal information associated with user interactions

is overlooked in existing methods. Simply put, CIM, which is used in most previous works, does

not convey the sequential nature of interactions, discarding the temporal component naturally

present in the way the user interacts with the annotation software. However, the proposed SIM

conveys this information and its use improves segmentation performance. Furthermore, DDG

during training has a significant impact not only on the method’s performance, but also on the

user experience. Specifically, the ensemble of interaction generation rules in section 4.4.2 allows

the network to produce automatic segmentations comparable to fully-automatic methods without

user interactions, as well as to segment most of the objects of interest at once by providing a single

click for any one of them. This has a large impact for the time-constrained clinical environment.

We show segmentation failure cases in figure 4.14. From our experiments we observe that

additional clicks allow to reduce under- and over-segmentation until a case similar to cases 1 and 7

in figure 4.14 is reached. However, remaining divergence from the ground truth notably negatively

affects cavitymetrics due to cavity’s size. One limitation of our method is the impact on training

speed. The necessity to populate the sequential memory by doing multiple inferences increases

the time to process each image. However, the inference time being 47.2±6.2 ms, the training time

remains reasonable, even with multiple additional inferences per image. Another constraint is the

sequential memory size - increasing memory size Csim increases the computational complexity,

especially when using LSTM blocks. However, making the memory too large seems to be counter-

intuitive, since the interest lies in having the minimal number of clicks required for a high-quality

segmentation at testing, which implies limiting the number of clicks at training and hence Csim

in some manner. We show experimentally that, in most cases, providing more than 3 clicks has

diminishing returns, and 3 or fewer clicks produce the most significant improvement, suggesting

that large Csim is actually counter-productive.

The proposed framework utilises a parameter for the maximum number of clicks, which serves

as a starting point for the dynamic data generation described in section 4.4.2. In our experiments

we extensively show that 3 or fewer clicks produce the results surpassing those of the comparable

frameworks on multiple tasks. However, one can imagine that the maximum number of clicks

may change depending on the task, making it a parameter to tune, which might be undesirable if

more automation is desired. For this, it might be of interest to select it in an automatic manner for
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each image in future work. For example, simply by calculating the segmentation metrics for each

click generation at training time (i.e. for each intermediate inference result) and decreasing the

probability of adding a new click along with the increase in accuracy.

4.7 Conclusion

We have proposed a general DL-based interactive multi-class image segmentation framework,

with a user interaction loop and a sequential interaction memory. The embedded network

is trained on dynamically generated data to improve performance and reduce interaction-

dependence. We have demonstrated our framework in FPMRI segmentation, using a new dataset.

Furthermore, we successfully applied it to the tasks of liver and pancreasCT segmentation from

the medical segmentation decathlon challenge, showing the best overall performance. We have

evaluated our framework against existing work in an ablation study with the standard metrics, ob-

served the influence of the number of interactions at test time on performance and conducted a

user evaluation, involving 11 medical experts with gynaecology background and varying experi-

ence levels to use our software via a specifically-developed GUI. This shows that our framework

largely outperforms existing systems in accuracy and drastically reduces the average user segmen-

tation time from 25’ to 6’07” when used by either senior or junior expertRegulas.
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Chapter 5

Concurrent Data-efficient Annotation

and Model Training

5.1 Introduction

ML has gained widespread applicability in recent years, achieving good performance in various

fields (Alzubaidi et al., 2021). Still, the performance of supervised ML inherently depends on the

size and composition of the annotated training dataset. However, data annotation is expensive,

which is especially pronounced for medical images (Castiglioni et al., 2021), which require exten-

sive domain knowledge and commonly present interpretation difficulties. This does not scale well

with the growth of the dataset size: considerable expert manpower and amount of time are re-

quired when annotating large quantities of data (Castiglioni et al., 2021; Tan et al., 2018). For these

reasons, the available data in many ML tasks is imbalanced: non-annotated data greatly exceeds

annotated data in quantity.

The research community has made considerable efforts to alleviate the annotation problem

and has proposed a wide range of approaches. These can be broadly split into two groups: (1) high-

performance annotation predictors (Kirillov et al., 2023; Wasserthal et al., 2023; D’Antonoli et al.,

2024), which allow for fast production of annotations; and (2) data-efficient approaches (Adadi,

2021), which reduce the amount of annotated data required for training or lessen the precision re-

quirements for the annotations. The former are represented by predictors trained on sufficient to

large quantities of data with foundation models (Bommasani et al., 2021) at the furthest end of the

spectrum. The latter may be split in three categories: non-supervised (including semi-, weakly-,

self-, unsupervised learning and self-training), knowledge sharing (including zero- and one-shot

learning, transfer and multi-task learning) and data augmentation methods (Adadi, 2021; Zhuang

et al., 2019; Wang et al., 2019c; Schmarje et al., 2020; Amini et al., 2022). The interactive segmen-

tation solution presented in section 4 falls into the former category. Both high-performance an-

notation predictors and data-efficient approaches limit or remove the need for human annota-

tion. However, their applicability is limited. High-performing annotation predictors require large

quantities of data, which invalidates the purpose of cheaper data annotation. Specifically, while

the predictor proposed in section 4 is efficient in minimizing the medical expert’s annotation time

and performs well on challenging FPMRI, as well as other types of medical data, it does not tackle

the initial challenge of obtaining annotations required for its training. Simply, it is implied that

annotated data is already available, which is often not the case. In turn, data-efficient approaches
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do not make this assumption, but often require complex algorithms and fine-tuning, and may

result in less accurate and interpretable models than with supervised learning, which generally

offers a simpler way of achieving higher performance when sufficient annotated data is avail-

able (Alzubaidi et al., 2021). Thus, finding an efficient data annotation solution to expedite the

annotation process from limited available annotated data and abundant non-annotated data is

highly required.

Figure 5.1: Detailed SAIM schematic: a single iteration is shown, only the input changes between iterations.

A general efficient data annotation solution has three goals, which are (1) to produce a high-

performing annotation predictor, which (2) effectively uses non-annotated data to (3) output ac-

curate annotations. In other words, the core challenge of the limited annotated data regime lies in

how to best utilise non-annotated data to produce an efficient annotation predictor with limited

or no queries to the human expert. We find that these goals align with those of SSL (Yang et al.,

2023b) in general and with those of its ST (Amini et al., 2022) sub-domain in particular. Specifi-

cally, SSL is a type of ML that utilises both annotated and non-annotated data to improve learn-

ing performance by assigning pseudo-annotations to non-annotated data. In particular, ST tar-

gets generating pseudo-annotations for non-annotated data and using these pseudo-annotated

instances in training (Amini et al., 2022). However, while SSL provides a cheap way to obtain an-

notations, it has a number of drawbacks. First, it lacks theoretical guarantees of performance due

to limited theoretical understanding (Yang et al., 2023b; Amini et al., 2022; Ben-David et al., 2008).

More precisely, SSL relies on a necessary hypothesis that annotated and not-annotated data have

similar distributions (Yang et al., 2023b), which does not always hold in practice, especially in

medical imaging (Pulido et al., 2020). Furthermore, it can be shown that even for cases for which

the data comply with this hypothesis, the prediction performance might still be poor (Ben-David

et al., 2008). Second, SSL is sensitive to error propagation. Incorrect pseudo-labels can degrade

predictor performance by introducing noise and errors into the training data. This is especially

problematic if the predictor is overconfident in its incorrect predictions. In contrast to supervised

learning, these drawbacks make SSL less suitable for tasks where precision is of utmost impor-

tance, such as in medical applications, which require guarantees of performance and consistency

provided by strong annotations produced and verified by experts.

In contrast, we propose an efficient data annotation framework which allows one to produce

strong annotations in the limited annotated data regime. Our framework turns a semi-supervised

problem into a supervised one: it produces strong annotations as available in supervised training,

instead of pseudo annotations as in semi-supervised training. This is thanks to the interactive

predictor used at the heart of our framework, optionally operated by a human expert in order to
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validate or iteratively refine produced pseudo-annotations to upgrade them to strong ones.

Figure 5.2: A functional schematic of SAIM with respect to the shared predictor.

The base supervised ML paradigm consists of three main steps: (A) data annotation, (B) target

predictor training, and (C) evaluation. The system may then loop back to step (A). In the simplest

systems, step A may be manual with the use of classical tools such as thresholding (Otsu, 1979),

intelligent scissors (Mortensen and Barrett, 1995) and interpolation (Albu et al., 2008), which re-

quires a lot of effort and time. In more advanced systems, this may be improved using sample

selection by AL (Zhan et al., 2022; Ren et al., 2020). However, the SOTA shows that replacing the

classical tools with a suitable neural annotation predictor boosts annotation performance (Wu

et al., 2021). The annotation predictor suggests an annotation that the expert can validate or cor-

rect. This raises the question of training this annotation predictor, which existing systems do once

a sufficient amount of data has been annotated by classical tools. This is suboptimal for two rea-

sons: (1) annotation is expensive, hence availability of annotated data is very limited in many

tasks, especially in medical imaging (Tajbakhsh et al., 2020); (2) neither the annotation predictor

nor the classical tools improve as more data is annotated. The main challenge is thus to exploit

the data as they are annotated towards training the target predictor, to improve the annotation

mechanism itself, including the annotation predictor, which is yet an unresolved problem (Budd

et al., 2019; Zhan et al., 2022). The proposed framework addresses these two problems: (1) it re-

quires classically annotated data only once during the interactive predictor pre-training phase,

with the number of images needed being as low as several hundreds; (2) the interactive predictor

at the heart of our framework is shared between the steps of (A, B and C), making it an evolving

annotation tool.

We propose a general framework called SAIM for efficient data annotation at scale, which in-

tegrates the three steps of data selection, annotation and training into a single architecture. This

is made possible by three key properties of SAIM, which contrast with existing work. 1) deep in-

teractive predictor - the annotation mechanism is based on an interactive neural predictor; hence

the predictor can be pre-trained with limited data and still produce quality annotations thanks to

the user input. 2) model-sharing - SAIM uses a single model shared between the three steps (A,B

and C); the roles of the target predictor and the annotation predictor are thus performed by a sin-

gle predictor. 3) active data selection - AL is used to maximise the impact of each annotation on

the predictor performance, exploiting the current predictor to optimally select data, making the

model rapidly improve. To realise SAIM, two key components are required: an interactive neural

predictor, which suggests annotations and enables interactive corrections, and a limited quantity
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of annotated data used for pre-training and testing. SAIM works in three steps. First, the predictor

pre-trained on very limited initial annotations is used for data selection from the non-annotated

data pool via AL. Second, the expert uses the predictor to annotate the selected data. Third, the

annotations are added to the training data for predictor update. The system then loops back to the

first step and continues until stopped or all available data are annotated. As a result, SAIM allows

one to efficiently annotate massive datasets from very limited initial annotations, while keeping

the single shared predictor up-to-date and deployable.

Table 5.1: Key feature differences between SAIM base and advanced versions, which we denote SAIM-base
and SAIM-advanced respectively.

Component
Version

SAIM-base SAIM-advanced

Data selection Entropy-based
Loss-prediction-based,
Class weighting

Data annotation Interactive predictor (section 4)

Predictor update Re-training Fine-tuning

Our main contribution is SAIM, which is the first general ML framework to integrate data se-

lection, annotation and training into a single architecture by model-sharing. Two key proposed

ideas required to realise such an integrated framework are the use of deep interactive annotation

with the shared model and the use of AL for efficient data selection with said shared model.

We evaluate SAIM and compare it to existing systems in emulated annotation scenarios in an

automated manner with fully-annotated segmentation datasets on five tasks. First, on multi-class

semantic MRI segmentation of the female pelvis on FPMRId. Second and third, on multi-class

semantic liver and pancreas CT segmentation, using the ‘Liver Tumours’ and ‘Pancreas Tumour’

public medical segmentation decathlon datasets (Antonelli et al., 2022). Fourth, on cardiac MRI

segmentation using the public ACDC dataset (Bernard et al., 2018), on which we validate SAIM

against the state-of-the-art SSL approach UniMatch (Yang et al., 2023a). Fifth, on natural image

segmentation using the Pascal VOC 2012 (Everingham et al., 2015) public dataset expanded with

annotations from the SBD dataset (Hariharan et al., 2011), on which we validate SAIM against the

state-of-the-art ST approach ST++ (Yang et al., 2022). To assess the impact of the individual com-

ponents that make up the SAIM framework, we introduce and compare two versions: base and

advanced, which are outlined in table 5.1. These versions differ based on the underlying methods

for the two key SAIM components: the predictor update mechanism and the data selection pro-

cess. The latter is further augmented by the addition of class-based weighting. Specifically, the

advanced version is designed to enhance the architecture in three ways: (1) reduce the predictor

update time, (2) increase the impact of each annotated image on the predictor performance and

(3) reduce the class imbalance effects. We conduct a comprehensive ablation study of the SAIM

framework architecture, evaluating the impact of each new method introduced in the advanced

version compared to the base version. We evaluate SAIM against the two most relevant domains

- SSL and ST domains, represented by state-of-ther-art approaches on the Pascal VOC 2012 and

ACDC public datasets respectively. This means a direct comparison with five SSL approaches on
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ACDC, as well as four ST and three SSL approaches on Pascal VOC. We demonstrate SAIM in a

real annotation scenario of kidney MRI segmentation from the AMOS dataset (Ji et al., 2022) with

a human user and a 1 to 30 annotated to non-annotated data ratio. We estimate the time gain

as compared to 3D Slicer, where SAIM allowed to double the total number of AMOS kidney MRI

annotations in 2.3 hours against 10.0 hours for 3D Slicer using classical tools. SAIM jumpstarts

efficient interactive annotation from limited annotated data and minimises the amount of data to

annotate, while iteratively improving performance.

5.2 Related Work

The main goal of this work is efficient data annotation. Specifically, SAIM modifies the step (A) of

the base ML paradigm discussed in section 5.1, where step (A) is data annotation, step (B) is target

predictor training, and step (C) is evaluation. Step (B) is typically achieved by involving an expert

engineer or by continual learning (Hadsell et al., 2020), but the method of training is not in the

scope of our contributions.

5.2.1 Categorising approaches

Data annotation is a broad subject approached from multiple angles in the literature. However,

there is no established categorisation of existing data annotation approaches (Heim et al., 2018;

Langlotz et al., 2019; Willemink et al., 2020a; Bhagat and Choudhary, 2018). We propose to cat-

egorise these approaches based on which of the two core aspects of data annotation they ad-

dress. The annotation mechanism approaches focus on the mechanism used to annotate the data,

ranging from classical tools to high-performance annotation predictors. The data efficiency ap-

proaches focus on how to most efficiently utilise the data. Approaches in the annotation mecha-

nism category can be further categorized, depending on whether the data annotation mechanism

is kept fixed or is improved as annotation progresses, leading to two groups of approaches we call

static and dynamic respectively.

5.2.2 Approaches in the annotation mechanism category

The data annotation mechanism may use classical tools, neural predictors, or a combination of

both. The classical tools are non-neural and non-trainable, hence not specific to a single task or

domain, allowing for a wide applicability. They may strongly vary in functionality and complexity:

for example, in image annotation, we find the intelligent scissors (Mortensen and Barrett, 1995),

GrabCut (Rother et al., 2004) and Random Walker (Grady, 2006b). In contrast, the neural predic-

tors have to be trained or be already available pre-trained, and are generally specific to a task and

a domain. They can be fixed (i.e. static) or improved by training as data annotation proceeds (i.e.

dynamic). This implies two general statements: (1) an approach which uses exclusively classi-

cal tools is necessarily a static approach, and (2) a dynamic approach necessarily uses a neural

predictor, which improves with time.

Fixed neural predictors require huge initial training datasets such as MS COCO (Lin et al.,

2014b), AbdomenAtlas-8K (Li et al., 2024), Open Images (Benenson and Ferrari, 2022), as shown

in a survey of over 100 segmentation predictors (Minaee et al., 2021). However, the availability

of such datasets is limited for many tasks, especially in medical image analysis (Tajbakhsh et al.,
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2020). Dynamic predictors are generally used in continual learning (Hadsell et al., 2020) and in

ST (Amini et al., 2022). The main focus of continual learning is the mechanism of incorporation

of new data into an existing predictor and not data efficiency. This is not the case for ST, where a

dynamic predictor is used in a SSL manner, adding predicted pseudo-labels to the dataset with the

goal of improving the predictor. The annotation cost is thus reduced. However, ST approaches ei-

ther use classical tools to refine the pseudo-labels into strong labels to permit supervised training,

which is inefficient, or otherwise suffer from error propagation (Amini et al., 2022).

5.2.3 Approaches in the data efficiency category

The data aspect is generally addressed by optimising the way the available data is used. We find

SSL in general, and ST specifically the closest domains to SAIM due to the initial data setup: only a

fraction of data is annotated, while the rest has no annotations at all. However, the key difference

of SAIM is that the predictor is trained in a supervised manner with strong annotations, made

possible thanks to model-sharing between the task, which is not the case for existing approaches

in both SSL (Yang et al., 2023b) and ST (Amini et al., 2022). Furthermore, any approach may be

complemented by data selection via AL (Zhan et al., 2022; Budd et al., 2019; Ren et al., 2020), which

means selecting the most informative data to annotate, instead of annotating all available data

indiscriminately. SAIM incorporates AL to further reduce the annotation cost via either classical

entropy-based data selection (Zhan et al., 2022) in the base version or advanced state-of-the-art

data selection according to the predicted loss, inspired from (Yoo and Kweon, 2019).

5.2.4 Approaches in both categories

There is a synergistic effect in addressing both the annotation mechanism aspect and the data

aspect in the same solution, as shown in the ST approach (Tajbakhsh et al., 2020), which is where

SAIM belongs. On a basic level, the components of such a synergistic solution would be the follow-

ing: (1) a ready high-performance annotation predictor, (2) as little as possible data to annotate,

and (3) a way to exploit this limited data for the target task in a supervised manner as if a large

quantity of data were used. In contrast to (Tajbakhsh et al., 2020), with SAIM, we show that (1)

does not require an already available high-performance predictor trained on a large dataset and

instead a minimally pre-trained interactive predictor. Further, we show that this single neural pre-

dictor can be shared between (1) and (3) and is sufficient, instead of two predictors - one for data

annotation and another one for the target task.

5.2.5 Existing systems

Most of the existing systems such as Synapse 3D (Fujifilm, 2024), 3D Slicer (Kikinis et al., 2013),

MITK (Goch et al., 2017), Supervise.ly (Supervisely OU, 2024) and others (Aljabri et al., 2022) im-

plement static approaches. They provide access freely or commercially to a large variety of clas-

sical tools and fixed neural predictors. For example, (Liu et al., 2019; Yu et al., 2015) are static

approaches based on classical tools. They use AL as a data selection policy in reinforcement learn-

ing (Liu et al., 2019) or train a neural classifier to perform data selection (Yu et al., 2015).

SAIM shares its goal with SSL. As in SSL, SAIM uses non-annotated and annotated data jointly

to improve learning performance. More precisely, SAIM is inspired by ST and one of its building

blocks - dynamic predictor, which is used to produce the annotations for the non-annotated data
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pool. Typically, among others, approaches in SSL and ST are compared by the following metrics:

(1) time gain over annotating more data classically and (2) performance gain when annotating

more data classically, targeting smaller performance difference, which is the case for SAIM as well.

For these reasons, we find the state-of-the-art SSL and ST approaches (Yang et al., 2023a) and (Yang

et al., 2022) close to ours. (Yang et al., 2023a) is static system based on FixMatch (Sohn et al., 2020),

adopting a consistency regularization framework with a student-teacher approach by proposing

two perturbation streams. While substantially different from SAIM, which does not adopt the con-

sistency regularization framework, (Yang et al., 2023a) do extensive experiments for metric (2) and

serve as a strong competitive baseline. In turn, (Yang et al., 2022) is a dynamic system, which uses

multiple predictors’ stability-based consensus to choose the most reliable annotations in order to

re-train the main predictor, which means that produced annotations are weak. In contrast, SAIM

produces strong annotations and uses a dynamic interactive predictor for both annotation and

data selection.

5.2.6 Closest works to SAIM

The two closest works to SAIM are the non-medical object detection annotation system (Wong

et al., 2019) and the MONAI Label toolbox (Diaz-Pinto et al., 2022). System (Wong et al., 2019) is a

dynamic system and is a typical example of a large-scale or crowd-sourced annotation approach.

Images selected based on the Euclidean distance are segmented by a pre-trained neural predictor.

Annotation corrections are then done with classical tools by real users. The neural predictor is

periodically re-trained from the corrected annotations. The MONAI Label toolbox (Diaz-Pinto

et al., 2022) is a static system. It combines classical tools provided by 3D Slicer and two fixed neural

predictors, an automatic one and an interactive one. In contrast, SAIM is a dynamic system, which

(Diaz-Pinto et al., 2022) is not, uses a dynamic interactive neural predictor, which (Wong et al.,

2019) does not, and uses the predictor to perform data selection, which neither of (Wong et al.,

2019; Diaz-Pinto et al., 2022) do. This unique combination is the key to enable model-sharing,

where the single predictor is used for data selection, interactive data annotation and undergoes

improvement with new data via re-training or fine-tuning, which is not featured in any existing

approach and system.

5.3 Methodology

5.3.1 System Overview

On a general level, we build SAIM as shown in the row ‘Algorithm’ of figure 5.1. As inputs, SAIM

requires the following: (1) a minimally pre-trained interactive predictor, (2) a non-annotated data

pool, (3) a set of criteria to perform data selection and the number N of samples selected for anno-

tation at each iteration, which is determined as a function of the dataset size and the annotation

capacity. We originally developed SAIM for 3D image segmentation of medical scans including

MRI and CT, but the framework is generic and not restricted to a specific task, domain, modality

or predictor architecture. Indeed, the suitable interactive neural predictor can be obtained from

any trainable interactive ML architecture. This means that at inference it should take both the

non-annotated data (e.g. an image) and the user corrections as inputs and output an annotation.

Some examples of such interactive predictors are (Amrehn et al., 2017; Liao et al., 2020; Mikhailov
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et al., 2024) or notably SAM (Kirillov et al., 2023). Such architectures are generally reusable for dif-

ferent tasks, and by design fit into SAIM in a plug-and-play fashion. Specifically, we reuse the neu-

ral interactive system (Mikhailov et al., 2024) presented in section 4, which inputs user clicks and

outputs a segmentation mask for each class. The neural interactive predictor is a key component

of SAIM, which allows it to quickly produce better annotations through interactive refinement as

opposed to static approaches.

Figure 5.3: Visualization of the SAIM logic as detailed in algorithm 5.1, with corresponding algorithm steps
marked by red circled numbers in the image.

SAIM’s logic is outlined in algorithm 5.1 and is visualised in figure 5.3 in direct correspondence

to the algorithm. SAIM operates in iterations. At each iteration, SAIM inputs a predictor and out-

puts an updated predictor and new annotated data. Within an iteration, SAIM goes through three

inner steps. Model-sharing is implemented by having a single predictor shared between these

three steps as shown in figure 5.2. Concretely, the predictor is shared in its entirety and not via

parameter preservation as in gradient-based continual learning approaches (Hadsell et al., 2020).

The three inner steps are as follows. First, we perform data selection from the non-annotated pool

by doing an inference on the non-annotated data and applying predefined selection criteria to

the predictor’s output. Second, we perform interactive annotation of the selected data using the

predictor within the interactive neural annotation mechanism, where it is up to the human user

to validate or refine the automatically obtained annotations. Simply, the predictor serves as both

an automatic and an interactive annotation tool. The annotated data pool is then expanded with

this newly annotated data. Third, we update the predictor by re-training it with the expanded an-

notated data pool in the base version of SAIM, or fine-tuning it in the advanced version. Iteration

n+1 therefore improves on iteration n by two factors: (1) the quantity of annotated data increases

owing to data selection and data annotation done in iteration n, (2) the predictor at iteration n+1

is thus improved by benefiting from the increased quantity of data compared to iteration n. The
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iterations continue until SAIM is stopped or all available data are annotated. Thus, at each itera-

tion SAIM uses a shared predictor to select data, annotate the data interactively under control of a

human user and employs this newly annotated data in addition to the current annotated training

set to update the predictor.

Algorithm 5.1: SAIM pseudo-code
Input: Pn , Dnon , S % Pre-trained predictor, Non-annotated data pool, Data selection criteria

Output: Pn , Dann % Updated predictor, Annotated data pool

1: n ← 1 % Initialise the iterator

2: while Dnon ̸= ; do
3: Onon ← Pn(Dnon) % Perform inference to obtain predictions on non-annotated data

4: Dsel ← S(Dnon ,Onon) % Select the most informative samples

5: Dsel ← Annotate(Dsel ,Pn) % Annotate with the predictor and human user

6: Dann ← Dann ∪Dsel % Update the annotated data pool

7: Dnon ← Dnon \ Dsel % Update the non-annotated data pool

8: Pn+1 ← Train(Pn ,Dann) % Update the pre-trained model

9: n ← n +1 % Update the iterator

10: end while

5.3.2 Data Selection

SAIM starts with an interactive predictor pre-trained on a generally small quantity of annotated

data and is immediately ready to produce new annotations. However, during the first iterations,

extra user interactions may be required to correct the output of such a predictor, resulting in pro-

longed annotation time. It is thus crucial to speed up the annotation process and to ensure the

performance of the predictor is improved rapidly going forward. We address this point by max-

imising the impact of each individual annotation. Specifically, we perform data selection as the

first step in the SAIM framework. This is done via AL, which involves selecting the most informa-

tive data from a pool of non-annotated data and then requesting annotations for this data from a

human expert. By doing so, the predictor can achieve high accuracy with fewer annotated exam-

ples required for training.

Data selection in AL is often performed based on informativeness. Informativeness refers to

the degree of usefulness of the selected data in improving the performance and generalisation

of a predictor if added to the training set. Data informativeness is evaluated by informativeness

criteria, which allow us to directly select the images benefiting predictor improvement for subse-

quent annotation. We split existing informativeness criteria into two groups: external or internal.

External criteria involve additional information such as image meta-data reflexive of clinical char-

acteristics. Internal criteria are based on the image data itself and may or may not involve the pre-

dictor. SAIM is not restricted to neither internal, nor external group, and can be configured to be

used with any one or both. Internal criteria are generally based on uncertainty or representative-

ness (Budd et al., 2019; Zhan et al., 2022). Uncertainty-based methods select samples with high

aleatoric or epistemic uncertainty, where the first comes from inherent randomness or noise in

the data, and the second comes from lack of knowledge or data. In turn, representativeness-based

methods select samples representative of the non-annotated data pool. The key assumption for

both uncertainty-based and representativeness-based methods is that the selected samples, once

annotated, will substitute the need to annotate all the data.
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Figure 5.4: Schematic of the architecture of the Loss Prediction Head (LPH) and its connection to the main
head, which produces the output for the target task. FC is a fully-connected layer, AP is average pooling and
BN is batch normalisation.

We implemented SAIM with two criteria, corresponding to the base and advanced versions.

Both criteria are internal, uncertainty-based and dependent on predictor output: (1) in the base

version, it is a classical entropy informativeness criterion, and (2) in the advanced version, it is a

state-of-the-art predicted loss informativeness criterion.

Entropy informativeness criterion. Entropy is a classical informativeness criterion. A higher en-

tropy is obtained for images with target classes having closer probabilities pixel-wise. Simply put,

images with ambiguous predictions overall are considered more informative and are selected for

subsequent annotation (Budd et al., 2019; Ren et al., 2020). For classification, entropy is calculated

according to the following formula (Shannon, 1948):

H =−
C∑

c=1
pc log(pc ), (5.1)

where C is the number of classes and pc is the probability of the sample belonging to the c-th class.

For the 3D image segmentation case with a single series we do the following: first, calculate the

entropy for each pixel from the predicted class probability distribution; second, in the advanced

version, weight the entropy per-class in order to alleviate class imbalance and finally, average the

weighted entropy over all pixels. Hence, the formula (5.1) is updated to the following:

Hser i es =−1

I

I∑
i=1

C∑
c=1

wc pi c log(pi c ), (5.2)

where I is the total number of pixels and is fixed, pi c is the probability of the i -th pixel belonging

to the c-th class and wc is the weight for class c, with the condition that
∑C

c=1 wc = 1.

With entropy we perform data selection in three steps: (1) the predictor outputs probability

maps for all samples in the non-annotated data pool via inference; (2) the entropy of each sample

is evaluated, resulting in a score; (3) the top N scoring samples are selected for annotation, while

the rest of the data remains in the non-annotated pool. The schematic of the data selection step

is shown in figure 5.1.
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Figure 5.5: SAIM-base experimental evaluation results given as mIoU at each iteration on FPMRId, where:
green - performance using annotations created in 3D Slicer and MITK using classical tools, blue - perfor-
mance using SAIM-created annotations. Annotation time is reported excluding pre-training data annota-
tion with classical tools.

Predicted loss informativeness criterion. Loss prediction informativeness criterion is based on

predicting the loss for non-annotated samples. Samples with the highest predicted loss are picked

for subsequent annotation. This is done using a small additional head we further call LPH attached

to the predictor, inspired from (Yoo and Kweon, 2019). Specifically, in (Yoo and Kweon, 2019), the

network learns to predict loss by minimizing the Loss Prediction Loss (LPL). This loss is calculated

from the difference between the loss predicted by the LPH and the target loss of the target head.

The key idea in (Yoo and Kweon, 2019) is to ignore the overall scale of the real loss, which decreases

as learning progresses. If this decrease is learned, the LPH will not generalize well. To address this,

the LPL is designed to compare pairs of samples, allowing the network to avoid learning the natural

decrease in loss and instead fit the exact loss values.

Compared to (Yoo and Kweon, 2019), loss prediction in SAIM is different in three ways. First,

we found that the original complex multi-scale architecture does not perform well with time series

data as in (Mikhailov et al., 2024, 2023) (see section 4) and replaced it with a leaner Multilayer

Perceptron (MLP) architecture branching from the target prediction head’s penultimate layer as

shown in figure 5.4. Second, we found that (Yoo and Kweon, 2019) does not perform well with

lower batch sizes. This might be due to the LPH’s inability to learn to fit the exact loss value with

a limited number of data pairs. Specifically, as shown in table 5.3, we use a low batch size of

10, constrained by the interactive predictor, which inputs the SIM along each image. Simply, the

SIM is a set of masks representing the sequence of user interactions, which occupies additional

memory and reduces the batch size, as explained in detail in section 4. To address the issue of

a smaller batch size, we propose forming pairs not between samples, but instead between two

samples’ classes, resulting in an increased pair number Pnum with Pnum ← Pnum ×C , where C is

the number of classes. The LPL formula is provided in equation 5.4. Third, we found that (Yoo

and Kweon, 2019) is not designed to predict loss per class and, hence, does not perform well for

datasets with pronounced class imbalance, which we addressed by weighting the loss predicted

by the introduced MLP similar to the formula (5.2). The final loss function Lfinal for the predictor

is thus formulated as:

Lfinal = Lfocal +λ ·Llph, (5.3)
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where Lfocal represents the focal loss for the target prediction head, Llph denotes LPL - the loss

for the LPH, and λ is the scaling constant that determines the relative weighting between the two

losses. In turn, Llph is defined as:

Llph(l̂i , l̂ j , li , l j ) = max
(
0,−1(li , l j ) · (l̂i − l̂ j +ξ)

)
, s.t. 1(li , l j ) =

+1, if li > l j ,

−1, otherwise.
(5.4)

where li , l j and l̂i , l̂ j are target and predicted losses for samples i and j belonging to the same class

c. ξ is a pre-defined positive margin.

With loss prediction we perform data selection in two steps: (1) the LPH outputs predicted

losses for all samples in the non-annotated data pool via inference, (2) the top N scoring sam-

ples are selected for annotation, while the rest of the data remains in the non-annotated pool as

normally.

Figure 5.6: SAIM-base experimental evaluation results given as mIoU at each iteration on Liver CT dataset,
where: green - performance using annotations produced using classical tools, blue - performance using
SAIM-created annotations. Annotation time is estimated excluding pre-training data annotation with clas-
sical tools.

5.3.3 Data Annotation

Once data selection is performed, the selected samples are passed to the human user for annota-

tion using the shared interactive predictor. Indeed, SAIM requires an interactive predictor, which

suggests an annotation to the user, and is capable of accepting the subsequent user corrections.

Along with data selection, interactivity is a key property of the SAIM architecture, which ensures

that annotations of sufficient quality are produced even if the interactive predictor is initially pre-

trained on a limited amount of data. The interactivity allows the predictor to achieve a far better

annotation quality than that of an equivalent automatic system by design.

SAIM does not depend on a specific architecture of the interactive predictor, which can be any

trainable ML architecture, as long as it accepts user corrections and outputs the annotation. To

demonstrate SAIM, we use the interactive system (Mikhailov et al., 2024) presented in section 4,

which focuses solely on interactive image segmentation. This system consists of an embedded

network, a user interaction loop and an interaction memory. It inputs an image, user interac-

tion masks and optionally a segmentation mask, if available from previous steps, for each class. It
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Table 5.3: General training configuration and main parameters, where default denotes standard parame-
ters, target model denotes the body of the network and the target head (the whole network except LPH),
and LR denotes learning rate.

Parameter Value

GPU ×1 RTX 4090 24Gb
Batch size 10
Epoch num. early stopping
Optimizer adam (default)
Scheduler ReduceLROnPlateauScheduler
Target model: LR 0.00005
LPH: LR 0.00001
LPH: λ (scaling constant) 0.000003
LPH: ξ (positive margin) 1.0 (default)
Focal Loss gamma 2.0 (default)

outputs the segmentation probability maps. User interaction masks contain user clicks indicat-

ing foreground and background for each class. The interaction memory keeps track of the user

corrections throughout the interactions by storing a sequence of states, where each state is a pair

of user input and corresponding segmentation output. With interaction memory it is shown that

using the temporal aspect of user interactions (namely, the user interaction sequences) for train-

ing improves performance. This system comes with a specific training approach, where the user

corrections at training time are automatically generated on-the-fly from the annotated dataset by

means of a virtual user simulating interactions. At test time, this system is used by the human user

via a general-purpose GUI. In our experiments, we use the system with a human user to evalu-

ate its impact in a real annotation scenario. We also reintroduce the virtual user at test time to

conduct an extensive statistical evaluation in emulated annotation scenarios where the complete

dataset annotation is already available, and human user involvement is not feasible due to the

sheer volume of data.

Table 5.5: Main libraries, operating system, and versions.

Name Version

PyTorch 2.2.2
MONAI 1.3.2
CUDA Toolkit 12.3
Segmentation Models 0.33
Ubuntu 22.04.3 LTS

5.3.4 Predictor Update

Once the data is annotated, it is used to extend the current training set, after which the predictor

is updated, as shown in figure 5.1. The update can be a full re-training, simple fine-tuning, or con-

tinual learning. Re-training considers the complete annotated dataset anew at each iteration and

thus allows for a clearer comparison between iterations, characterised by using different quan-

tities of data. However, re-training is time- and resource-consuming, especially with the current
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trend of using exceptionally large datasets and neural networks, making it less practical. In con-

trast, fine-tuning involves modifying the weights of an existing model to fit a new dataset or task,

requiring less time and resources compared to re-training. Continual learning techniques can

also be employed to gradually improve the model’s performance without the need for extensive

re-training. However, a method for predictor update is not within the scope of our contributions,

and fine-tuning allows for a simple functional predictor update method, which can be an improve-

ment over re-training in optimizing the resource usage, making it more adapted to practical use.

Therefore, we choose fine-tuning for the advanced version of SAIM, but ablate the predictor up-

date method and report the experiment results using re-training as well.

5.4 Experimental Results

5.4.1 Instantiation of SAIM and General Setup

We instantiate our system with an interactive predictor, which has two heads. The network is an

existing encoder-decoder architecture featuring RNN modules (Sherstinsky, 2020). Specifically,

we use a ResNet34 (He et al., 2016) encoder pre-trained on ImageNet (Deng et al., 2009) and a de-

coder equipped with a pair of standard convolutional layers and a matching convolutional LSTM

layer at every step of the upsampling path as presented in section 4. The architecture of the heads

is configured as shown in figure 5.4: (1) the LPH branches from the penultimate decoder layer,

and (2) the target head is simply the ultimate decoder layer. LPH is trained in sync with the rest of

the network. Training configuration and parameters are reported in table 5.3. We do not stop the

LPH gradient propagation to the target model as in the original work (Yoo and Kweon, 2019). To

counter dataset imbalance, we use the focal loss (Lin et al., 2017) with per-class weights, which are

re-calculated prior to re-training at each iteration. We preprocess all data via normalisation, stan-

dardisation, and perform random data augmentation: vertical and horizontal flipping, intensity

shifting, gamma correction, blurring and unsharp masking. N4BFC (Tustison et al., 2010a) is used

for MRI data. The main libraries, the OS and their corresponding versions we use are reported in

table 5.5.

Figure 5.7: SAIM-base experimental evaluation results given as mIoU at each iteration on Pancreas CT
dataset, where: green - performance using annotation produced using classical tools, blue - performance
using SAIM-created annotations. Annotation time is estimated excluding pre-training data annotation with
classical tools.
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5.4.2 Emulated Annotation Scenarios

General considerations. We perform a systematic evaluation of SAIM’s performance in three em-

ulated annotation scenarios: (1) in FPMRI segmentation on our dataset, (2) and (3) in Liver and in

Pancreas CT segmentation on decathlon datasets (Antonelli et al., 2022). Two factors make these

scenarios emulated: first, these datasets were already fully annotated with high reliability using

classical tools; second, human user involvement is not feasible due to the high number of series

to annotate. We thus use a virtual user to operate the interactive predictor by simulating user

interactions from existing annotations, as during training, done in section 4.

The simulated interactions are clicks, fixed to 3 per class and per image. For each task we

proceeded as follows: first, we took a small subset of the annotated data and split it into three

parts - the initial training set to pre-train the predictor, the validation and test sets, which remain

fixed; second, we alternated between virtual data annotation and predictor update until all data

was annotated, while reporting mIoU on the test set at each iteration. We also compared these

results to those of a predictor trained with the same quantity of data annotated classically at the

first, middle and last SAIM iterations.

Figure 5.8: SAIM-base experimental evaluation results given as mIoU at each iteration on AMOS dataset,
where annotations are done by human user via a specifically-developed GUI: green - performance using
annotations produced using classical tools, blue - performance using SAIM-created annotations. Annota-
tion time is reported excluding pre-training data annotation with classical tools.

A key factor in these experiments is the initial training set size, which is task- and data-

dependent. Since the interactive predictor should produce at least partial annotations, it makes

sense to establish the initial training set size as a function of the predictor performance, which

is measurable on the test set. For each dataset we pre-trained multiple predictors and selected

the one which satisfies two criteria: (1) the IoU score is above 50% for all classes or, if impossible,

the mIoU is above 50%, and (2) the quantity of data used for pre-training is as low as possible. In

a real annotation scenario this additionally depends on the availability and performance of the

expert. Therefore, we made the data selection size N as reasonably close to the size of the initial

training set as possible, while keeping the overall number of iterations such that a meaningful

performance change could be observed in-between. For all datasets we reported mIoU on the test

set at each iteration and compared these results to those of a classical system. We also estimated

the annotation time using SAIM against 3D Slicer for all datasets.

Female pelvis MRI. We use a FPMRI segmentation dataset FPMRId presented in section 3.1. It
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consists of 97 MRI series with 3066 slices in total, manually annotated in 3D Slicer and in MITK

by expert radiologists. It involves five classes: uterus, bladder, uterine cavity, tumours and

background. The segmentation of anatomical structures of the female pelvis is particularly chal-

lenging due to a large variance in their representation. The dataset is strongly imbalanced due to

the anatomical differences between the classes. The original dataset split between the training,

validation and test sets is respectively: 77 series (2449 slices), 10 series (308 slices) and 10 series

(309 slices). We pre-train the interactive predictor on 15% (12 out of 77 series) of the training set,

which achieves 54.6% IoU on a fixed test set. We use this predictor to annotate the remaining 85%

(65 series) in 6 iterations, adding 12 series at each of the first 5 iterations and 5 at the last iteration.

(a) (b) (c) (a) (b) (c)

Figure 5.9: SAIM-base segmentation results in a emulated annotation scenario for FPMRId, where uterus
- green, bladder - yellow, tumours - red, uterine cavity - pink, and user clicks are in cyan: (a) ground
truth; (b) interactive predictor pre-trained on 15% (12 out of 77 series) of the complete training set (c) the
same interactive predictor using the complete training set (77 series), but with the remaining 85% (65 out
of 77 series) annotated as a part of SAIM. Performance-wise: rows in green (1-5) - improvement, row in red
(6) - considered a degradation despite overall higher IoU due to the false positive for uterus. IoU is given
in the bottom right corner.

The performance steadily increases with each iteration. The largest change of 8.5pp IoU is

observed between iterations 1 and 2 with 57.5% IoU and 66.1% IoU respectively. At 62% of the

dataset annotated, SAIM achieves 69.2% IoU against 72.3% IoU for a classical system, which be-

comes 73.4% IoU against 75.8% IoU at 100% of data. In both cases SAIM slightly underperforms,

which is expected since annotation with classical tools is anticipated to have a naturally higher

precision. The metrics are reported in figure 5.5. While the performance of a classical annotation

system is slightly higher in terms of accuracy, the above results show that with only 47% of data

being annotated, SAIM achieves 87% of performance of this classical system trained with all 100%

of the data. Crucially however, the annotation time for the whole dataset is decreased by 65%: with

SAIM it takes 11.0 hours, including the time spent with 3D Slicer to annotate the initial training set,

against 32.0 hours when 3D Slicer is used for the complete dataset. This shows the high impact of

using SAIM in this context.

The segmentation results are shown in figure 5.9 and visually demonstrate the performance

of the interactive predictor at the first and final SAIM iterations on samples from 6 different series.

We use a fixed evaluation set to compare: (b) an interactive predictor trained only on annotations
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produced by classical tools (12 series - 15% of the complete training set); (c) the same interactive

predictor using the complete training set (77 series) with all remaining annotations produced

by the self-same predictor during SAIM iterations. Since in this dataset each class in a single

image may be represented by multiple completely disconnected regions, user input is limited to 1

click per region to clearly demonstrate SAIM performance with minimal user input. We observe

that in most of the cases additional data annotated using SAIM allowed to substantially improve

accuracy, as supported by the metrics in figure 5.5. However, deterioration of accuracy can be

observed in a limited number of cases, which we attribute to a shift in the training set between its

partial and complete versions.

(a) (b) (c) (a) (b) (c)

Figure 5.10: SAIM-base segmentation results in a real annotation scenario for kidney MRI segmentation
on the AMOS dataset, where right kidney and left kidney are orange and yellow respectively with
user clicks in cyan: (a) ground truth; (b) interactive predictor pre-trained on original AMOS training set
(40 series) (c) the same interactive predictor after doubling the training set as a part of SAIM (80 series).
Performance-wise: rows in green (1-4) - improvement, rows in red (5-6) - degradation. IoU is given in the
bottom right corner.

Pancreas and liver CT. We further evaluate SAIM on the tasks of Pancreas and Liver CT segmen-

tation. The test set ground truth is not available. We thus randomly split the training sets for both

liver and pancreas, using 70%/15%/15% for training, validation and test respectively, resulting

in 91/20/20 series for the liver and 198/42/42 series for the pancreas. Liver CT targets are liver

and cancer, and pancreas CT targets are pancreas and mass (cyst or tumour). These datasets

where annotated manually using classical tools, but the exact software and elapsed time are not

specified (Antonelli et al., 2022). We thus record the elapsed time from re-annotating randomly

selected series in 3D Slicer, which is extrapolated to obtain the estimates.

Pancreas CT. We pre-train the interactive predictor on 15% of the training dataset (33 out of 225

series), which achieves 57.2% IoU. We use this predictor to annotate the remaining 85% (192 se-

ries) in 5 iterations, adding 38 series at each of the first 4 iterations and 40 at the last iteration to

have the whole dataset annotated. The performance increases with each iteration with the largest

change of 4.9pp IoU between iterations 1 and 2 with 60.7% IoU and 65.6% IoU respectively. At 48%
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annotated data, SAIM marginally underperforms compared to a classical system with 65.6% IoU

against 66.3% IoU, which is more notable at 100% of data with 71.5% IoU against 75.5% IoU. The

metrics are reported in figure 5.7.

While SAIM shows a lesser performance growth between iterations on Pancreas CT compared

to the FPMRId, this case still demonstrates that it is possible to annotate the whole Pancreas

CT dataset using a predictor initially pre-trained on only 33 series. We attribute the uneven

performance growth to the difficulty of distinction between the pancreas and the mass: at 48%

annotated data they are at 71.9% and 59.2% for SAIM against 71.1% and 61.7% for a classical

system respectively. Still, it is observed that data selection allows SAIM to achieve 87% of the

performance of a classical system with 48% of data used, which demonstrated the feasibility of

using SAIM in this case.

Table 5.6: Ablation study setups. The tick marks indicate the present architecture elements. One compo-
nent is rotated out at any time with the exception of SAIM, which is the advanced version with all the newly
introduced components present, and SAIM-base with none of them. The exact features of each version are
shown in table 5.1.

Name
Component

Fine-tuning LPH Class-weighting

SAIM-advanced ✓ ✓ ✓

SAIM-no-fine-tuning ✓ ✓

SAIM-no-weighting ✓ ✓

SAIM-no-loss-criterion ✓ ✓

SAIM-base

Liver CT. Applying SAIM to the Liver CT dataset allows us to start the annotation from pre-training

on only 5% of the dataset (5 out of 105 series) with the initial performance at 69.7% IoU. We use

this predictor to annotate the remaining 95% (100 series) in 7 iterations, adding 5 series at each

of the first 2 iterations and 18 at each of the remaining iterations. The metrics are reported in fig-

ure 5.6. The performance grows significantly between that of the pre-trained model and iterations

1 and 2, which is an added 8.8pp and 7.1pp IoU respectively. Notably, it is enough to annotate

14% of data for SAIM to achieve 98% of the classical system’s performance with all data. How-

ever, performance at iterations 3-7 fluctuates between 84.1% and 85.9%, stopping at the latter and

slightly underperforming against 87.0% for a classical system. We attribute these fluctuations to

SAIM being already very close to the best achievable performance

5.4.3 Real Annotation Scenario

We demonstrate SAIM in a real annotation scenario for kidney MRI segmentation on the AMOS

dataset, which involves three classes: left kidney, right kidney and background. It differs

from the emulated scenarios: first, in AMOS only 100 series out of 1200 are annotated, owing to

the unfeasible expert effort required; second, a human user operates the interactive predictor for

the data annotation step via a developed GUI, for which the interaction number is not limited,

but the elapsed time is reported. The AMOS dataset contains both annotated and non-annotated
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data, with 100 and 1200 MRI series respectively, collected from multi-centre, multi-vendor, multi-

modality, multi-phase, multi-pathology patients. To the best of our knowledge the 1200 MRI series

were never annotated previously, owing to the unfeasible expert effort it would require. The anno-

tated data is originally split in 40/20/40 series for the training, validation and test sets respectively.

Test annotations are unavailable. We thus leave the training set unchanged and split the validation

set, with the new split being 40/10/10 series respectively.

To demonstrate SAIM we pre-trained the interactive predictor on the available 40 series anno-

tated using classical tools and then proceeded using SAIM to double the dataset size. A total of

four iterations was performed, each adding 10 series annotated by the human user via the GUI.

The performance steadily increases with each iteration, with the largest improvement being 4.2pp

IoU between iterations 2 and 3. Overall, with 40 new annotated series the performance on the

evaluation set increased by 10.1pp IoU, showing SAIM’s efficiency when interactively annotating

data from a large and varied non-annotated pool with the help of data selection. SAIM improved

the performance of the interactive predictor by 10.1pp IoU from 78.9% IoU to 89.0% IoU. This is

further reinforced by the time gain. Specifically, it takes 2.3 hours for SAIM and 10.0 hours esti-

mated for classical annotation tools in 3D Slicer to double the size of the AMOS training set from

40 to 80 series. With SAIM, a single series took 3’43” against 15’ on average, significantly decreas-

ing the annotation time, all the while iteratively contributing to SAIM’s predictor improvement.

The metrics are reported in figure 5.8.

The segmentation results are shown in figure 5.10. We use a fixed evaluation set to compare:

(b) an interactive predictor trained only on annotations produced by classical tools (40 series -

original AMOS training set); (c) the same interactive predictor after doubling the training set with

all new annotations produced by the self-same predictor during SAIM iterations (80 series: 40

series - original AMOS training set and 40 series - newly annotated data). The user interactions as

clicks were limited to 3 per image. We observe that in most of the cases additional data annotated

using SAIM allowed to improve accuracy, as supported by metrics in figure 5.8. As in section 5.4.2,

we attribute the limited number of degradation cases to the training set shift.

5.4.4 Ablation Study

We perform a complete ablation study of the SAIM framework architecture on FPMRId. For this,

we begin with the advanced version, denoted SAIM-advanced and rotate out each architecture

advancement in turn. We also remove all of newly introduced components at once, which results

in a base solution, denoted SAIM-base, also presented in section 5.3 and published in (Mikhailov

et al., 2023). This results in 5 setups in total, described in table 5.6. The ablation study is set up

as a set of emulated annotation scenarios, where virtual user operates the interactive predictor

with the same rules as in section 5.4.2 for FPMRI. We also report the elapsed mean and total time

required for re-training against fine-tuning across all iterations. The complete results are reported

in figure 5.11. We first begin with an overview of these results, followed by a detailed iteration-by-

iteration analysis, providing our reasoning for the patterns observed. Finally, we discuss the time

efficiency of the SAIM predictor update mechanisms, as reported in figure 5.11, and present our

conclusions.

Overall, we observe that SAIM-base is generally outperformed by all advanced setups un-

til 78% of the dataset (60 series) is annotated. The setups, ordered from the largest to the
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smallest performance improvement over SAIM-base, are as follows: SAIM-no-fine-tuning,

SAIM-advanced, SAIM-no-weighting and SAIM-no-loss-criterion, where the latter provides

marginal improvement. The exception to this rule is SAIM-no-loss-criterion, which shows the

lowest performance among all setups at 31% of the dataset annotated with 57.19% IoU, which is

slightly below 57.5% of SAIM-base. Starting at 78%, the balance shifts, which leads to SAIM-no-

fine-tuning and SAIM-base outperforming the other 3 setups at 100%, with 73.92% and 73.4%

mIoU respectively. Furthermore, among these two, SAIM-no-fine-tuning consistently and no-

tably outperforms SAIM-base, as well as all other advanced setups across all iterations, for which

varying degrees of improvement are observed.

We now discuss these results iteration by iteration starting with the pre-training done on 15%

of the training dataset (12 out of 77 series).

Re-training time: Mean: 4.9 hours Total: 29.2 hours
Fine-tuning time: Mean: 12.6 hours Total: 62.4 hours

SAIM annotation time: Total: 6.0 hours
Manual annotation time: Total: 27.1 hours

Figure 5.11: SAIM ablation results with 5 setups (see table 5.6) given as mIoU at each iteration, where green -
performance using annotations produced using classical tools. First iteration features two results for SAIM-
base and SAIM-advanced predictors, which are represented by a circle and a star respectively. Difference
in performance for the latter is due to the addition of LPH in SAIM-advanced. For other iterations, we
compare these ablation results with those of a predictor trained on classically-generated annotations only in
the zoomed-in version of this graph in figure 5.12. In the bottom right, we report the predictor update times
for both re-training and fine-tuning, presented as the mean and total across all iterations. Additionally, the
total annotation times for manual annotation and SAIM are provided. Best results are highlighted in bold.

15% (12 series). For this experiment, the pre-training is done twice: once for SAIM-base and

SAIM-advanced, which achieves 54.6% and 56.78% mIoU respectively on a fixed test set. SAIM-

no-loss-criterion has matching performance with SAIM-base, since introduced additional

class-weighting does not affect pre-training. We attribute the increase in performance for

SAIM-advanced to the introduction of the (LPH) - a second head, as it enables the model to

benefit from an auxiliary task of loss prediction that seems to enhance representation learning.
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31% (24 series). By 31% of the dataset, all setups incorporating the loss criterion show a marked

performance increase with SAIM-no-fine-tuning achieving best performance. We assume

that this performance improvement is all the more pronounced due to the inherently higher

starting point of the non-SAIM-base predictor. However, SAIM-no-loss-criterion falls below

SAIM-base. This might suggest that at this iteration fine-tuning is detrimental to predictor’s

performance as evidenced by the initially higher starting performance of this predictor, notably

higher performance of SAIM-no-fine-tuning, as well as a minimal difference between SAIM-

advanced and SAIM-no-weighting. We attribute this to the predictor’s inability to effectively

annotate and capture the features of the weighted selected data. Simply, weighted data selection

is more challenging, since it targets bringing in smaller classes (e.g. cavity), which the predictor,

at its current stage, may struggle to handle with high accuracy.

47% (36 series). At 47% of the dataset, class-weighting emerges as a major performance im-

provement factor with SAIM-advanced improving over SAIM-no-weighting with 70.24% against

68.33% mIoU respectively. While SAIM-no-loss-criterion shows very minor improvement

over SAIM-base, loss criterion presence remains the biggest driving force behind performance

improvement. This is evidenced by SAIM-no-fine-tuning remaining the best-performing setup

with 70.71% mIoU. We attribute this effectiveness of class-weighting as compared with previous

iteration to the growing capability of the predictor to effectively segment the whole range of

classes present in FPMRId.

62% (48 series). At 62% of the dataset, all setups show improvement compared to the previous iter-

ation. However, at the same time the results arrive at a plateau, where further performance gains

become challenging. For example, SAIM-advanced peaks at 71.63% and only loses performance

during the next iterations. SAIM-no-fine-tuning remains the best-performing setup with SAIM-

advanced remaining second best. We compare these results to that of two predictors trained only

on classically-annotated data in figure 5.12, which zooms onto the range of results between 47%

and 100% of annotated data. The goal is to observe the performance influence of SAIM-produced

annotations on the predictor as compared to manual annotations. Specifically, we train two

predictors using the training sets of SAIM-base and SAIM-no-fine-tuning, which are different

due to two distinct data selection policies, but with all data annotated classically. We note that

SAIM-no-fine-tuning achieves 72.78% mIoU, while SAIM-base and SAIM-no-fine-tuning

predictors with classical annotations achieve 72.3% and 73.3% mIoU respectively. Effectively, with

SAIM-no-fine-tuning the difference between training on classically- and SAIM-annotated data

is further reduced from 3.1pp (for SAIM-base previously) to 1pp IoU, showing the advantage of

loss criterion and class weighting employed in SAIM-no-fine-tuning.

78% (60 series). As we move to 78%, we observe slight decline in performance for 2 setups

and similarly slight improvement for 3. Among the latter are SAIM-no-fine-tuning and

SAIM-advanced, while the former are SAIM-no-weighting, SAIM-base, and SAIM-no-loss-

criterion. As stated previously, we observe a plateau in performance for iterations from 62%

to 94% of the dataset, which we attribute to two main factors. First, the actual performance of

all setups is close to the maximum observed performance achieved with classically-annotated
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data shown in figure 5.12. Second, the two data selection criteria we employ are not inherently

designed to guarantee performance improvements on the fixed testing set, in accordance with

scientific integrity principles to avoid bias. In simpler terms, while the selected data is the

most informative for the predictor, the predictor may not always choose data that optimizes

performance on this specific testing set at each iteration. This ensures unbiased results, but may

prevent achieving the best possible improvement on the testing set. As a result, performance

plateaus are a real possibility. Addressing this requires a larger and more diverse testing set, which

is a persistent challenge in medical imaging due to limited accessibility. At the same time, the

curation and creation of a representative testing set in medical imaging is a research area of its

own and falls outside the scope of this work.

Figure 5.12: Comparison of the ablation results presented in figure 5.11 (zoomed-in) with those of predictors
trained on classically-generated annotations, where green - performance using annotations produced using
classical tools at 62% and 100% of the FPMRId. Circle and star symbols represent the SAIM-base and SAIM-

advanced predictors, indicated by solid and dashed arrows, respectively. Difference in performance is both
due to the addition of LPH and a different data selection criterion in SAIM-advanced, which results in a
training set mismatch between SAIM-base and SAIM-advanced. Best results are highlighted in bold.

94% (72 series). The performance plateau continues at 94% of the dataset. However, com-

pared to previous iteration, we observe slight improvement for SAIM-no-fine-tuning, while

SAIM-no-weighting and SAIM-no-loss-criterion begin to decline. Overall, only SAIM-no-

fine-tuning and SAIM-base demonstrate improvement in this iteration, scaling up this positive

trend into the next.

100% (77 series). At 100% of the dataset we observe that SAIM-no-fine-tuning and SAIM-base

demonstrate overall best performance with 73.92% and 73.4% mIoU respectively. As shown in

figure 5.12, these predictors achieve results within 2.28pp and 2.4pp mIoU respectively from their
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counterparts trained on classical annotations, showing a slight discrepancy reduction for SAIM-

no-fine-tuning. We attribute the notable performance improvements of both SAIM-no-fine-

tuning and SAIM-base over the previous iteration to data selection methods indirect influence

on the fixed testing set. Simply, as discussed in relation to the setups’ performance at 76% of

the dataset, certain series with the potential to improve performance are overlooked by the data

selection policies. These series are consistently not chosen for annotation by the predictors, which

may limit the overall performance gains. This results in a performance improvement spike when

these series are finally annotated and added to the training set.

We observe that setups utilising fine-tuning, as opposed to those relying on re-training,

exhibit a more pronounced decline in performance during this iteration. We explain this gradual

decrease in performance, which began as early as the iteration at 62% of data for SAIM-advanced,

by catastrophic forgetting. This phenomenon causes the performance of the neural network to

degrade due to its inability to retain previously learned information during continuous predictor

updates. In contrast, re-training the model by treating each iteration’s data as a complete dataset

to train on from scratch, avoids this issue and maintains performance consistency. This results in

SAIM-no-fine-tuning, which features re-training as the method of predictor update, to achieve

overall best performance in this ablation study.

Time efficiency: Predictor Update. Although the literature acknowledges that fine-tuning gen-

erally requires less time than retraining, particularly with large datasets, we demonstrate that

this advantage may not hold in the continual learning setting when dealing with moderate

amounts of data. As shown in figure 5.11, SAIM-no-fine-tuning achieves more than twice

the speed in both mean and total convergence during retraining compared to fine-tuning,

with times of 4.9 and 29.2 hours against 12.6 and 62.4 hours, respectively. We attribute this to

the challenging nature of medical image segmentation, exacerbated by low data regime and

lower predictor performance during the first iterations, which result in an increased conver-

gence time when doing fine-tuning. Simply, starting fresh might converge faster than adapting

an existing trained model to a larger data distribution by introducing edge cases via data selection.

Conclusion. The ablation study highlights four key insights into the performance of the SAIM

framework. First, the inclusion of the loss criterion with LPH emerges as the most significant fac-

tor driving performance improvements, consistently enabling superior results across iterations.

Second, class-weighting also plays an important role, particularly starting intermediate iterations.

However, it may provide close to no improvement or potentially harm the performance, when the

predictor is not yet capable of segmenting complex under-represented classes, such as cavity in

FPMRId. Third, while fine-tuning offers marginal iteration-to-iteration gains in a limited number

of iterations, it suffers from catastrophic forgetting over time, making re-training a more effec-

tive strategy for maintaining performance consistency. Lastly, the entropy and loss-prediction-

based data selection strategies occasionally fail to select critical, representative images from the

dataset, resulting in a performance plateau between 62% and 94% of the dataset annotated. Still,

this plateau is, on average, only 5.43pp mIoU below the best result achieved with 100% of the data

manually annotated. However, once these overlooked images are annotated and incorporated in

later stages, they lead to marked performance improvements, reducing the performance gap be-

tween SAIM-annotated and classically-annotated data to a minimum of 2.28 pp mIoU for SAIM-
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no-fine-tuning, as demonstrated in the final iteration. Combining multiple data selection poli-

cies, incorporating the internal and external criteria, both supported by SAIM, could potentially

serve as a starting point to mitigate this problem.

5.4.5 SOTA Comparison

We compare SAIM with methods from the two most relevant domains - SSL and ST, represented by

5 SSL approaches on ACDC dataset with 70 series in total, as well as by 4 ST and 3 SSL approaches

on SBD-augmented Pascal VOC with 10582 images in total. This is the first evaluation of SAIM on

these datasets. The comparisons are setup as emulated annotation scenarios, where the virtual

user operates the interactive predictor with the same rules as in sections 5.4.2 and 5.4.4. For this

experiment, we maintain the architecture detailed in Section 5.4.1, but replace the backbone with

ResNet50 (He et al., 2016) instead of ResNet34 to be on par with other methods.

Method
Classically-generated annotations
1/16 (662) 1/8 (1323) 1/4 (2645)

Supervised-baseline (Yang et al., 2022) 64.0 69.0 71.7
CCT (Ouali et al., 2020) 65.2 70.9 73.4
CutMix-Seg (French et al., 2019) 68.9 71.7 72.5
GCT (Ke et al., 2020) 64.1 70.5 73.5
CPS (Chen et al., 2021c) 68.2 73.2 74.2
CPS† (Chen et al., 2021c) 72.0 74.3 74.9
ST (Yang et al., 2022) 72.2 74.8 75.5
ST++ (Yang et al., 2022) 73.2 75.5 76.0

SAIM (ours) 78.3 79.2 80.4

Table 5.9: Experiment results for SAIM in realistic scene image segmentation against 4 ST and 3 SSL meth-
ods on Pascal VOC dataset given as mIoU. Listed methods’ domain attribution is as follows per-line : (1)
supervised baseline, (2-4) SSL and (5-8) ST. The final scores are provided for models trained with all avail-
able data. The ‘Classically-generated annotations’ column indicates the fraction of data paired with the
original Pascal VOC annotations. For the remaining data, the methods differ: SAIM and ST approaches use
annotations generated by themselves, while SSL methods utilise data without annotations.

ST. We compare SAIM with (Yang et al., 2022) in realistic scene image segmentation on Pascal VOC

dataset, which involves 21 class, including background. The results are presented in table 5.9 and

vary based on the subset of the original classically annotated dataset used as input. Specifically,

the subsets comprise 1/16, 1/8, and 1/4 of the entire dataset. Dataset splits are the same for all

methods. We observe that SAIM achieves the best performance no matter the subset used for

pre-training with ST methods being the closest. It can be mainly attributed to SAIM capability

to produce strong instead of the pseudo- labels used in ST methods. Although ST++ attempts to

address label reliability by identifying and prioritising reliable labels for training, it still falls short.

SSL. We compare SAIM with (Yang et al., 2023a) in cardiac MRI segmentation on ACDC dataset,

which involves 4 classes: Right Ventricular (RV) cavity, myocardium, Left Ventricular

(LV) cavity and background. The results are presented in table 5.11 and vary based on the size

of the classically-annotated subset used as input. Specifically, the subsets consist of 1, 3, and 7
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series. Dataset splits are the same for all methods. We observe that SAIM achieves the best overall

performance, but with small margins. For instance, using the 1-, 3-, and 7-series subsets, SAIM

achieves Dice scores of 86.0, 90.3, and 91.4, outperforming UniMatch by 0.6pp, 1.4pp, and 1.5pp

respectively. We attribute this to the two main factors: (1) the limited pre-training dataset sizes

with only 32 images in the 1-series subset, and (2) the performance already nearing the upper

bound achieved by recent methods using only classically annotated data, such as (Kato and Hotta,

2024).

Method
Classically-generated annotations
1 series 3 series 7 series

Supervised-baseline (Yang et al., 2023a) 28.5 41.5 62.5
UA-MT (Yu et al., 2019) N/A 61.0 81.5
CPS (Chen et al., 2021c) N/A 60.3 83.3
CNN & Trans (Luo et al., 2022) N/A 65.6 86.4
UniMatch (Yang et al., 2023a) 85.4 88.9 89.9

SAIM (ours) 86.0 90.3 91.4

Table 5.11: Experiment results for SAIM in cardiac MRI segmentation against 4 SSL methods on ACDC
dataset given as Dice. The final scores are provided for models trained with all available data. The
‘Classically-generated annotations’ column indicates the fraction of data paired with the original ACDC
annotations.

5.5 Conclusion

We have proposed a general concurrent neural predictor training and data annotation framework

called SAIM. The strength of SAIM is its unique ability to exploit the newly annotated data as the

annotation task progresses in order to improve the annotation mechanism. This is achieved by

involving the predictor being trained in the steps of data selection and of interactive annotation.

The neural model is thus always up-to-date and coherently shared by all the system components,

contributing to optimal choices and quick improvements of the predictor performance as anno-

tation proceeds. As a consequence, SAIM allows one to annotate massive datasets fast from very

limited initial annotations.

We evaluated SAIM in five emulated annotation scenarios using fully-annotated segmentation

datasets, including FPMRI segmentation, using FPMRId dataset, liver and pancreas CT segmenta-

tion from the medical segmentation decathlon challenge, cardiac MRI segmentation on ACDC

dataset, and natural image segmentation on Pascal VOC 2012 dataset. Furthermore, we com-

pared SAIM to state-of-the-art approaches in the closest domains to our contribution, evaluat-

ing it against 10 ST and SSL methods in total. We also conducted an ablation study to evaluate the

impact of individual components in SAIM by comparing base and advanced versions of the frame-

work. The advanced version incorporates two key improvements over the base version: (1) LPH,

which introduces state-of-the-art data selection criterion based on predicted loss and (2) class-

based weighting, which address class-imbalance issues when selecting data. The study demon-

strated that these enhancements significantly boost SAIM’s performance while highlighting the

time efficiency of re-training over fine-tuning for smaller datasets, with re-training achieving more

than twice the convergence speed. We also applied SAIM to AMOS kidney MRI segmentation - a
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real-world case of very large dataset annotation, which cannot be feasibly annotated otherwise.

This shows that SAIM jumpstarts efficient interactive annotation from limited annotated data and

minimises the amount of data to annotate, while improving predictor performance. Simply, SAIM

is a powerful two-in-one annotation and training solution to drag-and-drop in a large dataset an-

notation task without the need for an efficient neural predictor to be prepared first.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Image segmentation remains challenging despite active research and numerous proposed solu-

tions. This is especially true in the medical domain, where limited data, such as FPMRI, variations

in image quality, organ morphology, and the presence of diverse pathologies make it challenging

for both radiologists and computational approaches. At the same time, existing methods often

overlook the crucial role of expert involvement in clinical setting, and the substantial resources

necessary for medical image annotation compared to natural images. Still, clinically-adapted

methods that effectively address these challenges are crucial to reduce the radiologists’ workload

and streamline both the prototyping and deployment of new AI solutions. In this work, we intro-

duced four distinct contributions to segmentation with two data-wise and two application-wise

contributions respectively. On the data side, we established a new FPMRI segmentation dataset

called FPMRId and investigated its inter-expert variability to lay the groundwork for robust seg-

mentation model development. On the application side, we presented two key contributions de-

signed with industrial and clinical usage in mind. First, a framework for interactive segmenta-

tion, which takes in consideration the order of user interactions to improve performance. Second,

a general annotation framework effective in limited annotated data regimes, featuring a single

model shared between the tasks of annotation, training and data selection.

On the data side, we are gathering and curating what is, to the best of our knowledge, the first

large-scale FPMRI dataset currently comprising 374 medical scans with segmentations for nine

classes: (1) bladder, (2) uterus, (3) uterine cavity, (4) cervix, (5) fundus, 6) anterior wall, (7) uterine

myomas, (8) endometriosis, and (9) adenomyosis. Five of these classes (1, 2, 3, 4, and 7, respec-

tively) were the focus of our inter-expert variability study, the first of its kind for these classes in

FPMRI. The study revealed high agreement for larger, well-defined structures (e.g., uterus and

bladder) but moderate and less consistent agreement for smaller, more complex ones (e.g., cervix

and uterine cavity). Overall, we observed that while manual segmentations are generally consis-

tent among experts, certain scans may exhibit characteristics which demand special attention,

requiring each scan to be examined on an individual basis. These findings informed our subse-

quent application-oriented contributions by highlighting the importance of expert input during

annotation, the challenges posed by limited data, and the need for particular focus on complex

and under-represented classes.

Building on this foundation, we proposed an interactive segmentation framework that em-
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ploys sequential memory to treat user corrections as a sequence rather than an unordered set of

clicks, thereby improving segmentation accuracy with fewer interactions. Our experiments on

FPMRI, as well as on liver and pancreas CT scans, demonstrated both performance gains and re-

duced annotation time for medical experts, making the framework attractive for clinical usage.

This framework is intended to become a part of the industrial segmentation solution SURGAR-

PLAN by SURGAR (SURGAR, 2024), which is used to construct 3D models from MRI scans for

surgical AR.

Further, we introduced SAIM, a framework that integrates data selection, annotation, and

model training into a single end-to-end system. This yields a powerful ‘two-in-one’ solution,

which is both an annotation tool and a predictor that can be readily adopted in clinical workflows

or industrial pipelines where large-scale data annotation is typically a bottleneck. By incorporat-

ing active learning, SAIM prioritizes the most informative samples, thereby minimizing annota-

tion effort while steadily improving the model. We designed SAIM to bridge the gap between data

annotation and model deployment, which are often separated in conventional industrial work-

flows, necessitating additional resources. We find that this principle, alongside model sharing,

forms the foundational basis of SAIM. With or without adhering to the architectural specifics de-

tailed in chapter 5, this foundational basis offers considerable benefits in industrial settings and

warrants further exploration. Currently, the advanced version of SAIM and its underlying princi-

ples are intended for internal use and to be built upon in new annotation projects as outlined in

section 6.2.

The results presented in this work indicate that the proposed methods are ready for indus-

trial transfer and are broadly applicable to other medical imaging domains beyond FPMRI seg-

mentation, acknowledging that the industrial transfer is an undertaking in itself. More precisely,

the proposed expert-controlled frameworks targeting annotation workload reduction are critical

to enable deployment and growth of the diagnostic and decision-support systems featuring DL,

such as U-SURGAR (SURGAR, 2024).

6.2 Future Work

In this section, we discuss avenues for improving both the interactive segmentation framework

(chapter 4) and SAIM (chapter 5). We organize these potential enhancements into short-term

and long-term, further grouped under four main categories: methodology, data, evaluation, and

technical, according to the aspect to be improved. This results in six short-term and eight long-

term improvements in total.

6.2.1 Short-term

Methodological Limitations

Interactive Segmentation Framework

1. Volumetric segmentation

The transition from slice-by-slice to volumetric segmentation could allow leverage the 3D

nature of medical imaging, thereby potentially improving the capture of anatomical conti-

nuity, reducing user interactions, and increasing accuracy. This shift requires adaptation of
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the SIM and DDG modules of the framework to volumetric data, as well as employment of a

suitable volumetric network architecture.

Data Limitations

Interactive Segmentation Framework

2. Same domain pre-training

While pre-training on ImageNet is effective, it is widely recognized that performance is fur-

ther improved when pre-training data is closer to the target domain. To the best of our

knowledge, the recently released UMD (Pan et al., 2024) is currently the largest publicly

available dataset for uterine MRI segmentation, comprising 300 annotated T2-weighted

sagittal images with uterine myomas, as discussed in section 2.2.4. Although UMD is lim-

ited in the number of featured classes, pre-training on this dataset may still boost our frame-

work’s performance, which is all the more challenging due to severe lack of available anno-

tated data in FPMRI segmentation domain.

3. Training on the up-to-date FPMRId

FPMRId currently comprises 374 medical scans, of which only 97 are used in this work for

training. This subset was selected to maintain consistent experimental evaluation through-

out the ongoing annotation process, which runs in parallel with the research. Training on

the complete FPMRId could substantially enhance generalization and boost performance.

Evaluation Limitations

SAIM

4. Predictor architecture comparison

Further experimental evaluation is needed to assess how different network backbones af-

fect SAIM’s performance. For instance, integrating Segment Anything Model (SAM) (Ravi

et al., 2024), a SOTA segmentation model, into SAIM as the predictor would clarify how the

predictor’s performance impacts SAIM as a whole.

5. Additional real annotation scenarios

Extending the current experiments to additional real annotation scenarios would further

validate SAIM in the industrial annotation setting for which it is designed. According to

chapter 5, a scenario is considered ‘real’ if two conditions are fulfilled: (1) the dataset com-

prises predominantly unannotated data with only a small annotated subset, and (2) SAIM is

operated by a human expert. Evaluating SAIM under these conditions, rather than relying

solely on simulated annotation scenarios that use fully annotated datasets, would provide

additional insights into its versatility and performance.

Technical Limitations

Interactive Segmentation Framework & SAIM

6. Refactoring and Optimisation

Both frameworks, currently research prototypes, require refactoring and optimization. The

interactive segmentation framework integrates complex input-output management due to
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its SIM and DDG components. In turn, SAIM dynamically repartitions annotated and non-

annotated data pools, as well as iteratively updating the predictor. Streamlining these pro-

cesses would speed up annotation, data selection and predictor update processes, as well as

prepare a solid foundation for future improvements and maintenance.

6.2.2 Long-term

Methodological Limitations

SAIM

1. Pre-training data size estimation

An important practical question when using SAIM is how many pre-training data points per

task achieve the best balance between initial model performance, performance growth over

time, and the resources required. For example, starting with a very large annotated dataset

(e.g., millions of images) may yield high early accuracy and permit rapid annotation of new

data, but such dataset would be prohibitively time-consuming and costly to produce. Con-

versely, an extremely small initial dataset reduces the initial classical annotation burden, but

limits the starting performance. Producing a module capable of determining the optimal

quantity of annotated pre-training data, balancing strong initial predictions against unnec-

essary resource use, would allow for better estimations and greater control in SAIM-enabled

annotation projects.

2. Controlled domain shift

SAIM inherently induces domain shift by incorporating newly annotated data deliberately

chosen for its dissimilarity from what its predictor was trained on. This results in two key av-

enues for improvement. First, this shift could be monitored and quantified to ensure stable

performance as the predictor’s learned feature distribution evolves. Second, SAIM can be

advanced into a specialized domain adaptation solution guided by data selection through

AL. To enable these, it is of interest to potentially extend SAIM capabilities to those of the

SOTA approaches. For example, if the predictor was trained with data from one hospital and

newly acquired data comes from another, SAIM could enable a controlled domain adapta-

tion process while preserving its performance on the original domain.

Applicative Limitations

Interactive Segmentation Framework

3. Improved background class interactivity

Based on the user experiment feedback, reducing false positives in the background class is

challenging. This is because the network often learns to recognize the background too eas-

ily, leading it to place less importance on background clicks during training. Implementing

techniques such as BRS, discussed in section 4.5.2, could promote more effective click place-

ment for the background class. Additionally, exploring class-specific regularization based

on class complexity may help balance the learning process by penalizing simpler classes

more heavily. Although methods like focal loss and per-class weighting offer some improve-

ments, the overwhelming volume of background data limits their effectiveness. Therefore,

proposing more advanced regularization techniques is essential to enhance background in-

teraction without negatively impacting the performance on other classes.
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Further Improvements

Interactive Segmentation Framework

4. Advanced DDG

Currently, the click generation mechanism is probabilistic with a fixed maximum number

of clicks. Although DDG is based on classes and their components present in each image,

it does not fully take into consideration the image’s complexity. This could be improved by

dynamically adapting the number of generated clicks based on the model’s real-time perfor-

mance when training. A simple solution would be to potentially integrate such performance

metric into the loss function. Additionally, exploring various click encodings, such as disc-

shaped clicks with or without intensity gradients, as well as other shapes, may result in better

performance.

5. Advanced SIM

SIM is formed by maintaining a sequence of masks containing the user interactions. Fu-

ture work could investigate alternative memory architectures, such as Space-Time Memory

Network (STM), Extended Long Short-Term Memory (xLSTM) and attention-based mecha-

nisms. Specifically, SIM could be adapted to store learned features derived from these masks

with or without attention mechanisms. Such an approach offers two key advantages: (1) im-

proved performance - by better capturing the context and dependencies between user inter-

actions, and (2) reduced resource consumption - by storing compressed features instead of

the original interaction masks. This reduction in GPU memory usage can potentially allow

for larger batch sizes.

6. Extend to other applications

As demonstrated in the experimental evaluation (section 4.5), our framework is applicable

to a wide range of medical image segmentation tasks. Future extensions could target chal-

lenging classes within the FPMRId dataset that lack clearly defined contours, including (1)

cervix, (2) anterior wall, (3) fundus, (4) endometriosis, and (5) adenomyosis. Specifically, as

discussed in section 3.1.2 and illustrated by our inter-expert variability study in section 3.2,

classes 1 to 3 have contours that are not consistently identifiable by experts with high pre-

cision. Additionally, classes 4 and 5 are known for exhibiting significant variability in their

appearance, presenting challenges even for experienced practitioners. Extending our frame-

work to effectively segment these complex and variable classes could enhance its generali-

sation capabilities and robustness with on existing classes.

7. Reinforcement learning for interactive segmentation

Reinforcement learning is a promising research area that appears to align with the objective

of enabling the network to effectively respond to user interactions, which is being explored

in the literature. Simply, by treating each user click as an action that influences the segmen-

tation state, reinforcement learning can more accurately mimic human interaction patterns

during training compared to the probabilistic methods used in DDG. This transition has the

potential to enhance training efficiency and increase the impact of user interactions at test

time.

SAIM
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8. Advanced predictor update

SAIM currently relies on re-training or fine-tuning for predictor update. However, these ap-

proaches present certain limitations. Re-training becomes impractical for large and contin-

uously growing datasets due to the increase in computational resources required for each

subsequent iteration. In turn, repeated fine-tuning leads to catastrophic forgetting, where

the predictor’s performance on previously learned data deteriorates as it adapts to new in-

formation, as shown in section 5.4. To overcome these challenges, considering SOTA con-

tinual learning techniques is essential. Specifically, continual learning could offer two main

advantages: (1) reducing the predictor update time, and (2) maintaining stable performance

across all data, regardless of its recency. Furthermore, continual learning might allow to

adopt a fine-grained update mechanism, such as per series, per slice, per label, or per click.

This means immediately utilising validated annotations for real-time model update to ac-

celerate the annotation process for similar subsequent data. At the same time, with this

fine-grained approach, new avenues for improvement could open. For instance, it appears

beneficial to temporarily overfit a copy of the predictor on specific series, either in an un-

supervised or semi-supervised manner before annotation or in a supervised manner during

annotation. This targeted approach can improve performance for each specific series being

annotated, followed by updating the source predictor with the resulting annotations prior

to advancing to the next series.
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Appendix A

Acronyms

AE Autoencoder. 35

AI Artificial Intelligence. 1, 2, 7, 137

AL Active learning. 36, 38, 113, 114, 116, 119, 140

ANN Artificial Neural Network. iii, 1

AR Augmented Reality. iii, 23, 25, 26, 138

BRS Backpropagating Refinement Scheme. 99, 140

CADe Computer-aided Detection. 19

CADx Computer-aided Diagnosis. 19

CAI Computer-Aided Intervention. 23

CAM Class Activation Mapping. 44

CHU Centre Hospitalier Universitaire. 29, 54

CIM Cumulative Interaction Memory. 88, 92, 93

CLIP Contrastive Language-Image Pre-training. 43

CNN Convolutional Neural Network. 11

CONSORT-AI Consolidated Standards of Reporting Trials. 49

CT Computed Tomography. 14, 16, 87

CV Coefficient of Variation. 67–70, 75, 77–82, 84

DCE Dynamic Contrast-enhanced Imaging. 27

DDG Dynamic Data Generation. 93–95, 105, 139–141

DICOM Digital Imaging and Communications in Medicine. 16

DL Deep Learning. iii, 2, 87–90, 98, 109, 138

III



ACRONYMS

DNN Deep Artificial Neural Network. 2, 4

DWI Diffusion-weighted Imaging. 27

ET Echo Time. 56

FC Fully Connected Neural Network. 13

FCN Fully Convolutional Neural Network. 13

FIGO International Federation of Gynaecology and Obstetrics. 41, 83

FMA Found Myoma Agreement. 68, 83

FPMRI Female Pelvis MRI. iii, iv, 27, 53, 93, 104, 108, 109, 111, 125, 129, 135, 137–139

FPMRId Female Pelvis MRI dataset. iv, 16, 53, 97, 98, 114, 121, 125, 126, 128, 129, 131–133, 135,

137, 139, 141

FSE Fast Spin Echo. 56

GAN Generative Adversarial Network. 35

GEOS Geodesic Image Segmentation. 12, 89

GPT-3 Generative Pre-trained Transformer 3. 28

GPT-4 Generative Pre-trained Transformer 4. 42

GPU Graphics Processing Unit. 34, 141

GRU Gated Recurrent Unit. 35

GUI Graphical User Interface. 10, 47, 102, 128

HDS Health Data Hosting Certification. 58

IPAT Integrated Parallel Acquisition Techniques. 56

LIME Local Interpretable Model-agnostic Explanations. 44

LLM Large Language Model. 28

LPH Loss Prediction Head. 120–122, 128, 130, 132, 133, 135

LPL Loss Prediction Loss. 121, 122

LSTM Long Short-Term Memory. 96

LUS Laparoscopic Ultrasound. 23

LV Left Ventricular. 134

LVIS Large Vocabulary Instance Segmentation. 39

IV



ACRONYMS

MIS Minimally Invasive Surgery. 23

MITK Medical Imaging Interaction Toolkit. 47, 65

ML Machine Learning. iii, 1, 2, 4, 111–115, 117, 122

MLOps Machine Learning Operations. 45

MLP Multilayer Perceptron. 121

MONAI Medical Open Network for AI. 45

MRI Magnetic Resonance Imaging. 5, 14, 16, 87, 138

NAS Neural Architecture Search. 36

NLP Natural Language Processing. 36

NLST National Lung Screening Trial. 39, 41

PACS Picture Archiving and Communication System. 17

PCA Principal Component Analysis. 4

PET Positron Emission Tomography. 5, 14, 16

RJ Junior Radiologist. 68

RNN Recurrent Neural Network. 13

RR Radiology Resident. 68

RS Senior Radiologist. 68

RV Right Ventricular. 134

SAIM Single Active Interactive Model. iv, 31, 113, 114, 118, 119, 134, 135, 138–140, 142

SAM Segment Anything Model. 139

SDG Static Data Generation. 90, 103

SHAP Shapley Additive Explanations. 44

SIM Sequential Interaction Memory. 88, 92, 93, 121, 139–141

Slurm Simple Linux Utility for Resource Management. 46

SNN Shallow Artificial Neural Network. 2, 4

SOTA State of the Art. 6, 113, 134, 139, 140, 142

SSL Semi-supervised learning. 31, 36, 112, 114, 115, 135

ST Self-training. 31, 112, 114, 115, 135

V



ACRONYMS

STAPLE Simultaneous Truth and Performance Level Estimation. 30

STARD-AI Standards for Reporting Diagnostic Accuracy Studies. 49

STM Space-Time Memory Network. 141

T1WI T1-weighted imaging. 27

T2WI T2-weighted imaging. 27, 53

TCIA Cancer Imaging Archive. 29

timm Pytorch Image Models. 45

TR Repetition Time. 56

TRIPOD-AI Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis

or Diagnosis. 49

TSE Turbo Spin Echo. 56

UMAP Uniform Manifold Approximation and Projection. 64, 65

UMD Uterine Myoma MRI dataset. 39, 139

US Ultrasound. 14, 16

ViT Vision Transformer. 35

VR Virtual Reality. 25, 26

XAI Explainable AI. 42

xLSTM Extended Long Short-Term Memory. 141
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