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Abstract

Purpose. Keypoint detection and matching is a fundamental step in surgical
image analysis. However, existing methods are not perspective invariant and
thus degrade with increasing surgical camera motion amplitude. One approach
to address this problem is by warping the image before keypoint detection. How-
ever, existing warping methods are inapplicable to surgical images, as they make
unrealistic assumptions such as scene planarity.
Methods. We propose Surgical Image Perspective Correction (SurgIPC), a con-
vex method, specifically a linear least-squares (LLS) one, overcoming the above
limitations. Using a depthmap, SurgIPC warps the image to deal with the per-
spective effect. The warp exploits the theory of conformal flattening: it attempts
to preserve the angles measured on the depthmap and after warping, whilst
mitigating the effects of image resampling.
Results. We evaluate SurgIPC under controlled conditions using a liver phantom
with ground-truth camera poses and with real surgical images. The results demon-
strate a significant improvement in the number of correct correspondences when
SurgIPC is applied. Furthermore, experiments on downstream tasks, including
keyframe matching and 3D reconstruction using Structure-from-Motion (SfM),
highlight significant performance gains.
Conclusion. SurgIPC improves keypoint matching. The use of LLS ensures effi-
cient and reliable computations. SurgIPC can thus be easily included in existing
computer-aided surgery systems.

Keywords: image perspective correction, image matching, conformal flattening
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SurgIPC Back Transform

Number of correct correspondences: 41 Number of correct correspondences: 68+66%

SuperPoint + SuperGlue IPC + SuperPoint + SuperGlue

Fig. 1: SurgIPC cancels the effect of perspective and boosts the number of correct
correspondences. In this example, SurgIPC is added to SuperPoint-SuperGlue and
boosts matching by 66% (correspondences validated using the camera ground-truth).

1 Introduction

Keypoint detection and matching is a fundamental step in surgical vision, in par-
ticular in computer-assisted navigation, requiring multi-image organ reconstruction
and organ-based camera pose estimation. The descriptors generated for the keypoints
must be invariant against geometric and photometric changes, including illumination
and blur [1]. In particular, detecting keypoints at multiple scales gains scale invari-
ance [2] and rotating the patch to a dominant direction gains rotation invariance.
However, dealing with the perspective effect, occurring when the camera viewpoint
changes, is more challenging [1, 3–6]. Perspective distortion leads to significant key-
point appearance changes and causes image matching to fail. Perspective invariance
has been attempted with two main strategies. The first strategy tries to develop per-
spective invariant descriptors; this so far has only been successfully achieved for affine
transformations, a first-order approximation of perspectivities [3, 4, 7]. The second
strategy is to warp the images with the purpose of mitigating the perspective effect
prior to keypoint detection and description [5, 8–10]. Most methods in this category
use homographies and are thus specific to planar scenes [5]. However, these meth-
ods are insufficient for the surgical setting. For non-planar scenes, existing methods
require prior knowledge about the object geometry. In particular, [10] proposes a
solution for developable surfaces, which again makes it impractical for the surgical
setting. Consequently, image matching in the presence of viewpoint changes remains
a major unsolved problem. The recent method [11] uses monocular depth estimation
to compute the local surface curvature for each detected keypoint, which is then used
as descriptive information in matching. This method needs the depth predictor and
keypoint matcher to be jointly fine-tuned.

We introduce an image warping method named Surgical Image Perspective Cor-
rection (SurgIPC). It takes an image and a depthmap as inputs and generates a
perspective-corrected image. SurgIPC exploits the concept of conformal flattening as
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Fig. 2: Conformal mapping between two triangles with angle preservation.

a key component in warp computation. Conformal flattening is mostly used in com-
puter graphics for 3D mesh texture mapping. It transforms a 3D mesh to a 2D flat
domain while preserving angles [12], and thus limits the local geometric distortions
to a 2D similarity (translation, rotation, and scaling), mitigating the perspective dis-
tortion [8, 9]. However, warping the image may negatively impact keypoint detection
and matching, because of pixel resampling. This means that the image warp leads to
the creation (over-sampling) and destruction (under-sampling) of pixels [13], harming
the original image signal. We address this issue in the proposed warp using a second
key concept: image resampling minimisation. In summary, SurgIPC warps the images
while compromising between perspective cancellation and resampling minimisation. It
involves a convex cost with two terms, leading to a globally optimal solution that can
be reliably and effectively computed through simple linear least-squares minimisation.

2 Method

In SurgIPC, perspective cancellation is achieved by conformal flattening of the
observed surface. For that, there exists a linear least-squares formulation, which is
widely used in 3D geometry processing tools such as Blender and CGAL. The method
is called Least Squares Conformal Mapping (LSCM) [12]. It approximates the Cauchy-
Riemann equations in a least-squares manner. We propose a reformulation, the 3D
conformal cost, still convex, and with two main advantages over LSCM. Using LSCM
or the 3D conformal cost on their own may cause resampling distortion, due to an
excessive emphasis put on angle preservation. Additionally, LSCM requires one to
fix the position of two vertices to avoid degenerate spurious solutions. The positions
of these vertices may drastically change the overall solution. In SurgIPC, resampling
minimisation uses a cost measuring the extent of over-sampling or under-sampling.
We propose a convex image displacement cost. We next present the two cost terms
and the method pipeline.

2.1 3D Conformal Cost

According to Riemann’s theorem, any surface homeomorphism to a disk can be rep-
resented by a planar conformal parameterisation [14]. We use triangulated meshes
constructed from the image’s depthmap and the parametrisation is between 3D and
2D triangles. For a triangle ABC and its corresponding conformally flattened version
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abc, shown in figure 2, the mapping between is affine and conformal if and only if
the angles are preserved. We choose three points Q0, Q1, Q2 in ABC forming two
orthogonal vectors, hence:

Rot90(
−−−→
Q1Q0) =

−−−→
Q2Q0. (1)

Generalisation to non-orthogonal vectors is straightforward by choosing a custom
angle. Under a conformal map, the following condition must thus hold in abc:

Rot90(
−−→v1v0) =

−−→v2v0, (2)

where vi, i ∈ [0, 1, 2] represent the positions of the mapped points within the 2D
domain. In other words, the flat triangle must be a positively scaled version of its 3D
counterpart. Let [αj , βj , γj ], j ∈ [0, 1, 2] be the barycentric coordinates of ABC ; we
thus have for the desired unknown vertices of abc:

vi =

[
αj 0 βj 0 γj 0
0 αj 0 βj 0 γj

] [
xa ya xb yb xc yc

]⊤
, (3)

where xa,b,c and ya,b,c are the x and y coordinates of the abc vertices. Rewriting
equation (2) in barycentric coordinates, we establish a linear system for the conformal
transformation between the two triangles:

Mtpt = 0, (4)

where pt holds the location of the t-th triangle vertices mapped to 2D and Mt simply
relies on its geometry in 3D as:

Mt =
[
α2 − α0 α1 − α0 β2 − β0 β1 − β0 γ2 − γ0 γ1 − γ0

α1 − α0 α2 − α0 β1 − β0 β2 − β0 γ1 − γ0 γ2 − γ0

]
. (5)

The non-trivial solution of equation (4) gives the desired coordinates of the confor-
mally flattened abc. To establish conformality for the entire 3D mesh, we minimise
equation (4) in the least-squares sense for the entire 3D mesh triangle set T3D, leading
to the conformal cost as a function of the flattened vertices p:

Cconf (p) = Σt∈T3D
∥Mtpt∥2. (6)

This proposed formulation of the conformal constraints is convex and has two main
advantages over LSCM [12]. The first advantage is generality. The original LSCM
formulation uses complex functions and their derivatives to derive the LSCM cost
for a triangle, which preserves the angle between two arbitrarily selected orthogonal
vectors on the triangle. In contrast, our formulation preserves the angle between any
two custom vectors on the triangle. It can thus reproduce the LSCM formulation as
a special case but can also use any other single or multiple vector pairs to express
the conformal constraint. The second advantage is the need for the original LSCM
method to fix the position of two vertices in the parameterisation domain to prevent
trivial spurious solutions. In the application case at hand, which is image matching,
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this would incur an unreasonable image resampling. In contrast, our method does
not require prescribing these two vertices: the proposed SurgIPC cost prevents trivial
spurious solutions from occurring thanks to its image displacement cost.

2.2 Image Displacement Cost

We formulate a cost function which characterises the extent of image resampling, by
measuring the displacement of pixels placed on a 2D grid within the image, as:

Cdisp(p) = ∥Pinit − p∥2, (7)

where Pinit represents the initial position of the grid and p its desired but unknown
position. We initialize Pinit by pruning a regular grid to approximately cover the region
of interest. This linear least-squares cost imposes minimal pixel displacement image
to reduce the resampling effect while texture-mapping.

2.3 Method Pipeline

SurgIPC takes an image and depth map as its initial input. It begins by generating
the corresponding point cloud of the scene, using depth estimation. It then creates
two triangulated meshes. The first mesh represents the 3D mesh of the target object
within the scene. The second mesh is a 2D image grid corresponding to the same
object. For each input image, application-specific object masks are applied to the
image and its corresponding 3D mesh to segment the region of interest. This was done
to ensure a fair evaluation, focusing solely on the target objects and also to prevent
any discontinuity in the depth map. The warp is driven by the mesh vertices, which
are computed by cost minimisation. The image is finally warped.

The total SurgIPC cost combines the 3D conformal and image displacement costs
to achieve the simultaneous preservation of 3D angles and the prevention of resampling:

Cλ(p) = λµconfCconf (p) + (1− λ)µdispCdisp(p), (8)

where µconf and µdisp are fixed parameters used to normalise the range of the two
terms to a consistent scale. The hyperparameter λ ∈ [0, 1] is chosen to balance the
two terms. The SurgIPC cost is convex, specifically linear least-squares, and thus can
be efficiently and reliably solved in real time.

3 Experimental Results

We report experiments on several models.

3.1 Evaluation with a Liver Phantom

We quantitatively evaluate the use of SurgIPC with a 3D-printed and painted liver
phantom. It was constructed by first reconstructing a 3D liver model from a patient CT
obtained from our hospital within an IRB-approved protocol. Subsequently, randomly-
spaced carved markers with known 3D locations were added to the 3D liver model
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Fig. 3: 1) Quantitative experiment with 3D-printed and painted liver phantom. We
positioned eight markers, represented as small black circles on the phantom surface, to
facilitate stable pose estimation and ground-truth assessment. The green lines indicate
correct correspondences, while the red lines are incorrect correspondences. In this
experiment, SurgIPC improved the number of correct correspondences from 41 to
68. 2) Experiment conducted with surgical liver images. In this experiment, SurgIPC
improved the number of correspondences from 174 to 217. In both experiments, A)
represents the result of keypoint matching for the original images, B) represents the
keypoint matching in flattened domain, and C) represents the result using SurgIPC.
For both experiments presented in this figure, we have used SuperPoint and SuperGlue.

surface before 3D printing. These markers facilitate camera pose ground-truth estima-
tion. This is particularly important in our experiments, as it enables the transfer of
pixels between images and the automatic and reliable assessment of correspondence
accuracy. A correspondence is considered valid if its transfer error is lower than a
threshold set to 3 pixels. The transfer error is computed as the distance between the
keypoint in the second image and the keypoint in the first image transferred to the sec-
ond one, averaged with the distance computed by reversing the two images to ensure
bidirectionality. Lastly, after printing, we painted the phantom to obtain the typical
repetitive liver texture, enhancing realism and challenging image matching algorithms.
We have captured images of this phantom using an intel realsense D405 RGB-D cam-
era. Recall that the motivation of SurgIPC is that most keypoint detection methods
cannot cope with perspective. This means that SurgIPC is an optional step usable in
combination with any existing keypoint detection method. In other words, the eval-
uation should be done for representative keypoint detection and matching methods,
comparing them without and with the use of SurgIPC. We use SuperPoint keypoint
detector [7] combined with the SuperGlue matcher [15] as well as LoFTR [16]. These
methods form the state-of-the-art in learning-based matching. We have used the main
GitHub repository for SuperPoint and SuperGlue, and the Kornia library implemen-
tation [17] for LoFTR. We use SIFT and ORB, as popular classical keypoint methods.
With these methods, we have the representative methods for both the classical and
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#Crsp. ↑ #C. Crsp. ↑ Precision ↑ Recall ↑ #Crsp. ↑
easy hard easy hard easy hard easy hard

SIFT+UBCMatcher 49 12 45 2 0.92 0.17 0.80 0.06 174
SurgIPC+SIFT+UBCMatcher 50 24 47 12 0.94 0.74 0.70 0.32 217
ORB+NN 145 0 94 0 0.65 0.00 0.45 0.00 25
SurgIPC+ORB+NN 142 5 96 2 0.68 0.40 0.36 0.08 41

SuperPoint+SuperGlue 137 53 135 41 0.99 0.52 0.90 41 245
SurgIPC+SuperPoint+SuperGlue 136 76 133 68 0.98 0.65 0.88 68 284
LoFTR 318 206 295 161 0.93 0.81 0.64 0.38 352
SurgIPC+LoFTR 324 343 301 264 0.93 0.77 0.65 0.70 398

Table 1: Comparison between methods with and without using SurgIPC. The phan-
tom results are obtained using the liver phantom shown in Figure 1. The column
‘#Crsp.’ gives the number of correspondences obtained by the matching algorithm.
The ‘#C. Crsp.’ column gives the number of correspondences validated by using the
phantom’s ground-truth pose. For all metrics, the higher, the better. Surgical column
shows the results for surgical liver images. In this case, we only report the #Crsp.,
as no camera ground-truth was available.

learning-based approaches. Using this setup, we evaluated SurgIPC under two condi-
tions: easy and hard. As a preliminary step, we performed a ‘sanity check’ of SurgIPC
under easy conditions, characterised by rich textures and minimal viewpoint changes.
For this evaluation, we selected two consecutive frames of the liver phantom with negli-
gible perspective variation, referred to as the easy frames. Conversely, the hard frames
involved significant perspective distortion. The results, shown in table 1, demonstrate
that SurgIPC brings a significant performance boost in hard conditions across all
compared methods, as validated by the ground-truth poses. For easy frames, there is
no observable significant degradation in the number of correct correspondences when
SurgIPC is used.

3.2 Evaluation with Surgical Liver Images

We evaluate the SurgIPC with real laparoscopic images of a patient’s liver captured in
our hospital. We selected frames where the surgeon has rotated the camera around the
organ and induced the perspective effect. We used [18] monocular depth estimation
network and created the 3D mesh of the scene using the camera intrinsic parameters.
Note that as in SurgIPC formulation the scale of the 2D flattened mesh is constrained
by the image displacement, only the shape of the 3D object is sufficient for the method.
Therefore, depth estimation methods such as monocular depth estimation networks
which estimate the depth map up to scale are compatible with SurgIPC. Figure 7
shows the output flattened images as well as the result of keypoint matching. Con-
cretely, without SurgIPC we obtained 174 correspondences, whereas with SurgIPC
and monocular depth, we observed an increase to 217 correspondences.
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  Image matching for original image pair2

      Corresponding point clouds

     Image matching in flattened domain

3   Back transform to original images

4   Keyframe matching for a sequence of images1

5

Fig. 4: Keyframe matching in robot-assisted partial nephrectomy. (1) Keyframe
matching results for individual frames of a sequence. The original frame rate of 60 fps
was reduced to 5 fps to ease visualisation. The left channel of the stereo camera was
used. Frame #1 is chosen as the keyframe and matched to the subsequent frames.
The graph shows the number of correspondences of the baseline method without and
with SurgIPC, and their ratio. Up to frame #8 (indicated by a vertical black line),
the frame difference is minimal and using SurgIPC does not make a difference against
the baseline (the horizontal black line represents a ratio of one). Beyond frame #8, as
perspective distortions intensify, SurgIPC demonstrates its distortion correction capa-
bility and significantly outperforms the baseline. (2) shows the keyframe on the left
and frame #35 on the right, overlaid with the baseline matching result. (3) shows the
monocular point clouds inferred from EndoDAC’s depth map and the laparoscope’s
intrinsic parameters. (4) shows the matching result in the flattened domain. (5) shows
the result of SurgIPC, as the matched keypoints back-transformed to the original
images. Visual inspection did not reveal mismatches, showing that the matches are
correct to an excellent extent.

3.3 Keyframe Matching in Partial Nephrectomy

We have conducted an organ tracking experiment involving a partial nephrectomy
robot-assisted surgery sequence. In this sequence, the surgeon mobilises the kidney
with a side push to expose it sideways, a very common type of gesture during the
organ’s initial inspection phase. This introduces substantial perspective changes from
the beginning of the sequence. We established the initial frame of this sequence as the
keyframe and evaluated SurgIPC’s performance by matching all subsequent frames
to this keyframe. We used EndoDAC [19] for depth estimation and the camera’s
intrinsic parameters to then reconstruct the point clouds. The results, as shown in
figure 4, demonstrate a tremendous increase in the number of correspondences when
using SurgIPC. Concerning the data used in this experiment, the patient gave written
informed consent in accordance with the UroCCR project (French network of research
on kidney cancer, NCT03293563).
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       COLMAP1  SurgIPC + COLMAP2

Fig. 5: Visual comparison of COLMAP reconstruction output. 1) COLMAP used as
baseline, without using SurgIPC, and 2) COLMAP used with SurgIPC’s keypoints.

3.4 3D Reconstruction

We have conducted a 3D reconstruction experiment by combining SurgIPC with
COLMAP [20, 21]. The objective is to evaluate the integration of SurgIPC with
standard Structure-from-Motion (SfM). We fed both the keypoints and descriptors
obtained through SurgIPC, as well as the regular ones obtained without using SurgIPC
for comparison purposes, into the COLMAP pipeline. For this experiment, we used
the partial nephrectomy video sequence used in the experiment in 3.3. The reconstruc-
tions are illustrated by figure 5 and statistical results given in table 2. We observe
that SurgIPC significantly boosts the number of matched images, from 37 images
without SurgIPC to 88 images with SurgIPC, and achieved a significantly denser final
reconstruction, from 3,303 points without SurgIPC to 4,976 points with SurgIPC.
Additionally, the mean track length is extended from 8.43 to 11.23 frames, and the
computation time is reduced from 3.28 minutes to 1.55 minutes. The mean reprojec-
tion error slightly increased from 0.87 to 1.02 pixels, an insignificant difference of only
0.15 pixels, compared to the boost obtained in the number of reconstructed cameras
and structure density, indicating that SurgIPC significantly enhances the robustness
and completeness of the 3D models generated by COLMAP. This experiment indicates
the practical utility of SurgIPC in enhancing SfM methods.

Method #Cameras #Registered Imgs. #Points Reproj. Error (px) Time (min)

COLMAP 37 37/95 3303 0.87 3.28
SurgIPC + COLMAP 88 88/95 4976 1.02 1.55

Table 2: SfM reconstructions obtained by COLMAP without and with SurgIPC.

3.5 Additional Data

We present three sets of additional data and results.
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Fig. 6: Qualitative results for the experiment on ‘easy’ frames of the liver phantom
with minimal viewpoint change.

3.5.1 Additional Qualitative Results for the Liver Phantom

We give additional qualitative results for the experiment conducted on the easy frames
from section 3.1. Recall that these frames represent an easy case designed to verify the
absence of performance decrease with the use of SurgIPC. These frames were chosen as
consecutive frames of a liver phantom video, hence with minimal perspective variation.
Figure 6 shows the frames and the matching results obtained with and without using
SurgIPC. The results were obtained with SIFT combined with UBCMatcher, and are
extensively described in table 1.

3.5.2 Results for an Ex-vivo Sheep Liver

We selected a sheep liver for its anatomical similarity to the human liver, featuring
two lobes, as its human counterpart. This example features a case with limited texture
and high resemblance between the point appearances. We acquired images by rotating
the camera around the organ to induce perspective changes. Manual validation was
performed to determine the correct correspondences for this dataset. The results shown
in figure 7 demonstrate a boost in terms of the number of correspondences when
SurgIPC is used, in combination to SuperPoint and SuperGlue. Without SurgIPC,
we obtained 5 correspondences (all correct), whereas with SurgIPC, we observed an
increase to 32 correspondences, among which 21 are correct.

3.5.3 Results with a Uterus Phantom

We used a surgical female pelvic trainer phantom. This phantom includes the uterus
and other anatomical landmarks with standard shapes and textures. We used an
Intel RealSense camera D415, which is a short-range stereo camera and provides sub-
millimeter depth accuracy. To compare with this depth data, we used MiDaS for
monocular depth estimation [18]. Using the estimated depth we created the 3D mesh
of the scene using the camera intrinsic parameters. We used the proposed SurgIPC
pipeline for both depth maps. Figure 8 shows the output flattened images as well as the
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Fig. 7: Qualitative experiment with sheep liver. 1) Represents the original images
and the result of keypoint matching, 2) represents the warped images using SurgIPC
and the result of keypoint matching in flattened domain, 3) represents the result of
transforming the keypoints back to original image-view. We have used SuperPoint as
keypoint detector and SuperGlue as matcher. The results show a significant improve-
ment in the number of correspondences.

result of keypoint matching. Concretely, without SurgIPC, we obtained 10 correspon-
dences, of which 6 were correct, whereas with SurgIPC and deep learning monocular
depth, we observed an increase to 16 correspondences, all of which were correct. Addi-
tionally, with SurgIPC and the depth sensor, we have 13 correspondences, with 12 of
them being correct. For this experiment, we used SIFT combined with UBCMatcher.
In both cases with different depth inputs, the warped images are fronto-parallel and
the perspective effect is cancelled. As a consequence, the images are more similar, and
thus the number of correspondences increases.
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Fig. 8: Uterus phantom image matching with and without using SurgIPC, using
different depth sources. A, Input images. B, Image matching using original images. C,
Estimated depths via the monocular neural network and stereo. D, Image matching
in perspective-free view, (Up: The input 3D mesh for SurgIPC is generated from
monocular depth. Down: The input 3D mesh for SurgIPC is generated by the active
stereo depth sensor). E, Back-transforming the correspondences to the original view.

4 Ablation Studies

We report an ablation study for the effect of resampling and for the depth accuracy.

4.1 Effect of Resampling on Image Matching

In this experiment, we have varied the value of λ from zero to one and measured the
performance of the methods by quantifying the number of correspondences and the
number of correct correspondences. The results are shown in figure 10 and example
warped images for 5 different λ values are shown in figure 9. Recall that λ is a hyper-
parameter of the cost function chosen within the [0,1] interval which allows one to
trade-off the conformal cost and the resampling. When λ goes to one, the flattening
tends to be highly conformal but with high resampling. The spurious trivial solution
occurs when λ strictly equals one and we thus use an upper-bound of 0.995. This is
shown by a yellow point in figure 10. Conversely, when λ goes to zero, the flattening is
the least conformal but with the least resampling. The image simply does not change
when λ strictly equals zero. This is shown by a red point in figure 10.

Several observations can be made from this comparison. First, the graphs clearly
show the incompatibility of LSCM with the task at hand of image matching. Recall
that LSCM preserves the angles and thus has the potential for resolving perspective
distortion. However, its poor performance on image matching was expected: as LSCM
is primarily designed to address texture mapping, it is not constrained on the right
image scale, and thus significantly incur image resampling. In contrast, the proposed
SurgIPC shows the desired performance as it is purposefully designed to address both
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perspective and resampling. Second, the performance of LSCM on image matching
is even worse than matching the original images. This highlights the impact of the
proposed SurgIPC formulation which effectively addresses the task of image matching
by limiting the resampling effect of LSCM. Third, it is worth mentioning that we have
used a fixed λ = 0.95 for all experiments, including phantom and ex-vivo data. While
this indicates stable SurgIPC performance, there still remains future work for careful
hyperparameter tuning and finding λ automatically.

Lambda = 0.95Lambda = 0.0 Lambda = 0.995Lambda = 0.50Lambda = 0.15

Original images Warped images using SurgIPC

Fig. 9: Warped images obtained by SurgIPC for five sample values of λ. The original
image pair is shown left and the warped images right. The warped images visually
demonstrate the effect of λ selection and the trade-off between resampling and perspec-
tive correction. For λ equals zero, we obtain the original image without resampling,
but one can clearly distinguish the perspective distortion effect upon careful obser-
vation. As λ approaches one, the perspective distortion is being corrected and the
warped image looks fronto-parallel. However, the image starts to shrink, thus resam-
pling becomes higher. For λ values in between, such as λ equals 0.95, we have a
trade-off between perspective correction and image resampling: the warped image is
almost equal to the original image in size and the perspective effect is effectively cor-
rected.

4.2 Effect of Depth Accuracy on SurgIPC’s Performance

In order to examine the quality of depth estimation network on SurgIPC, we have
compared the impact of several depth estimation networks on the practical use-case
of intraoperative 3D reconstruction by SfM, introduced in our experiments in section
3.4 . We have chosen depth estimation networks which were reported to improve in
accuracy after fine-tuning on surgical datasets, namely AF-SfM Learner [22], Endo-
DAC [19], and TRSMDV [23]. For this ablation study, we use the partial nephrectomy
sequence used in experiments conducted in sections 3.3 and 3.4, and report the statis-
tics of the final reconstruction metrics for each depth estimation method in table 3. We
observe that the accuracy of the depth estimation methods has an important impact
on the performance of SurgIPC. For instance, the AF-SfM Learner [22], which has the
lowest reported accuracy among the tested methods [19, 23], resulted in the spars-
est reconstruction, with 3,108 points. This is even fewer than the number of points
generated without using SurgIPC.
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Fig. 10: Impact of λ on SurgIPC performance. 1) shows performance as number
of correspondences and 2) shows performance as number of correct correspondences
validated by ground-truth. For both graphs, the results were obtained by Super-
Point followed by SuperGlue. The blue line illustrates the number of correspondences
achieved with SurgIPC against λ. Three special points are highlighted on the graphs.
1) The red circle at λ equals zero represents the zero resampling and the highest per-
spective distortion; it corresponds to the result obtained when matching the original
images. 2) The yellow circle when λ goes to one represents the most conformal solution
with the highest degree of resampling. 3) The graph maximum which is the optimal
trade-off between resampling and perspective correction. The black line shows the per-
formance of LSCM, which is independent of λ and clearly below par.

To further analyse the impact of the input depth quality, we qualitatively evaluate
the point clouds generated using AF-SfM learner and EndoDAC, and the correspond-
ing image warps produced by SurgIPC in figure 11. The point clouds are visualised
from the same viewpoint, allowing for a direct comparison. Upon close examination,
it is evident that the 3D shape of the kidney is inferred differently by both meth-
ods. These variations in 3D shape lead to differing SurgIPC image warps, resulting in
notably different perspective corrections. For example, the output image warp for a
close-up shown in figure D varies significantly between the methods.

Method #Cameras #Registered Imgs. #Points Reproj. Error (px) Time (min)

COLMAP 37 37/95 3303 0.87 3.28
EndoDAC + SurgIPC + COLMAP 88 88/95 4976 1.02 1.55
AF-SfM + SurgIPC + COLMAP 28 28/95 3108 1.05 3.40
TRSMDV + SurgIPC + COLMAP 84 84/95 4251 0.97 1.20

Table 3: Impact of the depth estimation network on the final 3D reconstruction. The
3D reconstruction is obtained by SfM via COLMAP without and with SurgIPC.
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Fig. 11: Qualitative comparison of the impact of the depth estimator quality on
SurgIPC’s image warp. Both 3D visualisations on the left are rendered from the same
viewpoint, showing how strongly different the predicted depths are, explaining why
AF-SfM + SurgIPC underperforms, AF-SfM being having the least performance in
depth estimation [19, 23], while EndoDAC + SurgIPC is consistently beneficial to the
downstream tasks, such as SfM. We thus recommend using SurgIPC systematically in
point matching tasks with EndoDAC as base depth estimator.

5 Discussion

We discuss three points. First, although improving matching would directly improve
stereo reconstruction, SfM and visual SLAM, however, the number of benefitting
downstream tasks is probably much more important. It would improve organ tracking,
pose estimation and deformable reconstruction methods, to name but a few. Indeed,
in contrast to rigid methods such as SfM, where the use of RANSAC brings a strong
tolerance to spurious point correspondences, deformable reconstruction methods such
as Shape-from-Template (SfT) and Non-Rigid Structure-from-Motion (NRSfM) do
not benefit from a global geometric model and cannot use RANSAC. They are thus
extremely sensitive to spurious correspondences, which the proposed SurgIPC consid-
erably reduces, as shown in the experiments. Therefore, progress in keypoint matching
drives one towards the use of deformable reconstruction which would strongly benefit
navigation in soft organs.

Second, to assess the benefit in runtime, we have reimplemented the area-based
resampling cost from [13] in our framework. This cost term is non-convex and requires
nonlinear optimisation. On average, this previous term requires 12 seconds of iter-
ative optimisation per image. This is clearly incompatible with real-time processing
by several orders of magnitude. In contrast, the proposed SurgIPC framework uses a
convex cost function and operates at 120 milliseconds per frame. Regarding the time
needed for depth estimation, we evaluated AF-SfM learner [22], EndoDAC [19], and
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TRMDSV [23] models in ablation studies presented in section 3.3.2, measuring infer-
ence times of 14 milliseconds, 22 milliseconds, and 20 milliseconds, respectively, on an
RTX 2080 GPU. Including the depth estimation inference time with SurgIPC’s, the
complete overhead computation time amounts to 145 milliseconds per frame, which
aligns with the real-time processing standards.

Third, a potential limitation of this work lies in the impact of depth estimation
quality on the performance of SurgIPC, as highlighted in the ablation studies. In addi-
tion to the inherent inaccuracies in monocular depth estimation methods, challenging
surgical conditions such as non-uniform lighting and image perturbations caused by
smoke and bleeding can further impact the accuracy of depth estimation, potentially
altering the inferred 3D shape. We leave a detailed investigation of these factors for
future work.

6 Conclusion

SurgIPC corrects perspective distortions by preserving 3D angles and minimising
image resampling. The results are very convincing: the method boosts the perfor-
mance of existing keypoint matching in the presence of extreme perspective distortions.
Importantly, SurgIPC is adaptable to non-planar scenes, is convex, and can be easily
integrated into existing computer-aided surgery systems.
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