
Determinant-Constrained Affine Transformations

Adrien Bartoli1,3 Daniel Pizarro2,3

1 Department of Clinical Research and Innovation
Clermont-Ferrand University Hospital

2 Departamento de Electrónica
Universidad de Alcalá
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Abstract

We study the problem of estimating an affine transformation with prescribed determinant from point
pairs in dimension d. The determinant constraint is nonconvex and challenging to handle. We propose
a method to reformulate the problem into a system of d quadratics and 1 polynomial of degree d in
d + 1 unknowns. We propose a solution method for this system and a procedure to retrieve the single
or multiple affine transformation solutions. We show that the related problem of finding the closest
d-simplex of prescribed volume and orientation to a given arbitrary d-simplex is solved as a special
case of the proposed method. We report experimental results demonstrating the use of the proposed
transformations in three applications.

Code and data release. We have publicly shared our implementation for all the proposed
computation procedures and experiments, including the required data to ensure reproducibility,
accessible from the authors’ personal or GitHub pages.
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1 Introduction

We study the least-squares estimation of an affine transformation with prescribed determinant, given point
pairs in Rd, where d is the dimension, with d ≥ 2. We name such a transformation a Determinant-
Constrained Affine Transformation (DCAT) and its estimation as the DCAT problem. The affine transfor-
mation has a linear part represented by a matrix A ∈ Rd×d and a translation part represented by a vector
t ∈ Rd. The m point-pair coordinates are held in matrices P,Q ∈ Rd×m where column j of P matches
column j of Q. We prescribe the determinant of A to be equal to s ∈ R∗, where R∗ = R \ {0}. The DCAT
problem is thus formulated as:

min
A,t

∥∥∥(AP + te⊤ −Q
)
W

∥∥∥2 s.t. det(A) = s, (1)

where e ∈ Rm is the all-one vector, W ∈ Rm×m is a given diagonal non-zero-weight matrix, and ∥ · ∥
is the matrix Frobenius norm. We assume that the point pairs are in general position and so that they
determine a unique general affine transformation. Hence, we have m ≥ d+ 1 and rk([P⊤ e]) = rk([Q⊤ e]) =
d + 1. The cost in the DCAT problem is convex but the constraint involves the determinant, which is a
polynomial expression of degree d, making the problem nonconvex and non trivial. The use of general-
purpose optimisation techniques such as gradient descent and Newton-Raphson would thus not guarantee
finding an optimal solution. In contrast, our main contribution is a procedure to solve the DCAT problem (1)
exactly. Specifically, our solution procedure finds the constrained global minimum of the cost function
numerically. It explicitly finds all the local minima and selects the global one, without using iterative
minimisation. It may also compute all solutions, should there be multiple ones caused by ambiguities.

Our main motivation to study the DCAT problem is that the absolute value of the determinant controls
the rate of volume change and the sign of the determinant controls the orientation change. Specifically,
defining the volume of a subset S ⊂ Rd as V(S) and the transformed subset by the affine transformation
(A, t) as T (S;A, t), we have:

V(T (S;A, t)) = |det(A)| V(S). (2)

Consequently, any combination of volume and orientation constraints may be formulated as det(A) = s in
equation (1): solving the DCAT problem allows one to control volume and orientation changes. DCAT can
thus estimate affine transformations whose linear part belongs to the special linear group SLd(R), which is
the Lie group of volume- and orientation-preserving linear transformations, and its extension SL±

d (R), which
is the Lie group of volume-preserving linear transformations. Estimating a transformation in several other
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groups and sets is well-understood, including the orthogonal group Od = {M ∈ Rd×d,M⊤M = I} represent-
ing roto-reflections, the special orthogonal group SOd representing rotations, the group of matrices repre-
senting similarities (Umeyama, 1991) and the general set Rd×d representing affine transformations (Hartley
and Zisserman, 2003). Estimating a transformation in the general linear group GLd(R) is not possible be-
cause it represents the non-singular transformations characterised by a non-zero determinant, forming an
open set. Indeed, the general point-pair positions guarantee that the affine transformation is unique but not
that it is full rank, which we discuss in comment 2. Estimating a guaranteed non-singular transformation in
SLd(R) and SL±

d (R) with DCAT may thus be used in ‘replacement’ of GLd(R) in some application cases.
In particular, the SL2(R) group contains the so-called squeeze mappings, which are equivalent to hyperbolic
rotations and form a basis for the Lorentz boost, from which the transformations of special relativity are
constructed (Taylor and Wheeler, 1966).

In addition to DCAT, we study the related problem of least-squares estimation of the closest d-simplex
with prescribed volume and orientation to a given d-simplex. We name this problem the Prescribed Volume
and Orientation Simplex (PVOS). The given and closest d-simplices are each represented by d + 1 points
held in matrices M,N ∈ Rd×(d+1). We assume that the given points in M are in general position, hence
det([M⊤ e]) ̸= 0. The point order defines the simplex orientation. The simplex volume and orientation are
given by the signed volume W(N), which we prescribe to be equal to a given h ∈ R∗. The PVOS problem
is thus formulated as:

min
N
∥(N −M)W∥2 s.t. W(N) = h, (3)

where W ∈ R(d+1)×(d+1) is a given diagonal non-zero-weight matrix. The solution to problem (3) is also
the orthogonal projector on the d(d + 1) − 1 dimensional manifold of simplices of some prescribed volume
and orientation. While the existing literature does not provide any solution to the DCAT problem, the
PVOS problem was recently solved for the specific dimension d = 2 and W = I (Arango and Bartoli, 2021).
This solution follows a lengthy derivation and requires a complex solution procedure. Importantly, it does
not extend to dimensions higher than d = 2. In contrast, we show that the general PVOS problem can be
formulated as a specific DCAT problem and solved as such in any dimension d ≥ 2.

We explore the application of DCAT and PVOS in Laparoscopic Augmented Reality from Preoperative
data (LARP) in liver surgery (Adagolodjo et al., 2017; Koo et al., 2017) based on position-based dynamics
methods (Bouaziz et al., 2014; Kee et al., 2021). We explore two other applications given as appendix.
One is approximate local volume- and orientation-preserving interactive image warping with Moving Least
Squares (MLS) (Schaefer et al., 2006), which uses DCAT with weights prescribed by the MLS principle. The
other one is Generalised Procrustes Analysis (GPA) (Gower, 1975), which uses DCAT through a standard
alternation scheme for multiple data shapes.

2 Determinant-Constrained Affine Transformation

We start with a theoretical analysis of the DCAT problem, from which we show how the problem can be
expressed in a standard formulation. We then give a solution to the standard formulation. Finally, we give
a solution procedure which implements the proposed method in pseudo-code.

2.1 Standardisation

We start with a standardisation of the problem, where we cancel the translation and absorb the weights in
the point coordinates. This then allows us to analyse the rank of the source point coordinates.

We follow the standard translation elimination method by data centring, as for instance in affine
structure-from-motion (Tomasi and Kanade, 1992). Starting from the DCAT problem formulation (1),
we form the Lagrangian of the problem with the Lagrange multiplier λ ∈ R as:

L =
1

2

∥∥∥(AP + te⊤ −Q
)
W

∥∥∥2 + λ(det(A)− s), (4)
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which we expand as:

L =
1

2

(∥∥∥te⊤W∥∥∥2 + 2 tr
(
WP⊤A⊤te⊤W

)
− 2 tr

(
WQ⊤te⊤W

))
+ ϵ, (5)

where ϵ groups the remaining terms independent of t. In particular, as the constraint is independent of the
translation, it is thus incorporated in ϵ. We rearrange the terms as:

L =
1

2

(
∥W∥2∥t∥2 + 2t⊤APW 2e− 2t⊤QW 2e

)
+ ϵ. (6)

Upon differentiating, we obtain:
∥W∥2t+APW 2e−QW 2e = 0, (7)

and the solution:

t =
1

∥W∥2
(Q−AP )W 2e = q̄ −Ap̄, (8)

where q̄ = 1
∥W∥2QW 2e and p̄ = 1

∥W∥2PW 2e are the weighted centroids of the point sets. Finally, substituting

the translation in the original problem and expanding, we obtain the standard problem formulation:

min
A

∥∥AP ′ −Q′∥∥2 s.t. det(A) = s, (9)

expressed from the centred weighted point sets P ′ =
(
P − p̄e⊤

)
W and Q′ =

(
Q− q̄e⊤

)
W .

2.2 Reduction

We reduce the problem to an equivalent problem with d virtual point pairs. We use an RQ factorisation
P ′ = [R 0]B⊤, where R ∈ Rd×d is an upper-triangular matrix with rk(R) = d, 0 ∈ Rd×(m−d) is an all-
zero matrix and B ∈ Om is an orthonormal matrix. Substituting the factorisation into the standard
formulation (9), we have:

min
A

∥∥∥A[R 0]B⊤ −Q′
∥∥∥2 s.t. det(A) = s, (10)

which, from the orthonormality of B, can be rewritten as:

min
A

∥∥A[R 0]−Q′B
∥∥2 s.t. det(A) = s. (11)

Introducing the partition B = [B1B2], with B1 ∈ Rm×d and B2 ∈ Rm×(m−d) and expanding, we have:

min
A

∥∥AR−Q′B1

∥∥2 + ∥∥Q′B2

∥∥2 s.t. det(A) = s. (12)

The second term is independent of the free variable A and can thus be ignored. By defining the d virtual
point pairs as P ′′ = R and Q′′ = Q′B1, with P ′′, Q′′ ∈ Rd×d, we arrive at the reduced standard problem
formulation:

min
A

∥∥AP ′′ −Q′′∥∥2 s.t. det(A) = s. (13)

Comment 1 (RQ factorisation ambiguities). For a full-rank landscape matrix, the RQ factorisation has
ambiguities of two types (Björck, 1996, §1.3.1). The first ambiguity is R → RS and B1 → B1S for
S = diag(±1, . . . ,±1) ∈ Od. The second ambiguity is B2 → B2Z for Z ∈ Om−d. Both ambiguities leave
the cost function and all matrix characteristics invariant, and, as a change of variable was not used, do not
change the solution and can thus be ignored.

We define the joint rank as r = rk(Q′′). As Q′′ = Q′B1 and B1 is a basis for the range of P ′, we have
r = rk(Q′B1) = rk(Q′P ′⊤) = rk(P ′Q′⊤).
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Comment 2 (Joint-rank deficiency). As Q′′ = Q′B1 and rk(Q′) = rk(B1) = d, the joint-rank r is generally
full. However, we formally have r ≤ min(rk(Q′), rk(B1)) = d, hence cases exist where r < d. As we
required the points to be in general position, these cases are not due to special configurations of a point
set such as coplanarity, but they are due to special cases of coordinate arrangements. Such cases can be
generated numerically. Figure 1 shows two examples of centred paired point sets P ′, Q′ of m = 10 points
in dimension d = 2. In the first example, r = 1, with sv1(Q

′B1) = 0.3087 and sv2(Q
′B1) = 5.7242e − 18,

where svi is the i-th singular value. In the second example, r = 0, with sv1(Q
′B1) = 1.5101e − 16 and

sv2(Q
′B1) = 1.2754e− 17.

We define proper point pairs as point pairs P,Q ∈ Rd×m, m > d, for which the joint rank r is full, meaning
r = d. In other words, proper point pairs lead to a non-singular unconstrained affine transformation,
whilst improper point pairs lead to a singular one. Though improper point pairs can thus be an issue in
unconstrained affine transformation estimation, they are not for the DCAT problem which, thanks to the
determinant constraint, guarantees that the estimated transformation is always non-singular.

Lemma 1 (Minimal problems and joint-rank deficiency). Minimal problems correspond to m = d+1 point
pairs. A minimal problem with each point set P,Q ∈ Rd×d+1 in general position is proper. Hence, joint-rank
deficiency may only occur for m > d+ 1.

Proof. We follow the standardisation of section 2.1. We define g = W−1e ∈ Rd+1, which is a right nullvector
of P ′ and Q′. Therefore, the rows of P ′ being orthogonal to g, they cannot be in the kernel of Q′, from
which we arrive at r = rk(Q′P ′⊤) = d.
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Figure 1: Examples of joint-rank r deficiency. The 10 point pairs are shown as red-blue connected dots.
Each point set is in general position. (left) Example with r = 1. (right) Example with r = 0.

2.3 Orthogonalisation

We perform a step which we name orthogonalisation, which gains independence of the coordinate frames
where the virtual point pairs P ′′ and Q′′ are expressed. We achieve this by using the invariance of the cost
function to orthonormal transformations. We use an SVD Q′′ = UΓV ⊤, where U, V ∈ Od are orthonormal
matrices and Γ ∈ Rd×d is a diagonal matrix. We introduce this decomposition in the reduced standard
formulation (13), pre-multiply by U⊤ and post-multiply by V , giving:

min
A

∥∥∥U⊤AP ′′V − Γ
∥∥∥2 s.t. det(A) = s. (14)
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Upon changing variable by introducing A′ = U⊤AP ′′V , P ′′′ = I and Q′′′ = Γ, we arrive at the orthogonal
standard problem formulation:

min
A′

∥∥A′ − Γ
∥∥2 s.t. det(A′) = s′, (15)

where s′ = det(A′) = det(U⊤AP ′′V ) = sdet(R) det(U) det(V ). We give a solution method for A′ from
the orthogonal formulation in the next section. Once A′ is solved, we obtain the sought solution for A by
inverting the change of variable as:

A = UA′V ⊤P ′′−1
. (16)

Comment 3 (SVD decomposition ambiguities). The singular values are unique, whereas the singular vectors
are not (Björck, 1996, §1.2.1). In particular, for a full-rank matrix, a sign-flipping ambiguity of correspond-
ing singular vectors occurs for simple (non repeated) singular values and a symmetric orthogonal mixing
of singular vectors occurs for multiple (repeated) singular values. In addition, for a rank-deficient matrix,
an asymmetric orthogonal mixing of singular vectors occurs for vanishing singular values. Owing to the
change of variable from A to A′, some of these ambiguities impact the solution when using the reverse
change of variable (16). These ambiguities are modelled by U → UKu and V → V Kv, Ku = diag(Z,Zu),
Kv = diag(Z,Zv), where Z,Zu, Zv are orthonormal matrices. Specifically, the leading block Z ∈ Or models
sign flipping and symmetric orthogonal mixing. It is block-diagonal with orthonormal blocks, whose sizes
match the numbers of repeated singular values b1, . . . , bl as Z = diag(Z1, . . . , Zl) with Zk ∈ Obk . The trailing
blocks are Zu, Zv ∈ Od−r. We study these ambiguities and their impact on the solution in the next section.

Comment 4 (The unconstrained problem and joint-rank deficiency). We define the unconstrained problem
related to a DCAT problem or formulation as the problem obtained by ignoring the determinant constraint,
hence consisting in solving for a general affine transformation. The solution to the unconstrained problem
related to formulation (15) is A′

unc = Γ, hence Aunc = Q′′P ′′−1. We can thus make two observations; first, the
unconstrained solution is unique, as the SVD ambiguities do not propagate to the estimated transformation
Aunc; second, the rank of the estimated transformation Aunc coincides with the joint rank r. Hence, joint-
rank deficiency causes degeneracy in the estimate. In contrast, in the DCAT problem, the rank of the
estimated transformation A is always full. The next section shows that joint-rank deficiency nevertheless
has an impact, obviously different from the unconstrained case, resulting in ambiguities in A.

2.4 Polynomial System and Solution Derivation

We derive our solution from the orthogonal formulation (15).

2.4.1 General System and Strategy

The Lagrangian of the orthogonal formulation (15) is:

L =
1

2

∥∥A′ − Γ
∥∥2 + λ

(
det(A′)− s′

)
, (17)

where λ ∈ R is a Lagrange multiplier. The first-order optimality conditions for A′ and λ give:{
A′ + λA′⋆ = Γ

det(A′) = s′,

(18a)

(18b)

where A′⋆ = det(A′)(A′)−⊤ is a transposed adjugate. System (18) involves d2 + 1 equations and unknowns.
It is nonlinear and not trivially solvable. We transform it in a way which enables the derivation of the
proposed two-step solution method. First, using the SVD theorem (theorem 1.2.1 in (Björck, 1996)), we
introduce A′ = ŨaΣ̃Ṽ

⊤
a , where Ũa, Ṽa ∈ Od contain the left and right singular vectors respectively and Σ̃ is

a diagonal matrix containing the non-negative singular values in non-increasing order. As A′ is the main
unknown we wish to resolve, this means that it will be replaced by the three SVD factors. The proposed
solution method thus recovers these factors; however, it does not naturally satisfy the non-negativity and the
non-increasing ordering requirements. Both requirements could be enforced as post-processing, to obtain
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an SVD stricto sensu, without changing the recomposition. This is however superfluous, given that the
final matrix A′ would be the same. We thus relax these requirements: we simply replace the SVD by its
equivalent ‘pseudo-SVD’ A′ = UaΣV

⊤
a where, for some diagonal sign matrices Su = diag(±1, . . . ,±1) ∈ Od,

Sv = diag(±1, . . . ,±1) ∈ Od, and a permutation matrix G ∈ Od, Ua = ŨaG
⊤Su, Va = ṼaG

⊤Sv and
Σ = SuGΣ̃GSv. The pseudo-SVD is similar to the SVD but does not enforce the non negativity and
ordering of the singular values. In other words, the pseudo-SVD is an SVD where the columns of Ua and
Va, and the diagonal elements of Σ, may be re-ordered and negated. Upon introducing the pseudo-SVD, we
have A′⋆ = det(Σ)UaΣ

−1V ⊤
a and det(A′) = det(Σ), leading to the system:{

Ua

(
Σ+ λdet(Σ)Σ−1

)
V ⊤
a = Γ

det(Σ) = s′.

(19a)

(19b)

Second, we introduce the diagonal matrix ∆ ∈ Rd×d and arrive at:
Ua∆V ⊤

a = Γ

∆ = Σ+ λ det(Σ)Σ−1

det(Σ) = s′.

(20a)

(20b)

(20c)

We break down the system into two parts. Part 1) is equation (20a) and part 2) is a subsystem formed
by equations (20b) and (20c). Concretely, our solution method first solves part 1) to retrieve Ua, Va and
∆, and then solves part 2) to retrieve Σ given ∆. However, our derivation proceeds the other way around,
meaning part 2) first, then part 1), as the analysis of part 1) depends on results obtained in the analysis of
part 2). We provide the following lemma, which is used for solving system part 2).

Lemma 2 (Sign and order of the elements of ∆ from system (20)). We have δ1 ≥ δ2 ≥ · · · ≥ δd ≥ 0, where
∆ = diag(δ1, . . . , δd).

The proof of lemma 2 requires elements from the solution of part 1) of system (20). It is thus given after
the system’s solution method derivation, in section 2.4.3.

2.4.2 System Part 2)

We start by stating the polynomial formulation and studying its theoretical properties. We then derive
specific solution methods for d = 2 and d = 3, for which we could obtain an explicit univariate polynomial,
and for d ≥ 3, for which we give a general numerical method based on polynomial resultants.

Polynomial formulation, properties and solution existence. System part 2) involves d+1 equations
and unknowns. Upon multiplying equation (20b) by Σ and substituting equation (20c), it is equivalent to:{

Σ2 −∆Σ+ λs′I = 0

det(Σ) = s′.

(21a)

(21b)

This is a polynomial system whose d first equations are quadratic and whose last equation is of degree
d. While this system has an elegant and compact form, its solution complexity quickly grows with d.
Equation (21a) can be easily broken down into d base equations of the following form, for i ∈ [1, d]:

σ2
i − δiσi + λs′ = 0. (22)

We define the discriminant of the quadratic (22) as a function of λ as Di(λ) = δ2i − 4λs′. We express its two
solutions as functions of λ as:

σ±
i (λ) =

(
δi ±

√
Di(λ)

)
/2. (23)

A quadratic does not always have real solutions, and it is thus not trivial whether system (21) always has
a real solution. For an isolated base equation, real solutions occur if and only if Di(λ) ≥ 0, hence if and
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only if δ2i ≥ 4λs. The solutions to system (21) given later in this section for several values of d confirm this
point, as they always involve the roots of even-degree polynomials, which cannot be guaranteed to have real
solutions. Proposition 1 below nonetheless shows that system (21) always possesses a real solution. We first
provide a property revealing the sign-flipping of the solutions against the sign-flipping of δi and two lemmas
on the solution signs used in the proof of proposition 1.

Property 1 (Solutions to the base equations upon sign-flips in ∆). The solution set to the base equation
when flipping the sign of δi is obtained by flipping the sign of the original solutions. More precisely, we have,
for δi → −δi, that the solutions transform as σ±

i (λ)→ −σ
∓
i (λ).

Proof. We observe that δi → −δi does not change the discriminant Di(λ). We thus have σ±
i (λ) =(

δi ±
√
Di(λ)

)
/2→

(
−δi ±

√
Di(λ)

)
/2 = −

(
δi ∓

√
Di(λ)

)
/2 = −σ∓

i (λ).

Lemma 3 (Sign of the positive solution to the base equations). We have σ+
i (λ) > 0.

Proof. We lighten notation in the proof by not writing the dependency on λ explicitly. We first prove
the non-negativity. We have σ+

i = δi +
√
Di. Because δi ≥ 0, from lemma 2, we have σ+

i ≥ 0. We
then prove the positivity. We have to show σ+

i ̸= 0, which we do by contradiction. We have σ+
i = 0 ⇔

δi +
√
Di = 0 ⇔ δi = −

√
Di. As δi ≥ 0, the only possible solution is thus δi = 0 ∧ Di = 0. We expand

the second term as Di = 0 ⇔ δ2i = 4λs′, which, from the first term, is 4λs′ = 0, which, because s′ ̸= 0,
is λ = 0. However, we have from equation (20b) that this implies ∆ = Σ, hence from equation (20c) that
det(∆) = s′ ⇔ δ1 · · · δd = s′ ⇔ 0 = s′, which contradicts s′ ̸= 0.

Lemma 4 (Sign of the negative solution to the base equations). We have σ−
i (λ) = 0 ⇔ λ = 0 and

σ−
i (λ) < 0⇔ sign(λ) ̸= sign(s′).

Proof. We lighten notation in the proof by not writing the dependency on λ explicitly. First, we have
σ−
i = 0 ⇔ δi −

√
Di = 0 ⇔ δi =

√
Di. Because δi ≥ 0, from lemma 2, and substituting the expression

for Di, this is equivalent to δ2i = δ2i − 4λs′ ⇔ 4λs′ = 0 ⇔ λ = 0, as s′ ̸= 0. Second, we have σ−
i < 0 ⇔

δi −
√
Di < 0 ⇔ δi <

√
Di. Because δi ≥ 0, and substituting the expression for Di, this is equivalent to

δ2i < δ2i − 4λs′ ⇔ 4λs′ < 0⇔ sign(λ) ̸= sign(s′).

Proposition 1 (Existence of real solutions to system part 2)). The polynomial system (21) has a real
solution.

Proof of proposition 1. For d = 1, the system has a trivial real solution σ1 = s′ from equation (21b) and
λ = (δ1 − σ1)σ1/s

′ = δ1 − s′ by substituting σ1 in equation (22). As s′ ∈ R∗ we have σ1 ∈ R∗ and λ ∈ R.
The reasoning for d ≥ 2 is more involved. Our approach is to use the solution (23) for σi to the quadratic

base equation (22) as a function of λ, formulate the conditions required for the existence of a real solution
for σi, substitute the solution in the determinant equation (21b), which will then only depend on λ, and
eventually show that a solution for λ satisfying the conditions required for the existence of a real solution
to all the quadratics always exists.

We start with the case s′ > 0. We have that there is a real solution to equation (22) if and only
if Di(λ) ≥ 0, hence if and only if λ ≤ δ2i /(4s

′). Because δ1 ≥ · · · ≥ δd ≥ 0, from lemma 2, all the
quadratics (22) for i ∈ [1, d] have a real solution if and only if λ ≤ δ2d/(4s

′). We define the product σi · · ·σd,
which is the left-hand side of equation (21b), as a real function ϕ of λ, where each σi is given by its
solution (23) from the corresponding quadratic, as ϕ(λ) =

∏d
i=1 σ

±
i (λ). Substituting in equation (21b), we

need to show that ϕ(λ) = s′ has a solution λ ≤ δ2d/(4s
′). Function ϕ is defined on (−∞; δ2d/(4s

′)] and is
smooth on (−∞; δ2d/(4s

′)). It depends on a sequence defining the sign of the solution to each quadratic.
We choose this sequence so that it contains at least one negative sign and an even number of negative
signs, which, because d ≥ 2, is always possible. This particular sequence is a sufficient, but not necessary,
condition for a real solution. We have limλ→−∞ ϕ(λ) = ∞. This is because limλ→−∞Di(λ) = ∞, hence
limλ→−∞ σ±

i (λ) = ±∞ and the product of the sequence of signs is positive, from the even number of negative
signs. We have ϕ(0) = 0, as for the solution with a negative sign, σ−

i (0) = 0 from lemma 1. As s′ > 0, we
have from the intermediate value theorem that ϕ(λ) = s′ has a real solution on (−∞; 0) ⊂ (−∞; δ2d/(4s

′)).
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We proceed with the case s′ < 0. We have that there is a real solution to the base quadratic equation (22)
if and only if λ ≥ δ2i /(4s

′). Because δ1 ≥ · · · ≥ δd ≥ 0, from lemma 2, all the quadratics (22) for i ∈ [1, d] have
a real solution if and only if λ ≥ δ2d/(4s

′). Substituting in equation (21b), we need to show that ϕ(λ) = s′ has
a solution λ ≥ δ2d/(4s

′). Function ϕ is defined on [δ2d/(4s
′);∞) and is smooth on (δ2d/(4s

′);∞). We choose the
sequence defining the sign of the solution to each quadratic as containing at least one negative sign and an
odd number of negative signs, which, because d ≥ 2, is always possible. Hence, we have limλ→∞ ϕ(λ) = −∞
and ϕ(0) = 0. As s′ < 0, we have from the intermediate value theorem that ϕ(λ) = s′ has a real solution on
(0;∞) ⊂ (δ2d/(4s

′);∞).

Specific solution for d = 2. We specialise the general polynomial system (21) to the case d = 2, which
has three unknowns, σ1, σ2 and λ, and the following three quadratic equations:

q1(σ1, λ) = σ2
1 − δ1σ1 + λs′ = 0

q2(σ2, λ) = σ2
2 − δ2σ2 + λs′ = 0

q0(σ1, σ2) = σ1σ2 − s′ = 0.

(24)

We first eliminate σ2 to form a simplified equation in σ1 and λ, from which we solve for σ1 as a function of λ.
Equation q0 gives σ2 = s′/σ1, which we substitute in equation q2 and divide by λ, giving σ2

1 − δ2
λ σ1+

s′

λ = 0.

Subtracting from equation q1, we have σ1

(
δ2
λ − δ1

)
+ λs′ − s′

λ = 0, from which we arrive at the following

quadratic-linear rational expression for σ1 as:

σ1 = s′
λ2 − 1

δ2 − λδ1
. (25)

Following the same reasoning for σ2, we obtain the dual expression:

σ2 = s′
λ2 − 1

δ1 − λδ2
. (26)

Substituting both expressions in equation q0, we obtain s′ λ2−1
δ2−λδ1

λ2−1
δ1−λδ2

= 1, and, upon expansion and
simplification, the following depressed quartic in λ:

s′λ4 − (2s′ + δ1δ2)λ
2 + (δ21 + δ22)λ+ s′ − δ1δ2 = 0. (27)

A Groebner basis approach gives the same result.

Specific solution for d = 3. We specialise the general polynomial system (21) to the case d = 3, which
has four unknowns, σ1, σ2, σ3 and λ, and the following four equations, which are three quadratics and one
cubic: 

q1(σ1, λ) = σ2
1 − δ1σ1 + λs′ = 0

q2(σ2, λ) = σ2
2 − δ2σ2 + λs′ = 0

q3(σ3, λ) = σ2
3 − δ3σ3 + λs′ = 0

q0(σ1, σ2, σ3) = σ1σ2σ3 − s′ = 0.

(28)

We used the Matlab Symbolic toolbox to compute the Groebner basis (Cox et al., 2005) of the ideal formed
from the polynomials {q1, q2, q3, q0} in the variables σ1, σ2, σ3 and λ for the symbolic coefficients δ1, δ2, δ3
and s′ using lexicographic monomial ordering. The basis is composed of four polynomials:

{f1(σ1, λ) = σ1 + p1(λ), f2(σ2, λ) = σ2 + p2(λ), f3(σ3, λ) = σ3 + p3(λ), f4(λ)}, (29)

where p1, p2, p3 and f4 are univariate polynomials in λ. In particular, f4 is a dodecic (a degree 12 polynomial)
in λ, and thus the ideal has 12 zeros. Its symbolic coefficients are given in appendix A. Since f1, f2 and
f3 are linear in σ1, σ2 and σ3, the original system of polynomials has a maximum of 12 solutions. The
polynomials p1, p2 and p3 are undecics (degree 11 polynomials). Their coefficients are rational functions
of multivariate polynomials in δ1, δ2, δ3 and s′; the numerators have degree lower or equal to 16 and the
denominators have degree lower or equal to 13. The solutions are found numerically by finding the roots of
f4 in λ and substituting in f1, f2, f3 to find the other unknowns.
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General solution for d > 3. For d > 3, the Groebner basis with symbolic coefficients cannot be found
with a symbolic solver.1 We thus use a different strategy based on polynomial resultants. We proceed by
finding a univariate polynomial in λ whose roots are guaranteed to contain the solutions. We first define
the set of d + 1 polynomial equations in the variables σ1, . . . , σd, λ, which are d quadratics and 1 degree-d
polynomial, as: 

q1(σ1, λ) = σ2
1 − δ1σ1 + λs′ = 0

...

qd(σd, λ) = σ2
d − δdσd + λs′ = 0

q0(σ1, . . . , σd, λ) = σ1 · · ·σd − s′ = 0.

(30)

By setting f0 = q0, we recursively define fk as the following polynomial:

fk(σk, . . . , σd, λ) = Rσk
[qk, fk−1], k > 0, (31)

where Rx[p, q] denotes the polynomial resultant between p and q, and x is the eliminated variable. By
following the recursive rule (31), fd is a univariate polynomial in λ. For instance, for d = 4, fd is of
degree 32. Importantly, the resultant can be found with the polynomial coefficients δ1, . . . , δd, s as symbolic
variables.

The process of using resultants to eliminate variables in the system generates multiple spurious solutions.
Each root of fd requires checking its compatibility in the original system. This is usually a non-trivial task
in a general system. However, since qi for i ∈ [1, d] is the base equation, it is quadratic in σi and gives the
two solutions (23) independently for each σi, for each numerical solution for λ. We can thus compute 2d

sets of values for σ1, . . . , σd for each real root of fd, and then use q0 for testing their compatibility with the
original system.

2.4.3 System Part 1)

System part 1) is equation (20a). Given that matrices Ua, Va ∈ Od and that matrix ∆ is diagonal, by
definition, this equation represents a pseudo-SVD of the ordered diagonal matrix Γ. Recall that the pseudo-
SVD is an SVD ignoring the non-negativity and non–increasing ordering constraints on the singular values.
The solution stems from the uniqueness of the singular values (Björck, 1996, §1.2.1)) and follows a similar
pattern to that in comment 3 for the ambiguities of matrix Q′′. For a set of simple singular values in Q′′,
which occurs when the diagonal values in Γ are all distinct and non-zero, the equation is solved by ∆ = Γ
and Ua = Va = S, where S = diag(±1, . . . ,±1) ∈ Od. This is because the singular values of the diagonal
matrix Γ are its diagonal elements. We ignore reordering, as it would be carried over to Σ and cancelled
when recomposing matrix A′. Matrix S models the sign ambiguity occurring on the singular vectors (Björck,
1996, §1.2.1). For a set of singular values with multiple or vanishing singular values, the equation is solved
by ∆ = Γ and Ua = diag(Z,Zx) and Va = diag(Z,Zy), where Z,Zx, Zy are the orthonormal ambiguity
matrices occurring in the SVD of Q′′. We ought to understand which of these ambiguities are carried over to
the result in A′, then in A, or cancel. Importantly, the cost is invariant to these ambiguities, hence cannot
be used to resolve them.

We begin with the full-rank part, with ambiguities due to multiple singular values in Γ. For a block
Zk ∈ Obk , equation (23) shows that there can be two solutions to the σi entries, of the form σ±

i (λ) =
1
2

(
δi ±

√
Di(λ)

)
. We consider without loss of generality that they are ordered and hence form two groups.

The first group, of size ck, contains the solution σ+
i (λ) and the second group, of size bk − ck, contains the

solution σ−
i (λ), with ck ∈ [0, bk]. When forming A′ = UaΣV

⊤
a , the ambiguity on this block, denoted A′

k, is
thus written as:

A′
k =

1

2
Ẑk

(
δiI +

√
Di(λ) Ĩ

)
Ẑ⊤
k , (32)

where Ĩ = diag(Ick ,−Ibk−ck). We need to count the number of Degrees of Freedom (DoF) dk left in this
block, which is shown to be equal in the worst case to the number of DoF in Zk for bk = 2 and strictly lower

1For d = 4 the basis was not found after 12 hours of computation on a high-end computer.
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otherwise. Expanding, we have:

A′
k =

1

2

(
δiI +

√
Di(λ)Zk ĨZ

⊤
k

)
, (33)

so it is about counting the number of DoF in the second term. This number is given by subtracting the
number of DoF from the two orthonormal recombinations related to the two blocks in Ĩ to the number of
DoF of Zk, giving:

ek =
1

2
(bk(bk − 1)− ck(ck − 1)− (bk − ck)(bk − ck − 1)) = ck(bk − ck).

For instance, with ck = 0 or ck = bk, we have ek = 0, as expected, and ek grows as the combination of the
two solutions reaches an equilibrium at ek = ⌊bk/2⌋⌈bk/2⌉ for ck = ⌊bk/2⌋. We thus have a varying number
of DoF, depending on which solution is feasible and selected. The set of orthogonal matrices representing
the ambiguity per multiple σi entry is non trivial to define. As it is a subset of Obk , and as any matrix from
Obk leaves the cost invariant, we simply use Obk as the ambiguity set.

We proceed with the rank-deficient part, with ambiguities due to vanishing values in Γ but not vanishing
in Σ. The solution for the concerned σi entries are σ±

i (λ) = ±
√
λs′, which also shows that r < d implies

λ ̸= 0, meaning that the determinant constraint is always active. The recombined block in A′ is thus
A′

k = ZuΣ̄Z
⊤
v =

√
λs′Zu diag(±1, . . . ,±1)Z⊤

v , which is a scaled orthonormal matrix
√
λs′Ẑ, with Ẑ ∈ Od−r

endowed with the corresponding number of DoF (d− r)(d− r − 1)/2.
In summary, we arrive at a simplified ambiguity structure expressed by Ua = Va = K̂ in the general

case, with:
K̂ = diag(Z1, . . . , Zl, Ẑ), Zk ∈ Obk for k ∈ [1, l] and Ẑ ∈ Od−r. (34)

We end this section with the following proof, pending from section 2.4.1.

Proof of lemma 2. The solution to part 1) of system (20) given directly above in section 2.4.3 leads to ∆ = Γ.
As Γ is obtained from an SVD, it contains singular values, which are non-negative and ordered. The same
properties thus directly apply to δ1, . . . , δd forming the diagonal elements of ∆.

2.5 Solution Procedure

We give procedure 1 which implements the proposed method, following the derivation steps presented above.
This procedure can be used as pseudo-code to implement DCAT in a programming language. Step 1)
standardises the problem following section 2.1, step 2) reduces it to virtual point pairs following section 2.2,
step 3) orthogonalises it to a diagonal form following section 2.3, from which the polynomial system (20)
is readily available. The RQ factorisation in step 2) is implemented by the cheaper thin-RQ factorisation
via Cholesky decomposition (Terao et al., 2020), which does not compute the unused B2 factor. In can be
obtained in closed-form for d ∈ {2, 3}. The SVD in step 3) can be obtained in closed-form for d = 2. Step
4) solves the polynomial system following section 2.4 and steps 5) and 6) ‘undo’ the initial simplifications
to retrieve the solution. Eventually, the optional step 7) identifies the ambiguities using the optional input
parameter τ to decide the numerically repeated singular values and the numerical joint rank.

3 Prescribed Volume and Orientation Simplex

We start with specifying the PVOS problem statement, from which we show an equivalence with the minimal
DCAT problem. We then derive a specific solution. Finally, we give a computational procedure which
implements the proposed method in pseudo-code.

3.1 Problem Statement

The PVOS problem is stated in equation (3), which involves the signed volume function W of simplex N ,
given by:

W(N) =
1

d!
det([N⊤ e]). (35)
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Algorithm 1 Computational procedure solving DCAT. Parameter τ is only needed to generate the
complete solution set if ambiguities arise. These ambiguities are decided from the numerical closeness
between singular values and the numerical τ -rank defined in (Björck, 1996, §2.7.1). The computational
structure chosen to hold the ambiguities is left to the user’s discretion.

⇒ Function DCAT(P,Q ∈ Rd×m, w ∈ Rm×1
∗ , s ∈ R∗, (optional) τ ∈ R+)

1) Standardise the problem by removing translation and weighting:

• Set the diagonal weight matrix as W = diag(w)

• Compute the weighted centroids of each point set as q̄ = 1
∥W∥2QW 2e and p̄ = 1

∥W∥2PW 2e

• Compute the centred weighted point sets as P ′ =
(
P − p̄e⊤

)
W and Q′ =

(
Q− q̄e⊤

)
W

2) Reduce the problem to d virtual point pairs:

• Compute the thin RQ factorisation P ′ = RB⊤
1

• Set P ′′ = R and Q′′ = Q′B1

3) Orthogonalise the problem to produce a diagonal form:

• Compute the SVD Q′′ = UΓV ⊤

• Set s′ = sdet(R) det(U) det(V )

4) Solve the polynomial system:

• Extract γ1, . . . , γd from the diagonal matrix Γ

• For d = 2, solve the quartic (27) for λ and select the real solutions with minimal cost (σ1−γ1)
2+

(σ2 − γ2)
2 by obtaining σ1 and σ2 from equations (25,26) (per proposition 1, there are between

1 and 4 such real solutions)

• For d = 3, solve the dodecic f4(λ) = 0 in equation (29) for λ and select the real solutions with
minimal cost (σ1−γ1)

2+(σ2−γ2)
2+(σ3−γ3)

2 by obtaining σ1, σ2 and σ3 from the polynomials
f1, f2 and f3 in equation (29) (per proposition 1, there are between 1 and 12 such real solutions)

• For d > 3, solve the univariate polynomial fd(λ) = 0 for λ, form the 2d solution sets for σ1, . . . , σd
from equation (23) for each value of λ and keep the solutions which satisfy q0(σ1, . . . , σd, λ) = 0
and minimise the cost

∑d
i=1(σi − γi)

2 (per proposition 1, there is at least 1 such real solution)

• Assemble each solution σ1, . . . , σd to a diagonal matrix Σ

5) Select one solution and retrieve the linear part as A = UΣV ⊤R−1

6) Compute the translation as t = 1
∥W∥2 (Q−AP )W 2e = q̄ −Ap̄

7) (optional) Identify the possible ambiguities:

• Compute the numerical joint τ -rank r as the number of singular values in Γ greater than τ

• Compute the numerical repeated values in Γ, where a value is repeated if |γi− γj | ≤ τ , obtaining

b1, . . . , bl with l ≤ r and
∑l

k=1 bk = r

• For each solution, store the simplified ambiguity structure K̂ following equation (34)

⇒ Output A ∈ Rd×d, t ∈ Rd×1, (optional) the entities required to generate all solutions
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This definition allows us to derive the following relationship between the signed simplex volume and an
affine transformation (A, t) of its points:

W(AN + te⊤) =
1

d!
det

([
A t
0 1

] [
N
e⊤

])
=

1

d!
det

([
A t
0 1

])
det

([
N
e⊤

])
= det(A)W(N). (36)

This relationship shows that the signed volume changes according to the determinant of the affine transfor-
mation, which we exploit directly below to draw an equivalence between the PVOS and a particular instance
of the DCAT problems.

3.2 Equivalence with Minimal Determinant-Constrained Affine Transformation

We first show how a PVOS problem can be transformed to a minimal DCAT problem and then vice-versa,
showing the equivalence between the two problems.

3.2.1 Transformation of PVOS to Minimal DCAT

We start from the PVOS formulation (3) and perform a change of variable N = AM + te⊤, with (A, t) an
unknown affine transformation:

min
(A,t)∈Rd×d+1

∥(AM + te⊤ −M)W∥2 s.t. W(AM + te⊤) = h. (37)

Using equation (36), we rewrite the constraint as:

W(AM + te⊤) = det(A)W(M) = h, (38)

hence as:
det(A) = h/W(M). (39)

We arrive at the following DCAT problem:

min
(A,t)∈Rd×d+1

∥(AP + te⊤ −Q)W∥2 s.t. det(A) = s,

with P = Q = M and s = h/W(M). Once (A, t) is solved, N is directly obtained from the above change of
variable. Importantly, this is a special DCAT problem because P = Q, for which there is a specific solution
method.

3.2.2 Transformation of Minimal DCAT to PVOS

We start from a DCAT problem (1) in the minimal case m = d + 1 and perform a change of variable
N = AP+te⊤ with N ∈ Rd×d+1 a d-simplex. Using equation (36), we haveW(N) = det(A)W(P ) = sW(P ).
Upon substituting, we have:

min
N∈Rd×d+1

∥(N −Q)W∥2 s.t. W(N) = sW(P ). (40)

We arrive at the following PVOS problem:

min
N∈Rd×d+1

∥(N −M)W∥2 s.t. W(N) = h, (41)

with M = Q and h = sW(P ). Once N is solved, (A, t) is found by inverting the change of variable formula
N = [A t][P⊤ e]⊤, leading to [A t] = N [P⊤ e]−⊤.
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3.3 Specific Solution Derivation

PVOS, following the above-derived equivalence, is solved by the general DCAT method implemented by
procedure 1. The specifics of the special minimal DCAT problem equivalent to the PVOS problem however
allow one to derive a simplified and computationally more efficient specific solution method. We proceed by
specialising each step of the general derivation of section 2.

We start from the PVOS problem and transform it to the equivalent minimal DCAT problem with P = Q
following section 3.2.1. We proceed with the standardisation as in section 2.1. We arrive at the specialised
translation formula:

t = (I−A)p̄, (42)

and the specialised standard problem formulation:

min
A

∥∥(A− I)P ′∥∥2 s.t. det(A) = s. (43)

We then perform the reduction and orthogonalisation in a single step with an SVD P ′ = UΘV ⊤, with
U ∈ Od, V ∈ Od+1, Θ = [Θ̄ 0] ∈ Rd×d+1 and Θ̄ ∈ Rd×d is a full-rank diagonal matrix. We introduce
this decomposition in the specialised standard formulation (43), cancelling factor V thanks to the L2 norm
invariance to unitary-matrix multiplication, obtaining the specialised reduced formulation:

min
A

∥∥(A− I)UΘ̄
∥∥2 s.t. det(A) = s. (44)

Expanding and pre-multiplying by U⊤, we obtain:

min
A

∥∥∥U⊤AUΘ̄− Θ̄
∥∥∥2 s.t. det(A) = s. (45)

Upon changing variable by introducing A′ = U⊤AUΘ̄, we arrive at the specialised orthogonal formulation:

min
A′

∥∥A′ − Θ̄
∥∥2 s.t. det(A′) = s′, (46)

where s′ = det(A′) = det(U⊤AUΘ̄) = sdet(Θ̄). The specialised orthogonal formulation (46) is equivalent
to the orthogonal formulation (15) of a general DCAT problem and may thus be solved similarly, following
the polynomial formulation and solution methods of section 2.4. A minor difference lies in the ambiguities,
which are restricted as Θ̄ does not contain vanishing singular values. Once A′ is solved, we obtain the sought
solution for A by inverting the change of variable as:

A = UA′Θ̄−1U⊤. (47)

3.4 Solution Procedure

We give procedure 2 which implements the proposed method, following the derivation steps presented above.
This procedure can be used as pseudo-code to implement PVOS in a programming language. The PVOS
problem is implicitly cast into a special minimal DCAT problem. Step 1) standardises the problem following
section 2.1, step 2) reduces it to virtual simplex points and orthogonalises it to a diagonal form following
section 3.3, from which the polynomial system (20) is readily available. The SVD of step 2) is implemented by
a cheaper thin SVD with an eigen-decomposition of M ′M ′⊤, since factor V is not required (Demmel, 2020).
This decomposition can be obtained in closed-form for d = 2. Step 3) solves the polynomial system following
section 2.4 and steps 4), 5) and 6) ‘undo’ the initial simplifications to retrieve the solution. Eventually, the
optional step 7) identifies the ambiguities using the optional input parameter τ to decide the numerically
repeated singular values.
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Algorithm 2 Computational procedure solving PVOS. Parameter τ is only needed to generate the
complete solution set if ambiguities arise. These ambiguities are decided from the numerical closeness
between singular values. The computational structure chosen to hold the ambiguities is left to the user’s
discretion.

⇒ Function PVOS(M ∈ Rd×d+1, w ∈ Rd+1
∗ , h ∈ R∗, (optional) τ ∈ R+)

1) Standardise the problem by removing translation and weighting:

• Set the diagonal weight matrix as W = diag(w)

• Compute the weighted centroid of the point set as m̄ = 1
∥W∥2MW 2e

• Compute the centred weighted point set as M ′ =
(
M − m̄e⊤

)
W

2) Reduce to d virtual point pairs and orthogonalise the problem to a diagonal form:

• Compute the thin SVD M ′ = UΘ̄V̄ ⊤

• Set s′ = hdet(Θ̄)/W(M)

3) Solve the polynomial system by following step 4) of the DCAT procedure 1 with Γ = Θ̄

4) Select one solution and retrieve the linear part as A = UA′Θ̄−1U⊤

5) Compute the translation as t = (I −A)m̄

6) Compute the simplex as N = AP + te⊤

7) (optional) Identify the possible ambiguities by following step 7) of the DCAT procedure 1 with Γ = Θ̄
and r = d

⇒ Output N ∈ Rd×d+1, (optional) the entities required to generate all solutions
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4 Application: Laparoscopic Augmented Reality

Laparoscopic surgery is a form of modern mini-invasive surgery, with navigation challenges for which guid-
ance by augmented reality has recently brought promising results, particularly in liver surgery. Laparoscopic
surgery and the registration problem related to augmented reality are advanced research fields. We give
a short account of them and outline a registration method from the literature (Koo et al., 2017), which
serves as a base for the proposed method exploiting DCAT and PVOS, and as baseline for experimental
comparison.

4.1 Laparoscopic Surgery, Augmented Reality and the Registration Problem

In laparoscopic surgery, the surgeon uses a surgical camera introduced in the abdominal cavity through a
tiny incision. The camera films the target organ, which may be the liver, the pancreas, the prostate, or the
uterus, and the surgeon performs the surgical procedure by looking at the camera’s image on a screen. This
is technically challenging because the surgeon cannot directly touch the organ and cannot see within its
volume where the tumours are, before incision. Augmented reality mitigates this challenge by overlaying a
preoperative 3D model of the organ, including the tumours, on the surgical image, enhancing the surgeon’s
spatial understanding. The preoperative 3D model is a volumetric mesh reconstructed from a CT scan or
an MRI acquired prior to surgery. CT and MRI can generally not be performed during surgery. The core
difficulty to create an augmented reality system of this kind is to register the preoperative 3D model with
the surgical 2D image. The registration moves, rotates, and deforms the preoperative 3D model so that it
properly projects on the observed organ in the surgical image. We focus on the case of liver surgery, which is
particularly difficult because of its substantial deformability. Nonetheless, the liver has distinct anatomical
landmarks, which are exploited to constrain registration. The anatomical landmarks are corresponding
curves visible both in the preoperative 3D model and in the surgical image: the falciform ligament and
specific parts of the lower ridge.

4.2 Modelling and Base Registration Method

We use the state-of-the-art model and method for liver registration (Adagolodjo et al., 2017; Koo et al.,
2017). We model the surgical camera by the pin-hole model (Hartley and Zisserman, 2003) and assume the
intrinsic parameters, which are the focal length f and the principal point x0, y0 in pixels, to be known from
static calibration. The camera’s coordinate frame is centred at the camera’s projection centre and oriented
along the principal and retinal axes. A 3D point with coordinates (X,Y, Z) expressed in this coordinate
frame is projected to the image as (x, y) = Π(X,Y, Z) = (fX/Z + x0, fY/Z + y0). The preoperative 3D
model is expressed in its own coordinate frame, defined by the CT or MRI acquisition device. The objective
of registration is to compute the registration function ϕ : R3 → R3, which maps points from the preoperative
coordinate frame to the camera coordinate frame. The preoperative 3D model is a 3D mesh represented
by a set of n vertices Vpre ∈ R3×n, a set of vertex triplets Dliv ⊂ [1, n]3 defining triangles at the liver
surface and a set of vertex quadruplets Tliv ⊂ [1, n]4 defining tetrahedra spanning the liver volume. We
assume without loss of generality that the liver contains a single tumour, whose surface is represented by a
set of vertex triplets Dtum ⊂ [1, n]3. The ℓ anatomical landmarks are each represented by a set of indices
Lk ⊂ [1, n], k ∈ [1, ℓ], defining piecewise linear curves at the liver surface. We denote as m the total number
of landmark vertices. The corresponding observed anatomical landmarks in the surgical image are each
represented by a list of pixel coordinates Ck ⊂ N2, k ∈ [1, ℓ], defining continuous curves. The registration
transformation ϕ is modelled by the displacement of the mesh vertices, from their location Vpre in the
preoperative coordinate frame to their desired location Vsur ∈ R3×n in the surgical camera coordinate frame.
The transformation ϕ is constrained by the anatomical landmarks and prior assumptions on the admissible
deformations. The assumptions used by existing methods range from rigidity, where ϕ is modelled by
a rigid-body motion, to complex biomechanics. These models were implemented using the principle of
position-based dynamics (Bender et al., 2015; Koo et al., 2017). We propose two volume-preserving models
of ϕ based on DCAT and PVOS, which we implement in the same framework.
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The principle is to consider the mesh vertices as particles, to which the registration constraints are
cyclically applied until convergence. An initial step simply initialises the registration parameters Vsur with a
rigid transformation of Vpre accounting for the global changes owing to the camera viewpoint. This is usually
done by requesting the user to manually translate and rotate the preoperative 3D model in order to visually
overlay its reprojection with the observed liver in the surgical image (Koo et al., 2017; Labrunie et al., 2022).
We have automated this step by determining a rigid-body motion that brings the preoperative 3D model to a
typical surgical camera pose, with the anterior part of the liver filling the surgical image and the liver ridge
facing downward. We also also implemented the projection using rasterisation to handle visibility-aware
mesh projection, rather than mere vertex-wise projection in the original implementation (Koo et al., 2017).

Concretely, the generic iterative algorithm then has three main steps repeated until convergence, which
we describe next, following algorithm 3. Step 1) starts enforcing the registration constraints. It uses the
anatomical landmarks by finding the 3D point pairs in matrices P,Q ∈ R3×m representing the correction
that each landmark point should be subjected to. For each landmark of index k, and for each mesh vertex
in Vsur forming this landmark, i.e., with index in Lk, it finds the closest 3D point projected by function Π
on the observed landmark Ck in the surgical image. We store in P the current landmark vertex coordinates
extracted from Vsur and in Q the closest 3D points. We also use the liver silhouette, whose vertices are
included in the point pairs. Step 2) enforces the deformation prior, by computing new mesh vertices V ′sur
from the current estimate Vsur and the 3D point pairs in P,Q. It depends on the chosen strategy for the
deformation prior, user-specified in variable strategy. The first existing strategy is Rigid, which is a rigidity
prior on transformation ϕ. One estimates a rigid-body motion between the points in P and the points in
Q in the least-squares sense and applies this transformation to the vertices in Vsur to find V ′sur. The second
existing strategy, named Biomechanical, is the biomechanical formulation from (Koo et al., 2017). The
two proposed strategies implement volume preserving transformations; they are described in the next section.
Step 3) updates the vertices in Vsur using a momentum parameter 0 < α ≤ 1 as Vsur ← (1− α)Vsur + αV ′sur.
Steps 1) to 3) are repeated until ∥Vsur − V ′sur∥/n < ϵ or until the iteration count reaches 100. We use the
recommended values of α = 0.2 and ϵ = 10−2 in all our experiments.

4.3 Registration with Volume Preservation

We propose to use volume preservation on the transformation ϕ. We define two types of priors on ϕ and
integrate them as strategies to the above-described generic registration method in algorithm 3.

Global volume preservation. We propose the GlobalVolumePreservation strategy, which is an
affine transformation with global volume preservation prior. This is achieved by representing ϕ by a DCAT
in dimension d = 3 with determinant s = 1 and unit weights. This prior is ‘softer’ than the rigidity
prior, which also preserves the global volume, yet at the expense of being overly stiff, and is stiffer than
the biomechanical models, which do not preserve the global volume, but may be underconstrained by the
anatomical landmarks. Concretely, we estimate a DCAT (A, t) from the 3D point pairs in P,Q using the
computational procedure in algorithm 1 and set V ′sur = AVsur+te⊤. As DCAT forms a group, namely SL3(R),
the algorithm guarantees that the estimated transformation ϕ is eventually a DCAT with determinant 1.

Local volume preservation. We propose the LocalVolumePreservation strategy, which is a local
volume preservation prior. This is achieved by imparting a change of the mesh tetrahedra by a PVOS in
dimension d = 3 with volume h taken from the original mesh Vpre and unit weights. Indeed, the elements of
the volumetric 3D mesh are tetrahedra, which are 3-simplices. For each tetrahedron, we store the d+1 = 4
vertices in M ∈ R3×4. We then compute the closest simplex N ∈ R3×4 with volume h measured from
the corresponding tetrahedron in the preoperative 3D model with vertices Vpre. This prior is softer than
the global volume preservation prior, yet strongly constrains the deformations. Concretely, we use PVOS-
corrected vertex coordinates N from M using the computational procedure in algorithm 2 and update the
vertices in V ′sur.
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Algorithm 3 Computational procedure solving registration for laparoscopic augmented reality.
The base algorithm is adapted from (Koo et al., 2017). The core step 2) estimates the registration trans-
formation ϕ implicitly by updating the registered model vertices in Vsur, depending on the chosen strategy,
specified in the input variable strategy. The numerical hyperparameters α and ϵ represent momentum and
convergence threshold.

⇒ Function registration(Vpre,Vsur ∈ R3×n, Tliv ⊂ [1, n]4, L1, . . . ,Lℓ ⊂ [1, n], C1, . . . , Cℓ ⊂ N2, strategy,
(optional) 0 < α ≤ 1 (default: α = 0.2), ϵ ∈ R+ (default: ϵ = 10−2))

Set iteration count as iter = 0

1) Reset P = ∅ and Q = ∅, and set iter = iter + 1

For each landmark of index k = 1, . . . , ℓ

For each mesh vertex of index j ∈ Lk

Extract the point coordinates as p = Vsur(j)

Find the closest point q projecting on the image landmark as minq∈R3 ∥p− q∥2 s.t. Π(q) ∈ Ck

Store p, q as P = [P p] and Q = [Qq]

2) Use the point pairs in P,Q to update the vertices in Vsur, depending on strategy:

• “Rigid”:

Compute the least-squares rigid transformation (R, t) between P and Q (Umeyama, 1991)

Set V ′sur = RVsur + te⊤

• “Biomechanical”:

Refer to (Koo et al., 2017) for details

• “GlobalVolumePreservation”:

Compute (A, t) = DCAT(P,Q, 1) from algorithm 1

Set V ′sur = AVsur + te⊤

• “LocalVolumePreservation”:

For each tetrahedron with vertex indices u1, . . . , u4 ∈ [1, n] in Tliv
Extract original point coordinates from Vsur or the projection-corrected ones from Q as M

Extract the original tetrahedron volume from Vpre as h

Compute the nearest volume-preserving tetrahedron as N = PVOS(M, e, h) from algorithm 2

Store the point coordinates from N in V ′sur

3) Update the registered model estimate as Vsur = (1− α)Vsur + αV ′sur

4) Stopping criterion: if ∥Vsur − V ′sur∥ ≥ nϵ and iter < 100 goto step 1)

⇒ Output Vsur ∈ R3×n
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4.4 Experimental Results

We report experimental results on a public dataset comprising 4 patient data (Rabbani et al., 2022). This
dataset includes the ground truth localisation of the tumour in the camera coordinate frame, allowing one
to measure the tumour registration error, providing sound means of comparing registration methods. This
is achieved by using the estimated transformation ϕ to transport the tumour vertices given by Dtum from
the preoperative to the surgical coordinate frames and comparing them to the ground truth tumour using
least squares. We compare 7 methods. The first 5 are existing methods from the literature, forming the
state-of-the-art. One of them, named Rigid, uses the principle described in section 4.2 with a rigid-body
motion estimated in step 2). The last 2 methods, named GloVP and LocVP, are the global and local volume
preservation methods given in section 4.3.

Method Patient 1 Patient 2 Patient 3 Patient 4 Avg Avg w/o P2

Manual Initialisation 15.14 35.48 30.48 16.29 24.35 20.64
(Adagolodjo et al., 2017) 8.25 37.25 28.40 15.83 22.43 17.49
(Koo et al., 2017) 9.49 38.95 25.04 18.35 22.95 17.63
(Labrunie et al., 2022) 14.84 N/A 22.40 7.23 N/A 14.82
Rigid 14.93 84.89 22.34 17.51 34.92 18.26

GloVP 17.38 69.07 12.17 14.74 28.34 14.76
LocVP 17.39 69.24 11.53 14.62 28.19 14.51

Table 1: Laparoscopic augmented reality: tumour registration error (mm) for the 7 compared methods.

We show quantitative results in table 1 for the tumour registration error and qualitative results in figure 2.
The average error is shown for all 4 patients and excluding patient 2, which is known to incur higher errors in
all methods, owing to a significant torsion of the liver. We observe that all methods indeed have a high error
for patient 2 and use the average error without patient 2 as reference. The rigid methods, namely Manual
Initialisation and Rigid, have the highest average errors, at 20.64mm and 18.26mm respectively. Next,
methods (Adagolodjo et al., 2017; Koo et al., 2017) based on a deformable model have slightly lower average
errors, at 17.49mm and 17.63mm respectively. Method (Labrunie et al., 2022) with visibility reasoning
defines the state-of-the-art, with an average error at 14.82mm. Lastly, the proposed volume-preserving
methods GloVP and LocVP have the lowest average errors, at 14.76mm and 14.51mm respectively.

5 Conclusion

We have shown that estimating a transformation in the SLd(R) or the SL±
d (R) groups from point pairs

in the least-squares sense is achievable optimally in spite of the nonconvex determinant constraint. We
have given a computation procedure reducing the problem to a univariate polynomial. We have carefully
studied the conditions for a single or multiple solutions, establishing a simple relationship to the cases where
estimating an affine transformation by forgetting the determinant constraint would yield a singular result.
We have shown that the proposed study enables computing the closest volume-preserved simplex to a given
d-simplex optimally, for which we proposed a specific computation procedure. This work simplifies and
generalises previous work addressing the specific case of dimension d = 2.

Future work may follow numerous leads. These leads include i) the case of a determinant prescribed
in a subset of R, rather than as a single fixed value in R, ii) the extension to projective transformations
with prescribed determinant, either for the complete homography matrix or its leading sub-matrix, iii) the
study of the manifold of d-simplices with prescribed volume, to which the proposed PVOS forms a projector,
and iv) the use of other costs such as the symmetric least-squares cost occurring in maximum-likelihood
estimators.

Acknowledgements. This work has been supported by the Spanish Ministry of Science and Innovation
MCIN/AEI/10.13039/501100011033 through project METAMORPH (PID2023-151295OB-I00).
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Figure 2: Laparoscopic augmented reality: registration visualisation. The existing method Rigid and the
two proposed ones, GloVP based on DCAT, and LocVP based on PVOS are shown for two images per patient.
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A Univariate Polynomial for d = 3

The proposed method to solve the polynomial system occurring in DCAT for dimension d = 3 may be
reduced to the following univariate in the Lagrange multiplier λ:

f4(λ) = a12λ
12 + · · ·+ a1λ+ a0, (48)

where:
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(49)

B Application: Image Warping by Moving Least-Squares

We use DCAT within an image warping method based on the Moving Least-Squares (MLS) approach (Schae-
fer et al., 2006), as illustrated in figure 3. Given the particular use-case of image warping, we work in di-
mension d = 2, though MLS and DCAT both work in greater dimensions, and their general integration can
be readily worked out following the derivation given below. The deformation field in MLS is defined by 2D
control points and a transformation group. The 2D control points may be handled by a user to specify the
desired global deformation sketch. In contrast, the transformation group, usually chosen as the Euclidean,
similarity, or affine group, defines the deformation’s local behaviour.

We propose to use the SL2(R) group in order to construct approximate local-area-preserving deformation
fields, by integrating DCAT with MLS. Let P,Q ∈ R2×m be the coordinates of the 2D control points in the
original and deformed images respectively. In general, the original control points P are evenly distributed
within a region of interest or specified by the user, and kept fixed. In contrast, the deformed control
points Q, initialised as Q = P , may then be interactively edited by the user. The MLS deformation
field is obtained point-wise: for an original point with coordinates p ∈ R2, a specific affine transformation
(Ap, tp) is produced by involving a weighted estimation of the chosen transformation group, and finding the
deformed point coordinates as q = Ap p + tp. Area preservation is achieved by solving the DCAT problem
of equation (1) in dimension d = 2 with P,Q defined as the control points. We use s = 1 to preserve
the global image scale, though this parameter may be tuned by the user to implement scale control. The
localised behaviour is achieved by carefully choosing the weights W as a function of point p. The intuition
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(a) Original image (b) Warped image

Figure 3: Image warping: principle. (a) shows the original 600× 600 pixels image, enclosed with a uniform
triangulation with 16 × 16 vertices in gray, and endowed with m = 16 control points in blue. (b) shows
the warped image, obtained by interactively displacing the control points, applying the MLS principle with
DCAT to the mesh vertices and affinely interpolating the transformation within each triangle.

is to weight each control point by a decreasing function of its proximity to point p in the original image.
We denote the j-th original control point coordinates as pj ∈ R2, j ∈ [1,m]; in other words, pj is the j-th
column in matrix P . The corresponding weight in W is then chosen as:

ωj(p) =
1

(∥p− pj∥+ ϵ)2α
. (50)

This weight function involves two hyperparameters, ϵ and α. Hyperparameter ϵ > 0 defines the maximal
weight, which occurs when p coincides with the control point, giving a weight of wj(pj) = 1/ϵ2α. It is
usually fixed to a small value. Hyperparameter 0 < α ≤ 1 controls the deformation’s locality; α→ 0 induces
a deformation with limited local variations, whereas α = 1 induces a more rapidly-varying deformation.
It is usually interactively adjusted by the user within the above bounds; the resulting deformation field is
generally smooth. However, non-diffeomorphic deformations may occur, manifesting as fold overs in the
warped image. These fold-overs are induced by control points being moved towards each other and beyond.

We implement MLS image deformation by generating a uniform triangulation over a grid of ng × ng

vertices enclosing the original image domain. Given the current control point and hyperparameter values,
the above-described MLS principle is used to transfer each of the n2

g vertices to the deformed state. Each
triangular facet of the mesh induces an affine transformation which we use to warp the original to the
deformed image. We compare the proposed integration of DCAT with MLS, denoted MLS-DCAT, with the
existing Euclidean, similarity and affine variants, denoted MLS-EUC, MLS-SIM and MLS-AFF, respectively. We
use m = 16 control points and a triangulation drawn from ng × ng = 16× 16 vertices laid over the original
image shown in figure 3, used for illustration purposes. We use ϵ = 10−10 and α = 1 in all experiments. We
generate 100 deformation fields by randomly perturbing one of the control points according to a zero-mean
Gaussian distribution with a standard deviation of 100 pixels in each coordinate. As the inter-point distance
is of the order of

√
2 ·100/16 ≈ 53 pixels, this means that the perturbed control point will cross over the line

joining two of its neighbouring control points in approximately 60% of the cases on average. Figure 4 shows
deformation examples for the 4 implemented transformation models. The fold overs are obvious from the
visual artefacts they create in the warped image. It is expected that the stiffer the transformation model,
the rarer the fold overs. The average proportion of folded-over faces per transformation model is the lowest
for MLS-EUC, at 0.16%, which reflects this model’s natural stiffness. It raises for MLS-SIM and MLS-DCAT,
at 0.33% and 0.30% respectively. Lastly, it is the highest for MLS-AFF, at 0.84%, reflecting the model’s
natural flexibility. It is interesting to compare these statistics with each model’s local number of degrees of
freedom. Specifically, in dimension d = 2, MLS-EUC has 3, MLS-SIM has 4, MLS-DCAT has 5 and MLS-AFF has
6. We thus have, in spite of the added flexibility over MLS-SIM, that MLS-DCAT has a lower rate of fold-over,
while, in spite of being also as flexible as MLS-AFF, its rate of fold-rate is almost three times lower. This
is explained by the signed-area preservation constraint in DCAT, enforcing det(Ap) = 1, striking a balance
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between deformation amplitude and local-structure preservation.

(a) MLS-EUC (b) MLS-SIM (c) MLS-DCAT (d) MLS-AFF

Figure 4: Image warping: examples of warped images with the four tested local models. The deformation
field is generated by MLS from the control point in red randomly displaced along the blue line.

C Application: Generalised Procrustes Analysis

Generalised Procrustes Analysis (GPA) is a statistical shape analysis technique, generalising to any number
of shapes the original Procrustes analysis designed for two shapes (Gower, 1975; Ten Berge, 1977). GPA
finds an ‘average’ shape which best represents the data shapes by aligning them spatially. The average shape
and spatial alignment depend on a user-specified set of variations to compensate for, which are specified
by choosing a transformation group, within which the aligning transformations are estimated. GPA is
generally used with the Euclidean and the similarity groups; they both eliminate variations in position and
orientation, and in scale for the similarity group. GPA assumes that the data shapes are represented by m
corresponding points and uses least-squares to measure closeness between the shape points. GPA methods
proceed iteratively. They initialise the aligning transformations, typically to the identity transformation of
the transformation group, and then alternate two steps: step i) is the computation of the average shape,
and step ii) is the computation of the aligning transformation between each data shape and the average
shape. The iterations stop when the change in the average shape is below a threshold chosen as ϵ = 10−8

or when the iteration count reaches 100. A detailed algorithm may be found in (Bartoli et al., 2013).
We compare the alternating GPA algorithm with the classical Euclidean and similarity groups, leading

to methods GPA-EUC and GPA-SIM respectively, with the SL3(R) group, method GPA-DCAT, implemented
thanks to the DCAT procedure in algorithm 1 with dimension d = 3, determinant s = 1 and unit weights.
We use AMOS, a public dataset with 70 shapes representing the liver of different individuals reconstructed
from CT scans (Ji et al., 2022). Each shape is represented by a triangular 3D surface mesh with a large
number of vertices. It is manually annotated with m = 13 anatomical points (Labrunie et al., 2024). We
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use these 13 points to perform GPA and then apply the aligning transformations to the complete vertex
sets.

Individual point correspondence dispersion

1 2 3 4 5 6 7 8 9 10 11 12 13 avg

GPA-EUC 14.01 11.08 11.31 9.83 9.35 10.62 11.68 10.74 9.67 7.12 11.22 12.45 14.86 11.07
GPA-SIM 12.26 9.21 10.35 8.99 8.57 9.56 9.65 9.09 9.09 6.84 10.10 11.39 13.66 9.90
GPA-DCAT 11.10 9.96 8.65 7.45 7.21 7.94 8.79 9.19 7.82 5.97 8.50 9.44 11.19 8.71

Table 2: Procrustes analysis: measurement of individual and average point correspondence dispersion.

We use point dispersion to measure the post-GPA residual shape variability. Specifically, we use the align-
ing transformations to transform all shapes towards the average shape, as in step ii) of the GPA algorithm,
resulting in multiple occurrences forming a localised point cloud for each of the 13 point correspondences,
as illustrated in figure 5. We quantify the dispersion of each point cloud from its sample covariance matrix

C ∈ R3×3 as disp =
√

1
3trace(C). The lower the dispersion, the more effective the variation-removal effect

of GPA. We give quantitative point dispersion measurements in table 2. We observe that GPA-EUC has the
higher dispersion in all point correspondences. This is as expected, as the Euclidean group is a subgroup
of both the similarity and the SLd(R) groups, and hence necessarily preserves a higher amount of shape
variation. We then observe that GPA-SIM generally has a higher dispersion than GPA-DCAT, but not always.
In particular, GPA-DCAT has a slightly higher dispersion for point correspondences 2 and 8. This is explained
by the fact that the similarity and the SLd(R) groups are not subgroups of each other. There are, in fact,
complementary: while they both share a Euclidean subgroup, the similarity group performs volume chang-
ing, while the SLd(R) group does not, but adds other variations pertaining to the affine group, such as
relative scaling and skewing. As the SLd(R) group has more degrees of freedom than the similarity group,
it is coherent it generally has a lower dispersion in GPA. Figure 6 shows the final result of using the aligning
transformations on the complete data shapes. As expected, we observe that the overlap is qualitatively
better for GPA-DCAT, followed by GPA-SIM and GPA-EUC.
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Figure 5: Procrustes analysis: visualisation of the point dispersion. Each of the m = 13 point correspon-
dences defines a point cloud shown in a specific colour. The centroid of each point cloud is shown as a black
cross.
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Figure 6: Procrustes analysis: aligned data shapes. Following the run of GPA with the m = 13 point
correspondences, the complete data shapes are aligned with the computed transformations. Each shape is
shown in its own colour.
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